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Abstract

We prove a variant of a theorem by Nekhoroshev on persistence of in-
variant tori in systems with symmetry. The new proof applies to reversible
non Hamiltonian systems equivariant under the action of an Abelian group
and is much simpler then the original one.

1 Introduction

In 1994 Nekhoroshev [Nek94] published a theorem ensuring the persistence of
n-dimensional invariant tori in a system of n commuting Hamiltonian vector
fields. In some sense this theorem can be viewed as an extension to systems with
symmetry of Poincaré’s theorem of persistence of periodic orbits. A complete
proof of this theorem based on the ideas explained by Nekhoroshev can be found
in [BG02] (see also [Gae02]). Subsequently the theorem was applied to some
infinite dimensional lattices [BV02] and to PDEs [BB09] (see also [JA97]).

In the present paper we prove a new version of Nekhoroshev’s theorem valid
in the non Hamiltonian reversible case. More precisely, we are interested in the
dynamics of a vector field which is invariant under the action of a commutative
group. The result we obtain coincides with the original Nekhoroshev’s theorem
(obviously except for the existence of action angle variables).

We emphasize that the new proof which, following [BB09], is based on
Lyapunov-Schmidt decomposition, is much simpler then those previously pub-
lished. The main motivation for the present work, however is that of under-
standing better the role of reversibility in the construction of invariant tori (see
[Sev86, ZGY11, BBP14]). Indeed sometimes reversibility plays a surprising role
(we have in mind the papers [BDG10, CG15]) and we hope that the present
paper, which deals with a very simple situation can help to clarify the situation.

Before stating and proving the main theorem it is worth to add a few words
on the problem of persistence of invariant tori in systems with symmetry. This
will also be useful in order to explain the structure that we will assume for the
vector fields we study.

The main point is that the theory of persistence of invariant tori in systems
with symmetry is a generalization of Poincaré theory of persistence of periodic
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orbits. The essential result of such a theory is that, if the Floquet multiplier
1 has multiplicity 1, then a periodic orbit persists under perturbation. How-
ever, in the case of conservative systems, the Floquet multiplier 1 has always
multiplicity at least 2, and so one cannot expect periodic orbits to persist un-
der generic perturbations (actually there are well known counterexamples, see
e.g.[MZ05]). Persistence of the periodic orbit is ensured when the perturbed
system is conservative or reversible.

Also in the case of Nekhoroshev’s invariant tori one can define a concept
of Floquet multiplier (see [BG02]), which extends also to the non Hamiltonian
case. One can prove that for an n dimensional torus Λ, if the Floquet multiplier
1 has multiplicity n, then Λ persists under general perturbations [Gae02].

However, in the Hamiltonian case the Floquet multiplier 1 always has mul-
tiplicity at least 2n, thus one cannot expect the torus to persist under generic
perturbation. Nekhoroshev’s theorem ensures that it persists if the perturbation
is Hamiltonian. Here we extend the result to the case where the perturbation
is non Hamiltonian, but reversible.

The paper also contains an appendix on the “Normal form of Hamiltonian
vector fields invariant under a torus action” in which a result showing that the
model problem studied in the core of the paper occurs quite generally when one
is perturbing a Hamiltonian system invariant under a symplectic torus action.

Acknowledgments This research was founded by the Prin project 2010-2011
“Teorie geometriche e analitiche dei sistemi Hamiltoniani in dimensioni finite
e infinite”.

2 Statement

Consider the phase space Rn × Tn × Rk × Rk in which the coordinates will be
denoted by z ≡ (I, α, p, q). Consider n commuting vector fields of the form

X
(l)
0 (z) =

∂

∂αl
+

k∑
j=1

Ω
(l)
j

(
pj

∂

∂qj
− qj

∂

∂pj

)
, l = 1, ...n , (2.1)

where Ω
(l)
j are numbers playing the role of frequencies. The X

(l)
0 will play the

role of unperturbed vector fields.

Consider the torus Λ = (0,Tn, 0, 0).

Remark 2.1. The torus Λ is invariant and linearly stable for the flow of each

one of the vector fields X
(l)
0 .

