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1 Introduction

The aim of this note is to present an introduction to Birkhoff normal form and
to its use for the study of the dynamics of a Hamiltonian system close to an
elliptic equilibrium point. Recall that Birkhoff’s theorem ensures the existence
of a canonical transformation putting a Hamiltonian system in normal form
up to a remainder of a given order. The dynamics of the system in normal
form depends on the resonance relations fulfilled by the frequencies. In the
nonresonant case such a system is integrable and therefore its dynamics is very
simple. In the resonant case new phenomena occur. Typically there is exchange
of energy among the oscillators (beats). The phenomenon will be illustrated by
studying a resonant system with two degrees of freedom.

2 Birkhoff Theorem

On the phase space R2n consider a smooth Hamiltonian system H having an
equilibrium point at zero.

Definition 2.1. The equilibrium point is said to be elliptic if there exists a
canonical system of coordinates (p, q) (possibly defined only in a neighborhood
of the origin) in which the Hamiltonian takes the form

H(p, q) := H0(p, q) + P (p, q) , (2.1)

where

H0(p, q) =

n∑
l=1

ωl
p2
l + q2

l

2
, ωl ∈ R (2.2)

and P is a smooth function having a zero of order 3 at the origin.
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Remark 2.2. The equations of motion of (2.1) take the form

ṗl = −ωlql −
∂P

∂ql
(2.3)

q̇l = ωlpl +
∂P

∂pl
(2.4)

Since P has a zero of order three, its gradient starts with quadratic terms. Thus,
in the linear approximation the equations (2.3,2.4) take the form

ṗl = −ωlql
q̇l = ωlpl

=⇒ q̈l + ω2
l ql = 0 (2.5)

namely the system consists of n independent harmonic oscillators.

Example 2.3. Consider a Hamiltonian system of the form

n∑
l=1

y2
l

2
+ V (x)

where (y, x) are canonical variables. Assume that V has a minimum at the
origin. Then by standard theory there exist canonical variables (normal modes)
(p̃, q̃) in which the Hamiltonian takes the form

n∑
l=1

p̃2
l + ω2

l q̃
2
l

2
+ P̃ (q̃)

Then the canonical change of variables

pl =
p̃l√
ωl

, ql = q̃l
√
ωl

reduces the Hamiltonian to the form (2.1).

In the case of example 2.3 the frequencies ωl are positive numbers, while this
not required in the general definition 2.1. A relevant example in which negative
frequencies appear is that of the Lagrangian equilibrium of the circular three
body problem.

In the following we will denote by x = (p, q) the whole set of variables.

Theorem 2.4. (Birkhoff) For any positive integer N ≥ 0, there exist a neigh-
borhood UN of the origin and a canonical transformation TN : R2n ⊃ UN → R2n

which puts the system (2.1) in Birkhoff Normal Form up to order N , namely
such that

H(N) := H ◦ TN = H0 + Z(N) +R(N) (2.6)

where Z(N) is a polynomial of degree N + 2 which Poisson commutes with H0,
namely

{
H0;Z(N)

}
≡ 0 and R(N) is small, i.e.

|R(N)(x)| ≤ CN ‖x‖N+3
, ∀x ∈ UN ; (2.7)
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moreover, one has

‖x− TN (x)‖ ≤ CN ‖x‖2 , ∀x ∈ UN . (2.8)

An inequality identical to (2.8) is fulfilled by the inverse transformation T −1
N .

If the frequencies are nonresonant namely if

ω · k 6= 0 , ∀k ∈ Zn\{0} , (2.9)

I will show that the function Z(N) depends on the actions

Ij :=
p2
j + q2

j

2

only.
In the resonant case the normal form is more complicated and new phenom-

ena occur. They will be illustrated in sect. 5.

Remark 2.5. The remainder R(N) is very small in a small neighborhood of the
origin. In particular, it is of order εN+3 in a ball of radius ε. We will show in
sect. 4 that in typical cases R(N) might have a relevant effect only after a time
of order ε−N .

3 Proof of Birkhoff’s theorem

3.1 Formal theory

The idea is to construct a canonical transformation putting the system in a form
which is as simple as possible (as we will see, this is the normal form). More
precisely one constructs a canonical transformation pushing the non normalized
part of the Hamiltonian to order four, followed by a transformation pushing it
to order five and so on. Each of the transformations is constructed as the time
one flow of a suitable auxiliary Hamiltonian function (Lie transform method).

