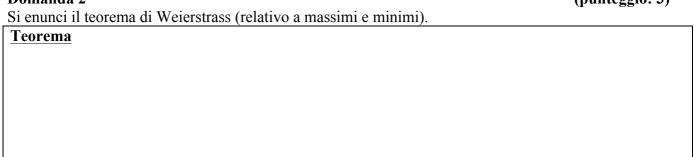
Fondamenti di Matematica per Biotecnologie – Prova scritta – 15 settembre 2015

	Cognome:	Per ritirarsi ed evitare la
Linea 1	Nome:	valutazione del compito firmare:
Linea 2 Linea 3	Matricola:	
	Corso di Laurea:	RITIRATO/A


			Riser	vato alla (Commissi	one			
Quesito	<u>D1</u>	<u>D2</u>	E3	E4	E5	E6	E7	E8	
Voto	3	3	3+3	4	3+3	6	3+1	0	/30

Domanda 1												(punteggio: 3)
C' C F 1 17	-	C		. •	. 1	1	01	4.	4	0.(4)	4		

Sia $f: [-1,1] \rightarrow \mathbf{R}$ una funzione continua tale che f(-1) = -1 e f(1) = 1. E' corretto affermare che: "fè derivabile quando x = 0 e f(0) = 0"?

Risposta (motivata)		

Domanda 2 (punteggio: 3)

Esercizio 3 (punteggio: 3/3)

Data la funzione $f(x) = \frac{(2x-3)\sqrt{x}}{\ln(|x-1|)}$, si determini: 1. Il campo di esistenza di f. 2. Il segno di f.

Campo di esistenza di f

Esercizio 4	(punteggio: 4)
Data la funzione $f: \mathbf{R} \to \mathbf{R}$ tale che: $f(x) = (x-2)^2$, si determini l'are delimitata dal grafico di f e dalla retta $y = 4$.	ea della regione A del piano
Area di A	
Svolgimento	

Esercizio 5	(punteggio: 3/3)
	u <i>ee ,</i>

Calcolare i seguenti limiti:

$$A = \lim_{x \to +\infty} \frac{e^{-x} + x}{\ln(x) - 2\operatorname{arctg}(x)}$$

$$B = \lim_{x \to 0^{+}} e^{\frac{(x-1)}{x}} - 1$$

	20 0
<u>Limite</u> A =	
<u>Limite</u> B =	
Svolgimento	

Esercizio 6 (punteggio: 6)

Si studi la seguente funzione (campo di esistenza, segno, limiti agli estremi del campo di esistenza, asintoti, massimi e/o minimi relativi, grafico):

$$f(x) = \frac{1}{x^2 - 2x - 3}$$

<u>Svoigimento</u>	

<u>Svolgimento</u>	
Esercizio 7	(punteggio: 3/1)
Si determinino tutte le primitive della seguente funzione $f(x)$.	(punteggio: 3/1)
Si determinino tutte le primitive della seguente funzione $f(x)$. $f(x) = -\frac{5}{x^2} + \cos(\pi x) - 4xe^{x^2} \qquad \text{(definita solo per } x \in (0, +\infty) \text{)}.$	(punteggio: 3/1)
Si determinino tutte le primitive della seguente funzione $f(x)$. $f(x) = -\frac{5}{x^2} + \cos(\pi x) - 4xe^{x^2} \qquad \text{(definita solo per } x \in (0, +\infty) \text{)}.$	(punteggio: 3/1)
Si determinino tutte le primitive della seguente funzione $f(x)$.	(punteggio: 3/1)
Si determinino tutte le primitive della seguente funzione $f(x)$. $f(x) = -\frac{5}{x^2} + \cos(\pi x) - 4xe^{x^2} \qquad \text{(definita solo per } x \in (0, +\infty) \text{)}.$	(punteggio: 3/1)
Si determinino tutte le primitive della seguente funzione $f(x)$. $f(x) = -\frac{5}{x^2} + \cos(\pi x) - 4xe^{x^2} \qquad \text{(definita solo per } x \in (0, +\infty) \text{)}.$	(punteggio: 3/1)
Si determinino tutte le primitive della seguente funzione $f(x)$. $f(x) = -\frac{5}{x^2} + \cos(\pi x) - 4xe^{x^2} \qquad \text{(definita solo per } x \in (0, +\infty) \text{)}.$	(punteggio: 3/1)
Si determinino tutte le primitive della seguente funzione $f(x)$. $f(x) = -\frac{5}{x^2} + \cos(\pi x) - 4xe^{x^2} \qquad \text{(definita solo per } x \in (0, +\infty) \text{)}.$	(punteggio: 3/1)
Si determinino tutte le primitive della seguente funzione $f(x)$. $f(x) = -\frac{5}{x^2} + \cos(\pi x) - 4xe^{x^2} \qquad \text{(definita solo per } x \in (0, +\infty) \text{)}.$	(punteggio: 3/1)
Si determinino tutte le primitive della seguente funzione $f(x)$. $f(x) = -\frac{5}{x^2} + \cos(\pi x) - 4xe^{x^2} \qquad \text{(definita solo per } x \in (0, +\infty) \text{)}.$	(punteggio: 3/1)
Si determinino tutte le primitive della seguente funzione $f(x)$. $f(x) = -\frac{5}{x^2} + \cos(\pi x) - 4xe^{x^2} \qquad \text{(definita solo per } x \in (0, +\infty) \text{)}.$	(punteggio: 3/1)
Si determinino tutte le primitive della seguente funzione $f(x)$. $f(x) = -\frac{5}{x^2} + \cos(\pi x) - 4xe^{x^2} \qquad \text{(definita solo per } x \in (0, +\infty) \text{)}.$	(punteggio: 3/1)
Si determinino tutte le primitive della seguente funzione $f(x)$. $f(x) = -\frac{5}{x^2} + \cos(\pi x) - 4xe^{x^2} \qquad \text{(definita solo per } x \in (0, +\infty) \text{)}.$	(punteggio: 3/1)
Si determinino tutte le primitive della seguente funzione $f(x)$. $f(x) = -\frac{5}{x^2} + \cos(\pi x) - 4xe^{x^2} \qquad \text{(definita solo per } x \in (0, +\infty) \text{)}.$	(punteggio: 3/1)
Si determinino tutte le primitive della seguente funzione $f(x)$. $f(x) = -\frac{5}{x^2} + \cos(\pi x) - 4xe^{x^2} \qquad \text{(definita solo per } x \in (0, +\infty) \text{)}.$	(punteggio: 3/1)
Si determinino tutte le primitive della seguente funzione $f(x)$. $f(x) = -\frac{5}{x^2} + \cos(\pi x) - 4xe^{x^2} \qquad \text{(definita solo per } x \in (0, +\infty) \text{)}.$	(punteggio: 3/1)