Let U be a fixed open neighborhood of Λ. For l = 1, ..., n, let X
(l)
1 ∈

C∞(Ū ;Rn+k) be functions possibly depending also on a small parameter µ, and

consider the vector fields X
(l)
µ := X

(l)
0 + µX

(l)
1 .

Denote by Φtl the flows of the vector fields X
(l)
µ ; we assume that
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(1) for l = 2, ..., n, ∀z ∈ U and µ small enough, one has Φt+2π
l = Φtl , ∀t ∈ R.

(2) [X
(m)
µ ;X

(l)
µ ] ≡ 0, ∀l,m = 1, ..., n .

Remark 2.2. The vector fields X
(l)
µ , l = 2, ..., n generate a group action of

Tn−1 on the phase space; the vector field X
(1)
µ is then equivariant with respect

to such a group action.

Remark 2.3. In the Appendix we will prove a theorem (see Theorem A.1)
showing that the above structure is typical when one is dealing with perturbations
of a Hamiltonian vector field invariant under a symplectic action of the group
Tn−1. Precisely, if the unperturbed vector field is integrable on a submanifold,
then close to one of the invariant tori of the submanifold there exist coordinates

in which the field takes the form X
(1)
µ . The same is true for the vector fields

generating the symmetry; such vector fields will also fulfill assumption (2).

Remark 2.4. All what we will do extends easily to the case where the unper-
turbed invariant torus is not linearly stable.

Then we assume that the fields are reversible. Precisely define the involution
S by

S(I, α, p, q) := (I,−α,−p, q) , (2.2)

and assume

(3) For any l = 1, ..., n and any µ small enough one has

X(l)
µ (Sζ) = −SX(l)

µ (ζ) .

It follows that if z(t) is a solution of the equations of one of the vector fields
then also Sz(−t) is a solution of the same equations.

Finally we assume that

(4) One has

Ω
(1)
j 6∈ Z , ∀j = 1, ..., k . (2.3)

In the following statement, by invariant manifold, we will mean invariant

under the flows of each one of the fields X
(l)
µ , l = 2, ..., n.

Theorem 2.5. Assume (1-4), then there exists µ∗ > 0 s.t., for any |µ| <
µ∗ there exists a 2n dimensional invariant manifold Mµ ⊂ U foliated in n
dimensional invariant tori Λµ,a, a ∈ V ⊂ Rn, where V is open. Furthermore

the flow of X
(1)
µ on each one of the tori Λa,µ is quasiperiodic with a number

of independent frequencies smaller or equal then n. The same is true for any

linear combination of the fields X
(l)
µ .
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Remark 2.6. We emphasize that in the Hamiltonian case the vector field X
(1)
µ ,

due to the commutation property, admits n integrals of motion. On the contrary
in our case, such a vector field may have no integrals of motion at all.

We find surprising the fact that the condition of reversibility is enough to
substitute that of existence of n integrals of motion and to ensure the existence
of a manifold of n dimensional invariant tori.

Remark 2.7. The above theorem (and its proof) extends in a straightforward
way to the case of infinite dimensional systems of the kind of those studied in
[BV02]. An extension to the case with small denominators as the ones studied
in [BB09] is also possible.

3 Proof

The first and main step of the proof consists in determining some parameters
ω, ε2, .., εn and a function ζ(τ) periodic of period 2π which is a solution of the
equations

ω
dζ

dτ
= X(1)

µ +

n∑
l=2

εlX
(l)
µ (3.1)

(so that z(t) := ζ(ωt) is periodic with period 2π/ω in the time t).
We will show that for all µ small enough there exists an n-dimensional mani-

fold of periodic solutions. Then Theorem 2.5 follows by considering the manifold

obtained applying the flow of the vector fields X
(l)
µ l = 2, .., n to the manifold

of such solutions. The details will be given at the end of the section.
In order to determine the functions ζ(τ) we will interpret the equation (3.1)

as a functional equation in a suitable function space and use the Lyapunov
Schmidt decomposition and the implicit function theorem in order to solve it.
We now look for a 2π periodic function

u(τ) ≡ (I(τ), ψ(τ), p(τ), q(τ)) ,

such that ζ(τ) := (0, e1τ, 0, 0)+u(τ) is a solution of (3.1) with e1 the unit vector
of the first axis. Furthermore we will take reversible solution, namely solutions
fulfilling ζ(τ) = Sζ(−τ).