Definition 3.1. We will denote by Pj the set of the homogeneous polynomials
of degree j + 2 on R2n.

Remark 3.2. Let g ∈ Pj be a homogeneous polynomial, then there exists a
constant C such that

|g(x)| ≤ C ‖x‖j+2
. (3.1)

Denote by Xg the Hamiltonian vector field of g then Xg is a homogeneous
polynomial of degree j + 1 and therefore one has

‖Xg(x)‖ ≤ C ′ ‖x‖j+1
(3.2)

with a suitable constant C ′. The best constant such that (3.2) holds is usually
called the norm of Xg and denoted by ‖Xg‖. Similarly one can define the norm
of the polynomial g, but in the following we will not need it.

Remark 3.3. Let f ∈ Pi and g ∈ Pj then, by the very definition of Poisson
Brackets one has {f, g} ∈ Pi+j .
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3.2 Lie Transform

Let χ ∈ Pj be a polynomial function, consider the corresponding Hamilton
equations, namely

ẋ = Xχ(x) ,

and denote by φt the corresponding flow.

Definition 3.4. The time one map φ := φt
∣∣
t=1

is called Lie transform generated
by χ. It is clear by construction that φ is a canonical transformation.

We are now going to study the way a polynomial transforms when the coor-
dinate are subjected to a Lie transformation. Let g ∈ Pi be a polynomial and
let φ be the Lie transform generated by a polynomial χ ∈ Pj with j ≥ 1. To
compute the Taylor expansion of g ◦ φ first remark that

d

dt
g ◦ φt = {χ, g} ◦ φt (3.3)

so that, iterating one has

dl

dtl
g ◦ φt = {χ, ...{χ,︸ ︷︷ ︸

l times

g} ◦ φt (3.4)

Thus the Taylor expansion of g ◦ φt with respect to the time variable is given
by

g ◦ φt =
∑
l≥0

tlgl (3.5)

where the gl’s are iteratively defined by

g0 := g , gl =
1

l
{χ; gl−1} , l ≥ 1 . (3.6)

Evaluating at t = 1 one gets1

g ◦ φ =
∑
l≥0

gl . (3.7)

Remark 3.5. Eq. (3.7) is the Taylor expansion of g◦φ at the origin as a function
of the phase space variables x. This is an immediate consequence of remark 3.3
which implies

gl ∈ Pi+lj (3.8)

so that the expansion (3.7) is an expansion in homogeneous polynomials of
increasing order, i.e. the Taylor expansion.

1As a consequences of corollary 3.17 below, provided R is small enough, the map φ is
analytic for (t, x) ∈ (−3/2, 3/2)×BR, where BR is the ball of radius R centered at the origin.
It follows that the series (3.7) converges in BR.
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3.3 Looking for the generating function

We are now ready to construct a canonical transformation normalizing the sys-
tem up to terms of fourth order. Thus let χ1 ∈ P1 be the generating of the Lie
transform φ1, and consider H ◦φ1, with H given by (2.1). Using (3.7) and (3.6)
to compute the first terms of the Taylor expansion of H ◦ φ one gets

H ◦ φ = H0 + {χ1, H0}+ P1 + h.o.t

where P1 is the Taylor polynomial of order three of P and h.o.t. denotes higher
order terms.

We wont to construct χ1 in such a way that

Z1 := {χ1, H0}+ P1 (3.9)

turns out to be as simple as possible. Obviously the simplest possible form is
Z1 = 0. Thus we begin by studying the equation

{χ1, H0}+ P1 = 0 (3.10)

for the unknown polynomial χ1. To study this equation define the homological
operator

£0 : P1 → P1 (3.11)

χ 7→ £0χ := {H0, χ} (3.12)

and rewrite equation (3.10) as £0χ1 = P1, which is a linear equation in the
linear space of polynomials of degree 3. Thus, if one is able to diagonalize
the operator £0; it is immediate to understand whether the equation (3.10) is
solvable or not.

Remark 3.6. The operator £0 can be defined also on any one of the spaces Pj ,
j ≥ 1, it turns out that £0 maps polynomials of a given degree into polynomials
of the same degree. This is important for the iteration of the construction. For
this reason we will study £0 in Pj with an arbitrary j.

