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Abstract

This paper is written, in a very informal and colloquial style, on the
occasion of the seventeenth anniversary of Antonio Giorgilli. The aim is
to describe how his first scientific works were actually conceived within a
group that happened to be formed in the years seventies with an ambitious
program on the foundations of physics. Namely, to understand whether
the recent (at those times) progress in Dynamical Systems Theory might
allow one to enlight in some new way the relations between quantum
mechanics and classical physics. This required to understand what im-
pact dynamical systems theory may have on the foundations of classical
statistical mechanics (with particular attention to the Fermi Pasta Ulam
problem), and on matter-radiation interaction. In such a frame Celestial
Mechanics too started to be addressed. Particularly by Antonio, initially
just as a kind of a byproduct. Here a recollection is given of how the group
was formed. Then a quick review is given of the results, obtained since
those times, which are relevant for the original foundational program.

1 Introduction

So I will recall how a group, involving Antonio Giorgilli, Giancarlo Benettin,
Jean-Marie Strelcyn and me, with the supervision of Tonino Scotti and Carlo
Cercignani, happened to be formed in the years seventies, in a quite peculiar
atmosphere, around the foundational problem mentioned. Then I take this
opportunity to give a quick review of the results obtained since those times,
restricting the attention to those relevant for the original foundational program.

The way the original group was formed is recalled in section 2, and then
the review of the results is given. First of all, the early mathematical results
obtained in perturbation theory (with just a mention of celestial mechanics) in
section 3. Then, are recalled the results of interest for the foundational problem
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at hand starting, in section 4, from those of interest for the FPU problem and
the dynamical foundations of Statistical Mechanics. For what concerns matter-
radiation interaction. the results of a general type are given in section 5, whereas
the applications to atomic physics, plasma physics and high-energy physics are
given in section 6. The conclusions then follow in section 7.

2 The foundational problem raised, and a
research group established between Milano,
Padova and Paris

Everything started in the year 1971 within the group of theoretical physicists
in Milano. Angelo Loinger had come to know (through a work of Chirikov) of
the Fermi-Pasta-Ulam problem (perhaps the last one of Fermi), that appeared
to challenge the common wisdom about the failure of classical physics which
had given origin to quantum mechanics. The problem concerns first of all the
principle of energy equipartition, a pillar of classical mechanics that had been
replaced by Planck’s law, first in the black body by Planck in the year 1900, and
then in the specific heat of solids by Einstein in the year 1907. Now, the FPU
work appeared to show that energy equipartition fails in Classical Mechanics
too, and this might appear to put in doubt the common wisdom about the
relations between Classical and Quantum Mechanics. So, a numerical work on
a variant of the FPU model was performed by Loinger together with Bocchieri
and Scotti [3], and the result seemed to support the indications of the FPU
work.

Thus Loinger gave a talk that still is vividly impressed in my mind. Two
are the points, he said, which gave origin to quantum mechanics, namely:

1. Black–body and specific heat of solids (1900 and 1907),

2. Falling of the electrons on the nuclei by radiation emission (Rutherford
1911 and Bohr 1913).

According to Loinger, the statement that classical physics fails in such points
was unjustified. What was certainly true is that the concrete predictions of
classical physics were unknown, since the mathematics needed to settle the
question was still lacking. Such a way of looking at the problem was in touch
with what Einstein used to call, as I came to know later, his “Classical Program”.
In the words of Carlo Cercignani such a program can be summarized in the idea
of “the shortcut” (in italian, “la scorciatoia”). Namely: quantum mechanics
is, no doubt, the correct theory, but the possibility is still open that it may be
recovered, as a kind of theorem, in a classical approach to atomic physics (an
approach which, by the way, requires a mutual involvement of mechanics and
electromagnetism).

The reaction of the Milan’s theoreticians to Loinger’s talk was very skeptical
I instead was fascinated, and started working on the problem, together with
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Tonino Scotti, who soon became my master. Also Carlo Cercignani, that among
the young researchers in Milano was unanimously considered by far the more
gifted one, soon joined us. This story I already told elsewhere [4].

So, together with Tonino Scotti and Carlo Cercignani, we started studying
some of the many problems involved [5, 6, 7], which are both of a mathematical
and of a physical character (or perhaps of one and the same character, if one
agrees with Arnold’s statement, that mathematics is just a chapter of physics).
Moreover, one is confronted here with the great difficulty of even having to grasp
the way itself in which should the problem be framed.