We rewrite the equations for u, ω, ε in the form

F (u, ω, ε, µ) = 0 , (3.2)
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where F ≡ (FI , Fψ, Fp, Fq) and the components are defined by

FI1 := ω
∂ψ1

∂τ
+ (ω − 1)− µX(1)

1,ψ1
−

n∑
l=2

µεlX
(l)
1,ψ1

(3.3)

FIj := ω
∂ψj
∂τ
− εj − µX(1)

1,ψj
−

n∑
l=2

µεlX
(l)
1,ψj

(3.4)

Fψj
:= ω

∂Ij
∂τ
− µX(1)

1,Ij
−

n∑
l=2

µεlX
(l)
1,Ij

(3.5)

Fpj := ω
∂qj
∂τ
− Ω1

jpj − µX
(1)
1,qj
−

n∑
l=2

µεlX
(l)
1,qj

(3.6)

Fqj := ω
∂pj
∂τ

+ Ω1
jqj − µX

(1)
1,pj
−

n∑
l=2

µεlX
(l)
1,pj

(3.7)

(the inversion of the order of the variables is useful in the following).
We now fix the function space in which we will look for solutions. Let

Hs(T1;R2N ) be the space of the periodic functions of τ taking value in R2N ,
having s weak derivatives of class L2. Then we work in the subspace composed
by reversible functions (namely by those the functions u ∈ Hs such that u(τ) =
Su(−τ)). This space will be denote by Hs. We fix s ≥ 2.

First we have the following simple lemma:

Lemma 3.1. There exists a neighborhood of (0, 1, 0, 0) such that the function
F : Hs × R× Rn−1 × R→ Hs−1 defined by (3.3)-(3.7) is of class C∞.

In order to apply the method of Lyapunov-Schmidt decomposition to solve
equation (3.2), we first have to study the operator L := duF (0, 1, 0, 0). A simple
computation shows that

L


I
ψ
pj
qj

 =



∂ψ

∂τ
∂I

∂τ
∂qj
∂τ
− Ω

(1)
j pj

∂pj
∂τ

+ Ω
(1)
j qj


. (3.8)

In particular one gets that, under the nonresonance condition (4) one has that
Lu = 0 implies Ij(τ) = aj , ψj(τ) = φj (independent of τ). But the reversibility
condition implies φj = 0. Thus one has

K := KerL = (a, 0, 0, 0) .

One also has that the range R of L coincides with the space of the functions
(I, ψ, p, q) ∈ Hs−1, with I(τ) having zero average. Denote by P the projector
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on R and by Q the projector on K. We write u = a+w with a ∈ K (identified
with Rn) and w ∈ R ∩Hs (function in Hs with zero average).

Applying as usual P and Q to eq. (3.2) one gets

PF (a+ w,ω, ε, µ) = 0 , (3.9)

QF (a+ w,ω, ε, µ) = 0 , (3.10)

and of course dwPF (0, 1, 0, 0) = L
∣∣
R

which is an isomorphism between R ∩Hs
and R.

Thus applying the implicit function theorem to equation (3.9) one gets the
following lemma:

Lemma 3.2. There exists a neighborhood U of (0, 1, 0, 0) ∈ Rn×R×Rn−1×R
and a C∞(U , R) map (a, ω, ε, µ) 7→ w(a, ω, ε, µ) which fulfills w(0, 1, 0, 0) = 0
and solves (3.9).

Inserting into equation (3.10) and exploiting the explicit form of the function
F one gets the equations

0 = (ω − 1)− µQX(1)
1,ψ1

(a+ w(a, ω, ε, µ))−
n∑
l=2

µεlQX
(l)
1,ψ1

(a+ w(a, ω, ε, µ))

(3.11)

0 = εj − µQX(1)
1,ψj

(a+ w(a, ω, ε, µ))−
n∑
l=2

µεlQX
(l)
1,ψj

(a+ w(a, ω, ε, µ)) . (3.12)

By implicit function theorem one immediately gets the following lemma

Lemma 3.3. There exists a neighborhood V of the origin in Rn × R and a
C∞ map V 3 (a, µ) 7→ (ω, ε) which solves (3.11), (3.12), furthermore, one has
ω(0, 0) = 1 and ε(0, 0) = 0.