It turns out that it is quite easy to diagonalize the homological operator in
anyone of the spaces Pj . To this end consider the complex variables

ξl :=
1√
2

(pl + iql) ; ηl :=
1√
2

(pl − iql) l ≥ 1 . (3.13)

in which the symplectic form takes the form
∑
l i dξl ∧ dηl,2

2This means that the transformation is not canonical, however, in these variables all the
theory remains unchanged except for the fact that the equations of motions have to be sub-
stituted by

ξ̇l = i
∂H

∂ηl
, η̇l = −i

∂H

∂ξl
,

and therefore the Poisson Brackets take the form

{f, g} := i
∂g

∂ξl

∂f

∂ηl
− i

∂g

∂ηl

∂f

∂ξl

summed over l.
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Remark 3.7. In these complex variables the actions are given by

Il = ξlηl .

and

H0(ξ, η) =

n∑
l=1

ωlξlηl

Remark 3.8. Consider a homogeneous polynomial f of the variables (p, q), then
it is a homogeneous polynomial of the same degree also when expressed in terms
of the variables (ξ, η).

Remark 3.9. The monomials ξJηL defined by

ξJηL := ξJ11 ξJ22 ...ξJ
n

n ηL1
1 ....ηLnn

form a basis of the space of the polynomials.

Lemma 3.10. Each element of the basis ξJηL is an eigenvector of the operator
£0, the corresponding eigenvalue is i(ω · (L− J)).

Proof. Just remark that in terms of the variables ξ, η, the action of £0 is given
by

£0f = {H0, f} :=
∑
l

i
∂f

∂ξl

∂H0

∂ηl
− i

∂f

∂ηl

∂H0

∂ξl

=

(
i
∑
l

ωl

(
ηl

∂

∂ηl
− ξl

∂

∂ξl

))
f .

Then

ηl
∂

∂ηl
ξJηL = Llξ

JηL

and thus
£0ξ

JηL = iω · (L− J)ξLηJ

which is the thesis.
Thus we have that for each j the space Pj decomposes into the direct sum

of the kernel K of £0 and its range R. In particular the Kernel is generated by
the resonant monomials, namely

K = Span(ξJηL ∈ Pi : (J, L) ∈ RS) (3.14)

and
RS :=

{
(J, L) ∈ N2n : ω · (L− J) = 0

}
(3.15)

is the set of the resonant indexes. Obviously the range is generated by the space
monomials ξJηL with J, L varying in the complement of the resonant set.

Thus it is easy to obtain the following important lemma.
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Lemma 3.11. Let P ∈ Pj be a polynomial, write

P (ξ, η) =
∑
J,L

PJLξ
JηL (3.16)

and define

Z(ξ, η) :=
∑

(J,L)∈RS

PJLξ
JηL , χ(ξ, η) :=

∑
(J,L)6∈RS

PJL
iω · (L− J)

ξJηL (3.17)

then one has
Z = {χ,H0}+ P . (3.18)

and
{Z,H0} ≡ 0 . (3.19)

Remark 3.12. Since both χ and Z are polynomials, the inequalities (3.1,3.2)
hold for their moduli and their vector fields.

Motivated by the above lemma we give the following definition.

Definition 3.13. A function Z will be said to be in normal form if it contains
only resonant monomials, i.e. if writing

Z(ξ, η) :=
∑
(J,L)

ZJLξ
JηL , (3.20)

one has
ZJL 6= 0 =⇒ ω · (L− J) = 0 . (3.21)

Remark 3.14. A property which is equivalent to (3.21) is {Z,H0} = 0, which
has the advantage of being coordinate independent.

Remark 3.15. If the frequencies are nonresonant, namely if eq. (2.9) holds, then
the set of the indexes (J, L) such that ω · (L− J) = 0 reduces to the set J = L.
Thus the resonant monomials are only the monomials of the form

ξJηJ = (ξ1η1)J1 ...(ξnηn)Jn ≡ IJ11 ...IJnn . (3.22)

Thus in the nonresonant case a function Z is in normal form if and only if it is
a function of the actions only.

Now, one can use the above lemma with P := P1 in order to construct
the function χ1 putting the system in normal form up to order four. We will
describe the procedure in detail in the next section.
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3.4 Rigorous theory

From now on we will denote by BR ⊂ C2n the closed ball of radius R with
center at the origin.

First we estimate the domain where the Lie transform generated by a poly-
nomial χ ∈ Pj , (j ≥ 1) is well defined.