The first clear point was that we had to become acquainted with the recent
progress in dynamical systems theory, because in the FPU problem one meets
with a quite paradoxical situation. Namely, one deals with a perturbation of
an integrable system, i.e., a system of N independent subsystems – actually
harmonic oscillators – thus presenting N independent integrals of motion. On
the other hand, the common wisdom on the applicability of the standard meth-
ods of statistical mechanics seems to require that the perturbed system should
become ergodic, i.e. should have just one integral of motion – the total energy
– no matter how small the perturbation is. Which is indeed paradoxical.

It then happened to Tonino Scotti and me to meet at a conference Joe Ford,
who kindly indicated to us the relevant papers on KAM theory. We also started
understanding the contributions of George Contopoulos and of Michel Hénon,
namely, the strange different ways in which an integral of motion can exist, and
how “chaos” and those things usually show up when a perturbation is added to
an integrable system. Apparently no one in Italy was aware of such things at
those times, not even among the pure mathematicians. I probably still have in
one of my drawers some handwritten pages that illustrated such facts, and were
sent to Rosenfeld, the pupil of Niels Bohr.

***

In the meantime, the fascination I had received from Loinger was literally
transmitted to Antonio Giorgilli and Giancarlo Benettin. With Antonio this
occurred through a kind of seminar for students I had given in Milano. Thus he
started a thesis on the construction of the integrals of motion by perturbation
methods, studying in particular the works of Contopoulos [8]. His results were
described in his first two papers [9][10] (see also [11]), in which he expounded
the beginnings of what later became his original way of performing a direct
construction of the integrals, i.e., one not defined in terms of canonical changes
of variables.

Shortly afterwards Antonio happened to become involved in numerical com-
putations. This occurred in a way of which I’m very proud, as a master. Indeed,
I had previously been involved in numerical computations on the FPU problem
by Tonino Scotti, from whom I had learned in the simple and natural way a
baby starts playing piano by just imitating his father or mother. So I started
telling Antonio that he too should learn how to perform numerical computa-
tions. But he repeatedly told me he surely was not gifted for that, because he
had already made an attempt, after reading some book, and he decided he was
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unable, or even he definitely disliked the thing. However I insisted and, going
to the blackboard, I showed him, in perhaps three minutes, the four elementary
rules that are necessary and sufficient to do essentially everything on a computer
(apart from some trivial rules on how to insert or read data). Then he went
home, and a few days later came back with a program he had produced for
implementing his very method for constructing integrals of motion, and a paper
was soon published in the journal Computer Physics Communications [12]. Not
much later he came to be unanimously considered among the best experts in
Milano, in the field of numerical computations.

With Giancarlo the cooptation occurred through a copy of an ideological
paper of I had just written down (by the title Classical Mechanics and Quantum
Mechanics), that in a very fortuitous way had arrived on his desk at the Physics
Department of Padova, in a period in which, after having graduated, he was
involved in his military service. He thus visited me in Milano, and the decision
was taken that we would work together, as soon as he would come back from
his military engagement.

In the meantime Jean–Marie Strelcyn had already entered the game in some
strange way. I had found in the library a book on Dynamical Systems Theory,
containing lectures given at Warsaw by Sinai and edited by Jean-Marie. Now, in
the preface there was written that a second volume would follow. Thus I wrote
a letter to him, asking when would the second volume be published. The answer
came much later from England. He told me that “after the facts occurred in the
year 1968” he had to leave Poland, was at the moment in England, and would
permanently live in Paris. So one day, being by chance in Geneva and knowing
he was already in Paris, I called him on the phone, took a train and went
to meet him there. So started a collaboration and a friendship for a life. His
competence on Dynamical Systems proved to have a fundamental role for us. For
example, never could I have imagined that something as the “shadowing lemma”
for chaotic motions may exist. More concretely his contribution had a strong
impact on our works concerned with Lyapunov exponents. In that connection
I had already produced a work, together with Mario Casartelli, Emilio Diana
and Tonino Scotti, implementing a method that had been suggested to Tonino
and me by Arnold, during our one–month visit to Moscow and Dubna in the
year 1974 (we had in fact a discussion of about six hours with Arnold and two
discussions of about one hour with Kolmogorov). However, now with Jean-
Marie everything became much clearer, and so we decided to write a paper
collecting the relevant notions about Lyapunov exponents.