As a consequence one gets the existence of the wanted periodic solutions
which is given by the following lemma

Lemma 3.4. There exists a smooth map

V 3 (a, µ) 7→ (u, ω, ε) ∈ Hs × R× Rn−1

such that ζa,µ(τ) := ua,µ(τ) + (0, e1τ, 0, 0) is a periodic solution of (3.1) with
period 2π.

Remark 3.5. By standard regularization argument for the solutions of ordinary
differential equations, one has that actually u depends on the rescaled time τ in
a C∞ way.

End of the proof of Theorem 2.5. Denote by Φ
tj
j the flow of the vector field X

(l)
µ ,

l = 2, ..n, then one has that for any vector (t2, ..., tn), Φt22 ◦ ... ◦Φtnn ζa,µ(τ) with
ζa,µ given by Lemma 3.4is also a periodic solution of (3.1). It follows that

Λa,µ :=
⋃

τ,t2,...,tn

Φt22 ◦ ... ◦ Φtnn ζa,µ(τ) (3.13)
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is an n-dimensional torus which is invariant under the dynamics of each one of
the fields.

A Normal form of Hamiltonian vector fields in-
variant under a torus action

On a 2N dimensional symplectic manifold M consider a symplectic torus action
g:

Tn−1 ×M 3 (β, x) 7→ gβ(x) ∈M ;

admitting a momentum map. For l = 2, ..., n, denote byX(l)(x) :=
[
∂gβ(x)/∂βl

]
β=0

the vector fields generating the symmetry group and by H(l) the correspond-
ing Hamiltonian functions. On M consider a further Hamiltonian system with
Hamiltonian function H(1) invariant under the above group action. Denote by
X(1) the corresponding Hamiltonian vector field. We assume that there exists
a 2n-dimensional submanifold T 2n ⊂M invariant under the flow of each one of
the fields X(l), l = 1, ..., n, and that the vector fields X(l) are independent on
T 2n. Then each of the Hamiltonian systems is integrable on T 2n, which is thus
foliated in invariant tori. We fix one of such tori, denoted by Λ, and consider
just the intersection of T 2n with a small open neighborhood of such a torus.
We still denote by T 2n the restricted manifold.

Theorem A.1. There exist an open neighborhood U of T 2n, open neighborhoods
of the origin I ⊂ Rn, W ⊂ R2k, k := N − n, and a coordinate system

I × Tn ×W 3 (I, α, y) 7→ x(I, α, y) ∈ U ⊂M ,

with the following properties: Λ = x(0,Tn, 0), T 2n = x(I,Tn, 0) and there exist
n commuting linear operators A(l) : R2k → R2k, skew symmetric with respect to
the standard symplectic form, s.t. one has

X(l) =
∂

∂αl
+
∑
i,j

[A(l)]ijy
j ∂

∂yi
+O(|y|2 + |I||y|) , l = 2, ..., n . (A.1)

Furthermore there exists a function H̃(1)(H(1), ...,H(n)), whose Hamiltonian
vector field has the form

XH̃(1) = ω
∂

∂α1
+
∑
i,j

[A(1)]ij
∂

∂yi
yj +O(|y|2 + |I||y|) . (A.2)

Finally there exists a basis in R2k s.t.

∑
i,j

[A(l)]ijy
j ∂

∂yi
=

k∑
j=1

Ω
(l)
j

(
pj

∂

∂qj
− qj

∂

∂pj

)
; l = 2, ..., n ; (A.3)

if the torus Λ is linearly stable (A.3) holds also for A(1).
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Remark A.2. Dividing H̃(1) by ω and rescaling the variables according to y =
µỹ, I = µ2Ĩ, one has that in the new variables the considered vector fields take

the form X
(l)
µ with X

(l)
0 as in (2.1). In Sect. 2, the function X

(1)
1 also contains

the non Hamiltonian perturbation to the original vector field.