Lemma 3.16. Let χ ∈ Pk, (k ≥ 1) be a polynomial. Denote by φt the flow of
the corresponding vector field. Denote also

t̄ = t̄(R, δ) := inf
x∈BR

sup {t > 0 : φs(z) ∈ BR+δ ∀|s| ≤ t ∈ BR+δ}

(minimum escape time of φt(x) from BR+δ). Assume δ ≤ R, then one has

t̄ ≥ δ

‖Xχ‖ (2R)k+1
(3.23)

where ‖Xχ‖ is the norm defined in remark 3.2. Moreover for any t, such that
|t| ≤ t̄ and any x ∈ BR one has∥∥φt(x)− x

∥∥ ≤ |t|(2R)k+1 ‖Xχ‖ (3.24)

Proof. First remark that, by the definition of t̄ one has that there exists x̄ ∈ BR
such that

∥∥φ±t̄(x̄)
∥∥ = R+δ. To be determined we assume that the time realizing

the equality is positive. Assume by contradiction t̄ < δ
‖Xχ‖(2R)k+1 , then, since

for any t with |t| < t̄ one has φt(x̄) ∈ BR+δ, it follows that

∥∥∥φt̄(x̄)
∥∥∥ ≤ ‖x̄‖+

∥∥∥φt̄(x̄)− x̄
∥∥∥ = ‖x̄‖+

∥∥∥∥∥
∫ t̄

0

d

ds
φs(x̄)ds

∥∥∥∥∥
≤ R+

∫ t̄

0

‖Xχ(φs(x̄))ds‖ ≤ R+ |t̄|(R+ δ)k+1 ‖Xχ‖ .

It follows δ < δ which is absurd.
Since χ is analytic together with its vector field (it is a polynomial), then

one has the following corollary.

Corollary 3.17. Fix arbitrary R and δ, then the map

φ : Bσ ×BR → BR+δ , σ :=
δ

‖Xχ‖ (2R)k+1

(t, x) 7→ φt(x)

is analytic. Here, by abuse of notation, we denoted by Bσ also the ball of radius
σ contained C.

Proof of Birkhoff’s theorem. We proceed by induction. The theorem is
trivially true for N = 0. Supposing it is true for N we prove it for N + 1.
First consider the Taylor polynomial of degree N + 3 of R(N) and denote it by
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P
(N)
1 ∈ PN+1. We look for the generating function χN+1 ∈ PN+1 of the Lie

transform φN+1 which normalizes up to order N +4 the Hamiltonian. Consider
H(N+1) := HN ◦ φN+1 and write it as follows

H(N) ◦ φN+1 = H0 + Z(N) (3.25)

+ {χN+1;H0}+ P
(N)
1 (3.26)

+ (Z(N) ◦ ΦN+1 − Z(N)) (3.27)

+ H0 ◦ φN+1 − (H0 + {χN+1;H0}) (3.28)

+ (R(N) − P (N)
1 ) ◦ φN+1 (3.29)

+ P
(N)
1 ◦ φN+1 − P (N)

1 . (3.30)

We use lemma 3.11 to construct χN+1 in such a way that

ZN+1 := {χN+1, H0}+ P
(N)
1

is in normal form, and we define Z(N+1) := Z(N) + ZN+1. Then one has to
prove that all the terms (3.27-3.30) have a zero of order at least N + 4. This
is an immediate consequence of the smoothness of each term and of remark 3.5
which ensures that each line is the remainder of a Taylor expansion (in the space
variables) truncated at order N + 3.

It remains to show that the estimate (2.8) of the deformation holds. Denote
by RN+1 a positive number such that B2RN+1

⊂ UN , and remark that, by lemma
3.16, possibly reducing RN+1, one has

φN+1 : Bρ → B2ρ , ∀ρ ≤ RN+1

and
sup
Bρ

‖x− φN+1(x)‖ ≤ CρN+2 . (3.31)

Define TN+1 := TN ◦ φN+1 then one has

I − TN+1 = I − TN ◦ φN+1 = I − TN + TN − TN ◦ φN+1

and thus, for any x ∈ Bρ with ρ small enough, we have

‖x− TN+1(x)‖ ≤ ‖x− TN (x)‖+ ‖TN (x)− TN (φN+1(x))‖
≤ CNρ2 + sup

x∈B2ρ

‖dTN (x)‖ sup
x∈Bρ

‖x− φN+1(x)‖

≤ CNρ2 + CρN+2 ≤ CN+1ρ
2

from which the thesis follows.

