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1 The Hamiltonian formalism for PDEs

1.1 The gradient of a functional

Definition 1.1. Consider a function f ∈ C∞(Us,R), Us ⊂ Hs(T) open, s ≥ 0
a fixed parameter and T := R/2πZ is the 1 dimensional torus. We will denote
by ∇f(u) the gradient of f with respect to the L2 metric, namely the unique
function such that

〈∇f(u), h〉L2 = df(u)h , ∀h ∈ Hs (1)

where

〈u, v〉L2 :=

∫ π

−π
u(x)v(x)dx (2)

is the L2 scalar product and df(u) is the differential of f at u. The gradient is
a smooth map from Hs to H−s (see e.g. [?]).

Example 1.2. Consider the function

f(u) :=

∫ π

−π

u2x
2

dx , (3)

which is differentiable as a function from Hs → R for any s ≥ 1. One has

df(u)h =

∫ π

−π
uxhxdx =

∫ π

−π
−uxxhdx = 〈−uxx, h〉L2 (4)

and therefore in this case one has ∇f(u) = −uxx.
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Example 1.3. Let F : R2 → R be a smooth function and define

f(u) =

∫ π

−π
F(u, ux)dx (5)

then the gradient of f coincides with the so called functional derivative of F :

∇f ≡ δF
δu

:=
∂F
∂u
− ∂

∂x

∂F
∂ux

. (6)

1.2 Lagrangian and Hamiltonian formalism for the wave
equation

Until subsection 1.4 we will work at a formal level, without specifying the func-
tion spaces and the domains.

Definition 1.4. Let L(u, u̇) be a Lagrangian function, then the corresponding
Lagrange equations are given

∇uL−
d

dt
∇u̇ L = 0 (7)

where ∇uL is the gradient with respect to u only, and similarly ∇u̇ is the gradient
with respect to u̇.

Example 1.5. Consider the Lagrangian

L(u, u̇) :=

∫ π

−π

(
u̇2

2
− u2x

2
− µ2u

2

2
− F (u)

)
dx . (8)

then the corresponding Lagrange equations are given by (??) with f = −F ′.
Given a Lagrangian system with Lagrangian function L one defines the cor-

responding Hamiltonian system as follows.

Definition 1.6. Consider the momentum v := ∇u̇L conjugated to u; assume
that L is convex with respect to u̇, then the Hamiltonian function associated to
L is defined by

H(v, u) := [〈v; u̇〉L2 − L(u, u̇)]
u̇=u̇(u,v)

. (9)

Definition 1.7. Let H(v, u) be a Hamiltonian function, then the corresponding
Hamilton equations are given by

v̇ = −∇uH , u̇ = ∇vH . (10)

As in the finite dimensional case one has that the Lagrange equations are
equivalent to the Hamilton equation of H.

An elementary computation shows that for the wave equation one has v = u̇
and

H(v, u) =

∫ π

−π

(
v2 + u2x + µ2u2

2
+ F (u)

)
dx (11)
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1.3 Canonical coordinates

Consider a Lagrangian system and let ek be an orthonormal basis of L2, write
u =

∑
k qkek and u̇ =

∑
k q̇kek, then one has the following proposition

Proposition 1.8. The Lagrange equations (7) are equivalent to

∂L

∂qk
− d

dt

∂L

∂q̇k
= 0 (12)

Proof. Taking the scalar product of (7) with ek one gets

〈ek;∇uL〉L2 − d

dt
〈ek;∇u̇L〉L2 = 0

but one has 〈ek;∇uL〉 = ∂L
∂qk

and similarly for the other term. Thus the thesis
follows.

This proposition shows that, once a basis has been introduced, the Lagrange
equations have the same form as in the finite dimensional case.

In the Hamiltonian case exactly the same result holds. Precisely, denoting
v :=

∑
k pkek one has

Proposition 1.9. The Hamilton equations of a Hamiltonian function H, are
equivalent to

ṗk = −∂H
∂qk

, q̇k =
∂H

∂pk
. (13)

In the case of the nonlinear wave equation, in order to get a convenient form
of the equations, one can choose the Fourier basis. Such a basis is defined by

êk :=


1√
π

cos kx k > 0
1√
2π

k = 0
1√
π

sin−kx k < 0

(14)

Thus the Hamiltonian (11) takes the form

H(p, q) =
∑
k∈Z

p2k + ω2
kq

2
k

2
+

∫ π

−π
F

(∑
k

qkêk(x)

)
dx , (15)

where ω2
k := k2 + µ2. For the forthcoming developments it is worth to rescale

the variables by defining

p′k :=
pk√
ωk

, q′k :=
√
ωkqk , (16)

so that, omitting primes, the Hamiltonian takes the form

H(p, q) =
∑
k

ωk
p2k + q2k

2
+HP (p, q) (17)

where HP has a zero of order higher than 2. In the following we will always study
systems of the form (17). Moreover, possibly by relabeling the variables and the
frequencies it is possible to reduce to the case where k varies in N ≡ {1, 2, 3...}.
This is what we will assume in developing the abstract theory.
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Example 1.10. An example of a different nature in which the Hamiltonian takes
the form (17) is the nonlinear Schrödinger equation