That was indeed the time Giancarlo was coming back. I thought he might
contribute to the paper by exhibiting a numerical example, just in the celebrated
Hénon-Heiles model. In such a way had origin the work Benettin–Galgani–
Strelcyn on Lyapunov exponents,[13] that is still considered a reference paper on
the subject, in addition to the subsequent paper to which Antonio too took part
[14]. What impressed me about Giancarlo in such a first concrete collaboration is
that, when we were performing our first run of the computation, the answer was
an overflow, which concretely means that some quantity had become infinite, a
fact often indicating that some error was made in writing the program.

4



Now, I had just explained Giancarlo how to implement the standard Verlet
(or leap–frog) integration method (actually, the method employed by Newton
himself in his first proof of a theorem - conservation of angular momentum in
a central field, using his first and second laws). So I started looking for the
mistake in the program. Instead he immediately pointed out to me that the
reason might have been a different one. Namely, since we were concerned with
the motion of a particle in a cubic potential, perhaps the program was correct,
and the overflow had shown up because of the choice of the initial data, which
would make the particle escape to infinity, just in virtue of the dynamics, instead
of remaining confined in the potential well. Which was indeed the case. So his
attention had been put already on the study of the model, rather than on the
implementation of the integration method, which was new for him.

***

In such a way the original group of the four of us, Antonio (Giorgilli), Gian-
carlo (Benettin), Jean-Marie (Strelcyn) and me, with the supervision of Tonino
Scotti and Carlo Cercignani, was formed, and lasted for many, beautiful years.
In the meantime Dario Bambusi, Andrea Carati and Antonio Ponno1 had come
in, essentially in the same enlarged group, together with several others such as
Diego Noja, Andrea Posilicano and Ugo Bessi, Simone Paleari, Massimo Miari
(with the great Marco Brunella), Lia Forti, .... .

Then, little by little, the group started somehow separating. Antonio, after
some relevant contributions to the FPU problem, started to be mostly inter-
ested in the mathematics of Small Denominators and in Celestial Mechanics,
on which he worked with Alessandro Morbidelli, Ugo Locatelli, Marco San-
sottera and Tiziano Penati. In Padova, Giancarlo continued to work in the
FPU problem, in Perturbation Theory and on other features of Dynamical Sys-
tems, with Francesco Fassó, Massimiliano Guzzo, Antonio Ponno and Helen
Christodoulidi. In Milano, Dario Bambusi worked on several mathematical as-
pects of perturbation theory, looking in particular at its extension to Partial
Differential Equations (PDE’s). Jean-Marie remained aside in Paris.

The original foundational project, concerning the Einstein classical program
of the shortcut, continued to remain the center of interest for a remnant of the
group, i.e., Andrea Carati and me, with the later joining of Alberto Maiocchi,
and of the brothers Fabrizio and Roberto Gangemi in Brescia. In the meantime
the role of the leader of such a “Classical Program (or Shortcut) group” had
actually passed, especially since the year 2003, to Andrea Carati, to whom are
due the opening and the implementation of relevant innovative perspectives,
both in the frame of statistical mechanics and of matter-radiation interaction.

1The way Antonio Ponno entered the group is very peculiar. Once I was invited by Giovanni
Gallavotti to give a talk in Roma on the FPU problem. After a few days I received a mail
from Antonio Ponno, who told me he was an undergraduate student in Roma who happened
to attend my talk. And he was able, he told me, to solve one of the open problems I had
mentioned. Which was indeed the case, and led us to a joint paper with Francesco Guerra
and me [15].
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3 Mathematical results in perturbation theory

I already mentioned how we had started some studies of a mathematical char-
acter on dynamical systems, with our works on Lyapunov exponents.

KAM theorem

Great attention was then given to Perturbation Theory, because of the interest
it presents for the foundations of classical statistical mechanics (a recent review
can be found in [16]). The main point was the paradoxical theorem of Poincaré,
according to which a perturbed integrable Hamiltonian system in general has
just one integral of motion (the energy), no matter how small the perturbation
is, whereas the unperturbed system has N integrals, which apparently is against
the intuitive conception that some sort of continuity should occur . Some out-
standing contribution was needed here, which actually took more than fifty
years to be invented, by Kolmogorov. Indeed, continuity in measure is guar-
anteed by the Kolmogorov-Arnold-Moser (or KAM) theorem (1954, 1961): in
general there exist invariant surfaces, actually tori in the relevant cases, (with
chaotic motions “between them”), Moreover, the measure of the invariant tori
becomes the full measure as perturbation tends to zero. In our group the first to
understand KAM theorem was Carlo Cercignani, who wrote down some unpub-
lished notes inspired by a version of the proof available in a book by Salomon.
However, this was not enough to make us comfortable with the theorem.