4 Dynamics

In what follows we fix the number N of normalization steps; moreover, it is
useful to distinguish between the original variables and the variables introduced
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by the normalizing transformation. So, we denote by x = (p, q) the original
variables and by x′ = (p′, q′) the normalized variables, i.e. x = TN (x′). More
generally we will denote with a prime the quantities expressed in the normalized
variables.

Remark 4.1. Given an initial datum x′0 consider the corresponding solution
x′(t), then one can use the normal form result only as long as x′(t) belongs to
the neighborhood UN in which the normal form holds.

It follows we will use a related quantity defined as follows. Given x0 ∈ BR
we define

Te(x0, R) := inf {T = |t| : x(t) 6∈ BR} . (4.1)

Remark 4.2. By the theorem of existence and uniqueness of solutions one has
Te > 0.

In all the interesting cases we will bound from below Te, at least for initial
data in ball smaller than BR.

4.1 The general case

Consider the simplified system in which the remainder is neglected, namely the
system with Hamiltonian

Hs = H0 + Z(N) . (4.2)

To start with we show that integrals of motion of Hs are approximatively con-
stant along the solutions of the complete Hamiltonian (2.1).

Theorem 4.3. Let F be a polynomial having a zero of order k at the origin.
Assume it is an integral of motion of Hs, then there exists R∗ (independent of
F ) such that, if the initial datum fulfills

ε := ‖x0‖ < R∗

then along the corresponding solution of (2.1) one has

|F (t)− F (0)| ≤ Cεk+1 for |t| ≤ min

{
1

εN
, Te(x0, 2ε)

}
, (4.3)

where F (t) := F (x(t)).

Proof. Assume that ε is so small that B3ε ⊂ UN ; perform the normalizing
transformation. Remark that for |t| < Te(x0, 2ε) one has x(t) ∈ B2ε; by (2.8)
one also has x′(t) ∈ B3ε. In particular, provided ε is small enough, one has
x′(t) ∈ UN . Consider now

|F (x(t))− F (x0)| ≤ |F (x(t))− F (x′(t))|+|F (x′(t))− F (x′0)|+|F (x0)− F (x′0)| .
(4.4)

The first term at r.h.s. is estimated as follows

|F (x0)− F (x′0)| ≤ sup
x∈B3ε

‖dF (x)‖ ‖x0 − x′0‖ ≤ Cεk−1ε2
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where we used the fact that the differential of a polynomial having a zero of
order k has a zero of order k− 1 and we also used the estimate (2.8). The third
term is estimated in the same way.

Concerning the middle term, since for all the considered times x′(t) ∈ UN ,
one has

|F (x′(t))− F (x0)| =
∣∣∣∣∫ t

0

{
H(N), F

}
(x′(s))ds

∣∣∣∣ ≤ ∫ t

0

∣∣∣{R(N), F
}

(x′(s))
∣∣∣ ds

≤ |t|CεN+3+k−2 ≤ Cεk+1

where the last inequality holds for the times (4.3).

Remark 4.4. By construction, at least H0 is an integral of motion of the sim-
plified system, thus the theorem applies in particular to the case F = H0.

Remark 4.5. By the estimate (4.4) one also has that, defining F ′(x) := F ◦T −1,
the following estimate holds

|F ′(x(t))− F ′(x0)| ≤ Cεk+1+M for |t| ≤ 1

εN−M
(4.5)

4.2 Nonresonant case

We come now to the nonresonant case, namely we assume here that (2.9) holds.
In this case, as pointed out at the end of section 2, the normal form depends on
the actions

I ′l =
p

′2
l + q

′2
l

2
(4.6)

only. Therefore the actions are integrals of motion for the normalized system.
As a consequence it is also possible to give a lower bound on the escape time Te
obtaining the following proposition.