Proof. First, consider the restriction of the Hamiltonians to T 2n; by the proce-
dure of Arnold Liouville theorem, T 2n is foliated into n dimensional tori, then
one can construct linear combinations of the considered Hamiltonains which
generate the fundamental loops of the tori in a neighborhood of Λ. Since the
flows of H(l), l = 2, .., n are periodic and they are independent, they already
generated n − 1 independent loops. The last loop is then generated by a lin-
ear combination of all the Hamiltonians with coefficients which depend on the
Hamiltonians themselves. We call such a linear combination H̃(1). Then we
construct action angle variables using such loops. We shift them in order to
have that Λ correspond to I = 0. It follows that, on T 2n the Hamiltonians have
the form

H(l)
∣∣
T 2n = h(l)(Il) = Il , l = 2, ..., n

where the last equality is due to the fact that all the solutions of the Hamilton
equations have period 2π. For H̃(1) it simply equals h(1)(I1).

To find a coordinate system in a neighborhood of T 2n we use ideas of Floquet
theory (following [Kuk92]). Denote by p(I, α) the point of T 2n with action angle
coordinates (I, α). Denote Tp(0,0)T 2n ⊂ Tp(0,0)M the tangent space to T 2n at

p(0, 0), and by Y := T⊥p(0,0)T
2n its symplectic orthogonal.

Denote (as before) by Φt1, Φtl the flows of H̃(1) and H(l) l = 2, ..., n respec-
tively, and by

Φtl∗(p(0, α1, ..., αl−1, 0, αl+1, ..., αn)) ≡ Φtl∗(α),

the corresponding tangent maps. Let T 1 be the period of Φt1|Λ, and let T l = 2π,
l = 2, ..., n. Since Φtl∗ is symplectic, one has that

ΦTl

l∗ (0) : Y → Y .

Define now the Linear operators A(l) : Y → Y by

eA
(l)2π = ΦTl

l∗ (0) ; (A.4)

then the wanted system of coordinates is defined by the map

I × Tn × Y →M

(I, α, y) 7→ x(I, α, y) := p(I, α) + Φ
α1T1/2π
1∗ Φα2

2∗ ...Φ
αn
n∗ e
−A(1)α1 ...e−A

(n)αny .

In order to simplify the notation we write

Φ
α1T1/2π
1∗ Φα2

2∗ ...Φ
αn
n∗ e
−A(1)α1 ...e−A

(n)αn =: Φα∗ e
−αA .
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To write the form of the vector field X(l) in this system of coordinates we write
the corresponding differential equations. In order to simplify the notation we
consider l 6= 1, the case l = 1 can be dealt with similarly. One has

ẋ(I, α, y) =
∂p

∂I
İ +

∂p

∂α
α̇+ α̇

∂

∂α
(Φα∗ e

−αA)y + Φα∗ e
−αAẏ

= X(l)(x(I, α, y)) = X(l)(p(I, α)) + dX(l)(p(I, α))Φα∗ e
−αAy +O(|y|2) . (A.5)

Up to corrections of order y2 one has

∂p

∂I
İ +

∂p

∂α
α̇ = X(l)(p(I, α)) =⇒

{
İ = 0
α̇j = δlj

and thus

α̇
∂

∂α
(Φα∗ e

−αA)y =
∂

∂αl
(Φα∗ e

−αA)y = dX(l)(p(0, α))Φα∗ e
−αAy − Φα∗ e

−αAA(l)y

= −Φα∗ e
−αAẏ + dX(l)(p(I, α))Φα∗ e

−αAy
(A.6)

where we used the fact that the Φl∗’s commute, that the same holds for the
A(l)’s. Furthermore, the second equality follows from the fact that Φα∗ is the
evolution operator of the linearization of the equations at p(0, α), and the third
equality follows from (A.5). From (A.6) one has

ẏ = A(l)y +O(|y|2 + |y||I|) .

Finally we have to prove (A.3). First remark that the operators A(l) are
skew symmetric with respect to the symplectic form. For l = 2, ..., n they are
diagonalizable and have purely imaginary spectrum, due to the assumption that
the flows Φl are periodic with period 2π. Then, by standard theory of linear
symplectic operators there exists a basis in which they take the form (A.3) (see
[Gio]). In the case where the torus is linearly stable, the same holds for A(1).
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