So we started reading the version of the theorem given in the celebrated
paper of Arnold, and some similar versions. Actually, in the paper of Arnold
one finds some sentences which may give the impression that the original Kol-
mogorov theorem (of the year 1954) might not really provide a proof. Moser too
told me on two occasions (in Princeton and in Milano) that he really doubted
that the Kolmogorov proof be correct. He also told me he had written some
comments about this point, in the account of the Kolmogorov paper he had given
in the journal Mathematical Reviews, but actually we never checked this. So
we started studying the Arnold version. However, I was particularly unsatisfied,
because I felt everything was too complicated for me. One evening Antonio and
me were coming back from Padova to Milano by train, after having discussed
the proof with Giancarlo for many hours, and in the train it occurred to me to
remember that I had recently found a copy of the original Kolmogorov paper.
So I took it out of my bag (which had been a very difficult operation, since the
train was filled up with many many people and we were standing up tight as
sardines among them), and I saw that the paper was perhaps just five pages long
(i.e., very very short) and the statements of the several parts composing the full
theorem were extremely clear. In addition, the proof too seemed to be rather
simple, and in particular the series entering the perturbation method were even
convergent (at variance with those met in the Arnold method). This I immedi-
ately told to Antonio, lending to him the paper. In a moment he understood
it, even concerning a passage that I had skipped (related to a translation of the
actions, characteristic of Kolmogorov’s method). The only point that was not
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explained in detail in Kolmogorov’s paper was the check of the convergence of
the sequence of successive perturbation steps that had to be performed, since
he just was making reference to some known procedure. The convergence was
later easily proved by Antonio making use of his beloved direct construction.
However, the next time the three of us met, Giancarlo suggested that, in pub-
lishing an exposition of the Kolmogorov version, a more standard procedure in
proving convergence should be used, in order that the attention be put on the
theorem, which was our main objective. The more standard procedure was eas-
ily implemented. Jean-Marie was consulted, and after he could overcome some
difficulties he had found, the paper was finished [17]. This I consider a real
contribution offered to the scientific community, because otherwise the original
Kolmogorov approach, which is also the simpler one, might have remained un-
known for a long time. A new slightly different version of the theorem, along
the Kolmogorov lines and inspired by our paper, was subsequently given within
the group around the “Arnold seminar”.

Nekhoroshev’s theorem

The Nekhoroshev affair too was a very beautiful experience, touching even our
life. Once it had occurred to me to read about his theorem (and about Neish-
tadt’s one) in the fundamental book of Arnold by the original Russian title
“Supplementary Chapters ...” (in Chapter 3, I seem to remember). The frame
is the same as with KAM theory, but now one addresses the problem of con-
trolling (i.e., finding upper bounds for) the time derivative of the actions, uni-
formly in an open domain of phase space, somehow dealing globally both with
the putative invariant surfaces, and with the variation of the actions in the
complementary “resonant zones”. Actually, the distinction between such two
complementary domains actually occurs only in the course of the proof, and
not in the statement of the theorem, which says that, in general, in a slightly
perturbed integrable Hamiltonian system the actions are quasi integrals of mo-
tion up to times which are exponentially long as perturbation tends to zero.
In fact, when I first red about the theorem, it came to my mind that Arnold
himself had explained the main idea to Tonino Scotti and me during our visit
to him. I remember him drawing on the blackboard the now very well known
figure displaying two intersecting resonant zones.

Now, the proof given by Nekhoroshev [18] was not at all easy: the analytic
part was available only in Russian, and the statement of the corresponding
lemma, involving a very large number of suitable constants, took, for what I
remember, something as a full page, or a little more. The geometric part too,
which constitutes the actual original Nekhoroshev’s contribution, was rather
complicated, and Giancarlo was the first among us to really capture it. In fact,
it is the whole theorem that is complicated, and it is thus quite natural that
people as us, having available a concrete version of a proof obtained with great
difficulty, might produce some simpler version. This is what we did, with a
paper published in the journal Celestial Mechanics [19].