Proposition 4.6. Assume ω ·k 6= 0 for any k ∈ Zn, with 0 6= |k| ≤ N + 2; then
the following holds true: there exists R∗ such that, if the initial datum fulfills

ε := ‖x0‖ < R∗

then, along the corresponding solution x(t) one has

‖x(t)‖ ≤ 2ε for |t| ≤ 1

εN
(4.7)

Moreover along the same solution one has

|I ′l(t)− I ′l(0)| ≤ CεM+3 for |t| ≤ 1

εN−M
, M < N (4.8)

and

|Il(t)− Il(0)| ≤ Cε3 for |t| ≤ 1

εN
. (4.9)
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Proof. Following the scheme of the proof of Lyapunov’s theorem we show that
Te(x0, 2ε) > ε−N . Define F (x) :=

∑
Ik ≡ ‖x‖2, and assume by contradiction

that Te < ε−N . Let x̄0 be the initial datum giving rise to a solution which
escapes from B2ε at time Te; by theorem 4.3, one has

4ε2 = ‖x(Te)‖2 = F (Te) ≤ F (x0) + |F (Te)− F (x0)| ≤ ε2 + Cε3 , (4.10)

which is impossible if ε < C−1.

Corollary 4.7. There exists a smooth torus T0 such that, ∀M ≤ N

d(x(t),T0) ≤ Cε(M+3)/2 , for |t| ≤ 1

εN−M
(4.11)

where d(., .) is the distance in R2n.

Proof. First remark that in the normalized coordinates one has

İ ′j = −p′j
∂R(N)

∂q′j
+ q′j

∂R(N)

∂p′j
,

so that ∑
j

∣∣∣İ ′j∣∣∣ =
∑
j

∣∣∣∣∣−p′j ∂R(N)

∂q′j
+ q′j

∂R(N)

∂p′j

∣∣∣∣∣(4.12)

≤

∑
j

(p′j
2 + q′j

2)

1/2∑
j

∣∣∣∣∣∂R(N)

∂q′j

∣∣∣∣∣
2

+

∣∣∣∣∣∂R(N)

∂p′j

∣∣∣∣∣
2
1/2

≤ ‖x′‖ ‖XR(N)(x′)‖(4.13)

Denote Īj
′ :=

p′j
2(0)+q′j

2(0)

2 and define the torus

T′0 :=
{
x′ ∈ R2n : Ij(x

′) = Īj , j = 1, ..., n
}

One has

d(x′(t),T′0) ≤

∑
j

∣∣∣∣√I ′j(t)−√Īj∣∣∣∣2
1/2

(4.14)

Notice that for a, b ≥ 0 one has,∣∣∣√a−√b∣∣∣ ≤√|a− b| .
Thus, using (4.13), one has that

[d(x′(t),T′0)]
2 ≤

∑
j

|I ′j(t)− Īj | ≤ CεM+3

Define now T0 := TN (T′0) then, since TN is Lipschitz one has

d(x(t),T0) = d(TN (x′(t)), TN (T′0)) ≤ Cd(x′(t),T′0) ≤ Cε
M+3

2 .
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5 A resonant example

In this section we will study in detail the dynamics of the normal form of a
system whose linear part is composed by two oscillators with the same frequency.
Thus we take

H0 = ω

(
p2

1 + q2
1

2
+
p2

2 + q2
2

2

)
. (5.1)

Introduce the complex variables (ξ, η) and compute the first nontrivial term, of
the normal form. To this end we compute the resonant monomials. First we
study the resonance relations between the frequencies.

Remark 5.1. For K = (K1,K2), one has

ω1K1 + ω2K2 = ω(K1 +K2) = 0 =⇒ K1 = −K2 =⇒ |K| = 2|K1|

so that the modulus of K has to be even, and therefore there are no resonant
monomials of order 3.

The resonant monomials of order 4 are of the form ξLηJ with K1 ≡ L1 −
J1 = L2 − J2 ≡ K2 and |L| + |J | = 4. So it easy to construct all of them that
have to satisfy

L1 + L2 = J1 + J2 , L1 + L2 = 2

We enumerate below the resonant indexes and the corresponding resonant mono-
mials

L1 L2 J1 J2

0 2 0 2 ξ2
2η

2
2 = I2

2

0 2 1 1 ξ2
2η1η2 = I2ξ2η1

0 2 2 0 ξ2
2η

2
1

1 1 0 2 I2ξ1η2

1 1 1 1 I1I2
1 1 2 0 I1ξ1η2

2 0 0 2 ξ2
1η22

2 0 1 1 I1ξ1η2

2 0 2 0 I2
1

(5.2)

The most general real Hamiltonian that one can form with the above monomials
is given by

Z(2)(ξ, η) = aI2
2 + bI2(ξ2η1 + η2ξ1) + c(ξ2

2η
2
1 + ξ2

1η
2
2) (5.3)

+dI2I1 + eI1(ξ2η1 + η2ξ1) + fI2
1 (5.4)

with arbitrary a, b, c, d, e, f . In order to understand the behavior of the system
H0+Z(2) it is useful to introduce action angle variables by the change of variables

ξl =
√
Ile

iϕl , ηl =
√
Ile
−iϕl .