−iψ̇ = ψxx + f(|ψ|2)ψ , (18)

where f is a smooth function. Eq. (18) has the conserved energy functional

H(ψ, ψ̄) :=

∫ π

−π

(
|ψ|2 + F (|ψ|2)

)
dx , (19)

where F is such that F ′ = f . Introduce canonical coordinates (pk, qk) by

ψ =
∑
k∈Z

pk + iqk√
2

êk , (20)

then the energy takes the form (17) with ωk = k2 and the NLS is equivalent to
the corresponding Hamilton equations.

Example 1.11. Consider the Kortweg de Vries equation

ut + uxxx + uux = 0 , (21)

in the space of functions with zero mean value. The conserved energy is given
by

H(u) =

∫ π

−π

(
u2x
2

+
u3

6

)
dx , (22)

which again is also the Hamiltonian of the system. Canonical coordinates are
here introduced by

u(x) =
∑
k>0

√
k(pkêk + qkê−k) , (23)

in which the Hamiltonian takes the form (17) with ωk = k3.

Remark 1.12. It is also interesting to study some of these equations with Dirich-
let boundary conditions (DBC) typically on [0, π]. This will always be done
by identifying the space of the functions fulfilling DBC with the space of the
function fulfilling periodic boundary conditions on [−π, π] which are skew sym-
metric. Similarly, Neumann boundary conditions will be treated by identifying
the corresponding functions with periodic even functions. In some cases (e.g. in
equation (??) with DBC and an f which does not have particular symmetries)
the equations do not extend naturally to the space of skew symmetric and this
has some interesting consequences (see [?, ?]).

1.4 Basic elements of Hamiltonian formalism for PDEs

A suitable topology in the phase space is given by a Sobolev like topology.
For any s ∈ R, define the Hilbert space `2s of the sequences x ≡ {xk}k≥1

with xk ∈ R such that

‖x‖2s :=
∑
k

|k|2s|xk|2 <∞ (24)
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and the phase spaces Ps := `2s ⊕ `2s ≡ z 3 (p, q) ≡ ({pk}, {qk}). In Ps we will
sometimes use the scalar product

〈(p, q), (p1, q1)〉s := 〈p, p1〉`2s + 〈q, q1〉`2s . (25)

In the following we will always assume that

|ωk| ≤ C|k|d (26)

for some d.

Remark 1.13. Defining the operatorA0 : D(A0)→ Ps byA0(p, q) = (ωkpk, ωkqk)
one can write H0 = 1

2 〈A0z; z〉0, D(A0) ⊃ Ps+d.
Given a smooth Hamiltonian function χ : Ps ⊃ Us → R, Us being an open

neighborhood of the origin, we define the corresponding Hamiltonian vector field
Xχ : Us 7→ P−s by

Xχ ≡
(
− ∂χ
∂qk

,
∂χ

∂pk

)
. (27)

Remark 1.14. Corresponding to a function χ as above we will denote by ∇χ
its gradient with respect to the `2 ≡ `20 metric. Defining the operator J by
J(p, q) := (−q, p) one has Xχ = J∇χ.

Definition 1.15. The Poisson Bracket of two smooth functions χ1, χ2 is for-
mally defined by

{χ1;χ2} := dχ1Xχ2
≡ 〈∇χ1; J∇χ2〉0 (28)

Remark 1.16. As the example χ1 =
∑
k kqk, χ2 :=

∑
k kpk shows, there are

cases where the Poisson Bracket of two functions is not defined.

For this reason a crucial role is played by the functions whose vector field is
smooth.

Definition 1.17. A function χ ∈ C∞(Us,Ps), Us ⊂ Ps open, is said to be of
class Gens, if the corresponding Hamiltonian vector field Xχ is a smooth map
from Us → Ps. In this case we will write χ ∈ Gens

Proposition 1.18. Let χ1 ∈ Gens. If χ2 ∈ C∞(Us,R) then {χ1, χ2} ∈ C∞(Us,R).
If χ2 ∈ Gens then {χ1, χ2} ∈ Gens.

Definition 1.19. A smooth coordinate transformation T : Ps ⊃ Us → Ps
is said to be canonical if for any Hamiltonian function H one has XH◦T =
T ∗XH ≡ dT −1XH ◦ T , i.e. it transforms the Hamilton equations of H into the
Hamilton equations of H ◦ T .

Proposition 1.20. Let χ1 ∈ Gens, and let Φtχ1
be the corresponding time t flow

(which exists by standard theory). Then for Φtχ1
is a canonical transformation.
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