Then I once met Kolya (i.e. Nikolay Nekhoroshev) in Kiev, where I was
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attending a conference together with Pierre Lochack, that had previously been
my guest for one or two months in Milano, and had thus been introduced to the
subject, to which he also gave a very interesting contribution. So Kolya became
a great friend of ours, and lived in Milano for perhaps five years, a large part of
which at my apartment. He was very shy, timid and extremely honest, and we
passed many evenings (together with two nephews of mine who were studying
Engineering in Milano), looking on TV at football (i.e., soccer) games, of which
he was very fond. I also organized for him to become a Professor at the Milano
University. Many times he told me he was very grateful to our italian group, for
having made his scientific contribution to perturbation theory become known
outside Russia. Actually I never met a non russian person that even knew of
his name, before our paper did appear.

Carati’s theorem

KAM theorem and Nekhoroshev’s theorem were stated and proved in the style
of existence theorems; for slightly perturbed integrable Hamiltonian systems
with N degrees of freedom: there exist invariant tori whose measure tends
to the full one (KAM); in an open domain the actions are quasi integrals of
motion up to exponentially long times (Nekhoroshev). This is what matters
when one invents new ideas and implements them, having to wait, in our case,
for something between fifty years and a century since the problem had been
opened.

Then comes the problem whether theorems are useful, in the elevated sense
of being apt for describing nature. It seems that the first who conceived to
check the applicability of KAM theorem to celestial mechanics was Hénon who
showed that, using the estimates available from (perhaps) Arnold’s proof, the
theorem could be applied if Jupiter’s mass were smaller than that of a proton.
Something like that occurred for Nekhoroshev.s theorems too. However, many
works were later performed about such problems, and it was shown, particularly
around Antonio and with the relevant contribution of the group of our friends
from Barcelona, that realistic estimates can be obtained in Celestial Mechanics,
both in KAM and in Nekhoroshev frame. This will perhaps be illustrated in
several contribution to the present volume.

Analogous problems occur for the extension of KAM and Nekhoroshev’s
theorems to the field of continuous bodies, described by PDE’s, or of discrete
systems constituted by N particles, in the limit N →∞. Actually, in the latter
case the problem of interest for statistical mechanics is the so-called thermody-
namic limit, in which one considers finite values of specific energy ε = E/N and
of specific volume v = V/N .

In the case of the thermodynamic limit, which is the one of interest for
our foundational problem, a positive result was obtained by Andrea Carati
[20]. In our group, since a long time we knew that Nekhoroshev’s theorem
cannot be extended to the thermodynamic limit in a naive point wise way, i.e.,
uniformly for all points of an open domain of phase space, because there exist
peculiar points which pose hard difficulties. So, some new idea was needed.
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Such an idea was found, and in a quite natural way, indeed. The fact is that
in statistical mechanics one is concerned with mean values with respect to a
given invariant measure and, on the other hand, taking mean values is, so to
say, a smoothing operation. Following such an idea, and overcoming serious
technical difficulties, Andrea Carati was able to exhibit on a significant example
that perturbation theory can be implemented at the thermodynamic limit in
such a weak, statistical sense [20]. Applications are presently being performed
to FPU-like systems of interest for statistical mechanics [21][22][23][24][25].

This is a quite interesting result because in the “FPU community” for a
long time the dominant conjecture had been that in the thermodynamic limit
perturbation theory cannot be implemented, so that, incredibly enough, only
chaotic motions could exist. This would imply that the standard procedures of
classical statistical mechanics, based on Gibbs’ ensemble, can be applied at all
temperatures. On this point I will come back in the next section.

For what concerns PDE’s, “since always” [26] many examples of integrable
systems were known, such as typically the one described by the Korteweg-
deVries equation, On the other hand the works of Kruskal and Zabusky of
the years around 1966 (perhaps the first ones at all making reference to the
FPU work) strongly supported the idea that perturbation results for perturbed
integrable systems may hold also for PDE’s. This was proved, first by Sergej
Kuksin for what concerns finite dimensional KAM tori, and eventually by Dario
Bambusi (and later by others) for PDE’s in the case of space dimension 1 [27].