Then one has

Z(2)(I, ϕ) = a1I
2
1 + a2I1I2 + a3I

2
2

+ b1I1I2 cos 2(ϕ1 − ϕ2) + b2(c1I1 + c2I2)
√
I1I2 cos(ϕ1 − ϕ2)
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Since the Hamiltonian depends on the angles only through the combination
ϕ1 − ϕ2 it is useful to make the canonical coordinate change

J1 = I1 , J2 = I1 + I2 (5.5)

ψ1 = ϕ1 − ϕ2 , ψ2 = ϕ2 (5.6)

in which Hs takes the form

Hs = ωJ2 + a′1J
2
1 + a′2J1J2 + a′3J

2
2 + bJ1(J2 − J1) cos 2ψ1 (5.7)

(c̃1J1 + c̃2J2)
√
J1(J2 − J1) cosψ1 (5.8)

from which it is obvious that J2 = H ′0 is an integral of motion. Then one
can pass to the reduced system in which J2 is considered as a parameter and
study the dynamics of the resulting system with one degree of freedom which is
integrable. In particular the level surface of Hs are orbits of the corresponding
system. The dynamics depends on the values of the different parameters. Here,
in order to put into evidence a behaviors which is typical, we study in detail a
particular case.

Thus fix a′1 = a′2 = a′3 = b = 0 so that the nonlinear part of the Hamiltonian
reduces to (5.8). Moreover we fix c̃1 = c̃2 = 1. Then we study the reduced
system on the surface J2 = 1. Its Hamiltonian is thus given by

Hr := (J1 + 1)
√
J1(1− J1) cosψ1 (5.9)

and its Hamilton equations are given by

J̇1 = (J1 + 1)
√
J1(1− J1) sinψ1 , ψ̇1 = f(J1) cosψ1 (5.10)

with a suitable f(J1) whose form is not important here. Remark also that
since J2 = 1 is the total harmonic energy the variable J1 which represents the
harmonic energy of the first oscillator is subjected to the limitation 0 ≤ J1 ≤ 1.
Concerning the angle we study the system for −π/2 < ψ1 ≤ 3π/2. From the
equations of motion it is clear that the lines J1 = 1 and J1 = 0 are invariant (on
these lines J̇1 = 0) and similarly for the vertical lines ψ1 = −π/2 and ψ1 = π/2.
Moreover on the first vertical line the flow is downward, while on the second one
it is upward. Thus, by continuity the phase portrait of the system is the one
in the figure to be inserted. One sees that there are orbits in which J1 pass
from an arbitrary small value to a value arbitrary close to 1 and then comes
back. These are nonlinear beats in which the energy pass from one oscillator
and back.

The solutions of the complete system have a similar behavior. To give a
precise statement normalize the Hamiltonian up to order N + 4. Then the
simplified system turns out to have the form (4.2) with

Z(N) = Z(2) +

N∑
k=3

Zk , Zk ∈ Pk ,
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which therefore is a perturbation of Z(2). Both Z(N) and H0 are integrals
of motion of Hs, and thus the intersection of their level surface are invariant
manifolds for Hs and, thank to theorem 4.3 approximate invariant manifolds
for the complete dynamics. Thus one can prove a result similar to theorem 4.3,
precisely one has the following theorem.

Theorem 5.2. There exists R∗ such that, if the initial datum fulfills

ε := ‖x0‖ < R∗

then along the corresponding solution one has

|H0(t)−H(0)| ≤ Cε3 ,
∣∣∣Z(2)(t)− Z(2)(0)

∣∣∣ ≤ Cε5 , |t| ≤ 1

εN
. (5.11)

The main interest of this result rests in the fact that it ensures that over
very long time the dynamics remains close to the dynamics of H0 + Z(2) (that
we just studied), which is an integrable system, but an integrable system with
invariant tori topologically different from the invariant tori of H0.
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