4 Back to foundations: the “mechanical” FPU
problem and the dynamical justification of clas-
sical statistical mechanics

More than sixty years did elapse, presently, since the FPU problem was raised.
The problem was to check whether dynamics confirms that classical mechanics
really predicts energy equipartition, say for oscillators, against quantum me-
chanics that predicts Planck’s law, and in particular predicts, typically for solids,
the vanishing of the specific heat for T → 0 (where T is absolute temperature).
FPU had made the “little discovery” that, starting from standard FPU–type
initial data (i.e., with energy given just to a small number of modes of very
low frequencies), pretty soon a state of apparent equilibrium is attained (the
so–called formation of the packet), with energy concentrated on low-frequency
modes and with an exponential decay at the higher frequencies (a state re-
minding of a Planck-like distribution). What happened in the more than sixty
elapsed years?

I dare to summarize the present situation in the following way. The FPU “fi-
nal” state actually turns out to be a state of apparent equilibrium. As time goes
on, equipartition is eventually attained.2 This was usually called the metasta-

2Apparently, this was first seen in the work [28], performed by following an idea of Antonio
Giorgilli.
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bility perspective. Moreover, the times needed for such a relaxation occur in the
sense of the thermodynamic limit, i,e,, depend on specific energy ε ≡ E/N , and
in particular diverge as ε→ 0.3 A similar and even stronger result was obtained
quite recently for a realistic FPU-like model describing ionic crystals, that will be
illustrated in section 6. In such a case it was even checked that the fluctuations
of the mode-energies are eventually in agreement with the Maxwell–Boltzmann
distribution.

So, at first sight such results seem to invalidate the original FPU “little
discovery”, and to confirm the failure of classical mechanics. In the opinion of
our “remnant group” (Andrea Carati, Alberto Maiocchi, Fabrizio and Roberto
Gangemi, and me), however, the situation is more complicated. The point we
make concerns essentially the identification of absolute temperature T in terms
of mechanical energy. Usually one gives for granted that in classical statistical
mechanics one should have, even in the case of a crystal, the identification of
temperature with specific energy which is normally employed in the case of
dilute gases, namely,

ε =
E

N
= αT (1)

with a certain constant α. If this were justified, the specific heat would be
independent of temperature, instead of vanishing at zero temperature, thus
confirming the failure of classical physics.

Now, the familiar interpretation (1) certainly holds when one makes use
of the Gibbs ensemble, which is dynamically justified for ergodic systems, as
typically a dilute gas is supposed to be. However, we point out that any dy-
namical model of a crystal is certainly not ergodic. Indeed, at the initial time the
particles composing the crystal have a certain definite ordering, which remains
unmodified until the dynamics continues to describe a crystal (say, millions of
years). Thus, up to such times the system does not attain any of the other
N !− 1 points of phase space (all having, in typical cases, the same energy) that
describe the crystal with different permutations of the particles. In other terms,
it occurs that any putative model of a crystal, until it describes a crystal, does
not behave as an ergodic system, inasmuch as it explores only an extremely
restricted region of an energy surface. So the use of the Gibbs ensemble, and
the familiar identification of temperature, is not justified. In such non ergodic
situations, the quantities of interest should be defined in terms of time averages,
as amply discussed after the Einstein talk at the first Solvay conference. How-
ever, no systematic studies on the definition of statistical thermodynamics in
terms of time averages apparently exist (at least to my knowledge), apart from
the works [31, 32] of Andrea Carati.

This is the reason why, in our opinion, the possible failure of classical statis-

3The check the dependence on specific energy required a hard labour, in particular from
the part of Giancarlo Benettin and his collaborators [29, 30]. I’m skipping here quoting a mass
of works which took a huge labour from many people - especially in Italy - with whom we were
having strong discussions during many, many years. I’m thinking of Giorgio Parisi, Stefano
Ruffo, Roberto Livi, Marco Pettini, Mario Casartelli, Jayme de Luca, Alan Lichtenberg, Bob
Rink, Thomas Kappeler ... Meminisse iuvabit.
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tical mechanics in connection with the vanishing of the specific heat of solids,
i.e., of the third principle of thermodynamics, is still an open problem. We
point out, however, that some recent studies on realistic FPU-type models al-
ready mentioned, that will be illustrated in section 6, give indications that the
correct relation for the state equation (i.e., the relation E = E(T ) for example
at fixed pressure) should be of the form

E

N
→ E0

N
for T → 0 , with E0 > 0 , (2)

i.e., that in classical physics too there should exist a non vanishing zero-point
energy, which means that Nernst’s third principle would be satisfied. More in
general, the point we are making actually concerns a distinction between me-
chanical energy (the one that manifests itself in the Debye-Waller phenomenon)
and thermal energy (a name that indeed exists “since always” in phenomenolog-
ical thermodynamics, for example in all books of Nernst). And our last results
on the realistic FPU-like models seem to indicate that the state equation, i.e.,
the relation E = E(T ), (for example at fixed specific volume) in classical models
of solids should possess the property (2).

In any case, a big problem remains open, which may hinder the physical
significance of all the FPU of FPU-like models discussed so far, even the ones
that were here denoted as realistic. I mean the fact that all of them are of
a purely mechanical character, i.e., do not take into consideration the radiant
electromagnetic field with which the considered body should be at equilibrium.
As strongly stressed in the first pages of the Einstein’s paper on specific heats,
from such a point of view a black body and a crystal are the same thing: i.e.,
dynamical systems constituted of matter and field (with all typical properties
of the latter, first of all retardation). No result was yet obtained in such a
direction, but the results of a general character illustrated in the next section
seem to be promising.

5 Back to foundations: Matter–Radiation inter-
action. Progress along the lines of the Ein-
stein Classical Program

I come now to matter-radiation interaction. Actually, since Andrea Carati and
me plan to give a review of this subject on the occasion of a meeting that
should be held in Milano the next month of may in commemoration of Carlo
Cercignani, here I will just give a draft of what we plan to present there.

Matter-Radiation Interaction, and the Einstein’s Classical Program

The origins of Quantum Mechanics are fully immersed in the domain of Matter-
Radiation-interaction (black body, specific heats, but especially instability of
the atom, i.e., falling of the electron on the nucleus by energy radiation), a do-
main where classical physics appeared to meet with inextricable, insurmountable
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difficulties. Paradoxically enough, however, in the solution invented by Heisen-
berg in the month of July 1925, all such problems seem to have disappeared,
inasmuch as the solution seems to be of a purely kinematical character: the
dynamical variables have become operators and so on, and the stability of the
atom is just reduced to the kinematical fact that the ground state has a finite
energy. The stability problem might perhaps show up at a more fundamental
level involving both atoms and QED, but such a problem is not even mentioned
in the handbooks.

So, with Heisenberg, particles’ positions and trajectories lost their intuitive
classical meaning or, as Einstein says, their “realistic character”. The dream
of Einstein was that a larger theory having a realistic character may be found,
from which Quantum Mechanics, definitely the correct theory, should be recov-
ered as a kind of corollary. This is what he called his “Classical Program”.
The first realistic theory he had in mind was obviously classical physics, with
particles interacting with the electromagnetic field. But this appeared not to
be implementable, due to the difficulties of dealing with matter radiation inter-
action in the case of point particles, well known since the times of Lorentz and
Abraham. So he started thinking of the possible existence of a classical field
theory admitting solitonic solutions (as we would say today), which would play
the role of trajectories of the old classical particles.

The turning point

Within the “foundational group” mentioned above, the possibility of implement-
ing the Einstein’s Classical Program, in its original form involving Newtonian
trajectories, was always taken into consideration. However, at a certain mo-
ment, an essential progress was obtained, in an unexpected sudden way, when,
in a moment, new perspectives were disclosed. Andrea Carati and me were
studying the papers of Planck about his microscopic black body model, which
he had published in the year 1900, a few months before the two papers (October
19 and December 14) in which he introduced his formula. We were actually crit-
icizing his model, since he was thinking of matter as constituted of resonators
interacting with the field, but without any mutual interaction.

Guided by the idea that the field should be the one created by the resonators,
Andrea Carati thought of a different model, somehow complementary to that of
Planck, inasmuch as the field does not even show up as a part of the dynamical
system. Perhaps he had some remembrance of the Wheeler-Feynman paper [33]
of the year 1945 (see also [34]), in which too the field does not show up and
only the particles are taken into account, with their mutual retarded electric
interactions, in addition to their own radiation reaction force. But while the WF
model is completely general, and thus very hard to be dealt with analytically, the
Carati model is instead quite simple, and amenable to an analytic investigation.
This is the reason, we believe, why some progress could be done with respect
to Wheeler and Feynman. The Carati model [35] is just a system of harmonic
oscillators of the same frequency, attracted towards the sites of a 1-dimensional
infinite lattice. Each of them is subjected to its own radiation-reaction force
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(taken, as Wheeler and Feynman did, in the form of Planck, Abraham and
Lorentz, i.e., proportional to the time derivative of acceleration), and moreover
to the retarded electric fields due to all the other oscillators. Linearization is
introduced in the standard way, by evaluating retardation relative to equilibrium
positions. So we started looking for normal modes (which, by the way, excludes
the possibility of the well known runaway solutions), in the standard way that
leads to a “secular equation” depending on frequency ω and wave number k as
parameters. Something, apparently, trivial at all.

Now comes, however, the crucial point, so relevant that we still are incred-
ulous that it might not have been observed before. The point is that, with
retardation taken into account, the secular equation is complex, with its real
part and its imaginary part, which means two real equations in two parameters
ω and k. If ω and k are dealt with as unknowns, one might have as solution
a discrete set of pairs (ωj , kj). But we are looking for dispersion curves, which
means functions ω = ω(k), which thus cannot exist. However, a series entering
the equation for the imaginary part, can be summed, and it turns out, in some
miraculous way, that such an equation actually is an identity. So one remains
with only a single equation, which implicitly defines the function ω = ω(k). i.e.
the dispersion relation.

This is the way in which dispersion relations come to exist for systems in-
volving retardation. Incredibly enough, this fact (both in general, and in single
models) was apparently unknown. For example, in all his books and papers,
Born just does not even mention the equation for the imaginary part, behav-
ing as if it did not exist, and computes the dispersion relation defined by the
remaining equation.

Moreover, it occurs that in general the dispersion relation thus found pro-
duces real frequencies, and thus there is no dissipation, and the oscillators never
come to rest, notwithstanding the presence of the radiation reaction acting on
each of them. Thus, the main objection of principle to classical theory in atomic
physics is overcome in the Carati model.

However, it also occurs that for high enough densities the solution becomes
complex, a fact that manifests itself as a kind of explosion of the system. A
phenomenon of such a type is well known in plasma physics, under the name
of a disruption, but is apparently unexplained. I will recall later that this fact
was pointed out to us by Matteo Zuin, a plasma physicist of Padova, who also
indicated the explanation.

The Wheeler-Feynman identity proven. The electrons don’t fall on
the nuclei and the ions don’t come to rest

So the existence of dispersion relations and the stability of matter (for not too
high densities) were proven in a simple model. Let’s now consider what occurs
“in general”, in the spirit of Wheeler and Feynman.

The paper of Wheeler and Feynman was known to us, but never could we
really understand it. In a moment we now understood, and we can summarize
things as follows. They were considering a very general model, i.e., a macro-
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scopic system of point particles with standard radiation reaction forces and re-
tarded electric interactions. They gave four qualitative semi-phenomenological
arguments indicating that, if optical dispersion exists, then the radiation-reaction
force acting on any particle has to be exactly deleted by the retarded fields cre-
ated by all the other ones; more precisely, by the semi difference of the retarded
and the advanced ones. Such a cancellation is what we call the Wheeler-Feynman
identity. If this occurs, there is no dissipation, electrons don’t fall on nuclei and
ions don’t come to rest. Moreover, the electromagnetic interaction among the
particles just reduces to the semi sum of the retarded and the advanced ones,
and thus the system presents time-reversal invariance.

So Wheeler and Feynman introduced in an explicit way the conjecture that
the WF identity holds, giving it the name conjecture of the existence of an
universal absorber. Later. in the year 1949 they proposed the correspon-
dent formulation of electrodynamics in relativistic form, which is known as the
Wheeler-Feynman theory. The idea of just considering semi sums of retarded
and advanced fields (completely neglecting radiation reaction forces) was also
transported by Feynman to Quantum Field Theory, where it shows up through
the Feynman propagator, semi sum of the retarded and the advanced ones.

However, the WF identity in its general form had not been actually proven.
In our case instead it occured that, by dealing with a simple, concrete model,
the cancellation came out as a miracle through the “simple” summation of a
series. Later, Andrea Carati was able to find a general proof, on the basis of
an assumption of causality, expressed in a form resembling the familiar one of
Quantum Field Theory (with correlations in place of commutators). In partic-
ular, it also becomes clear why the cancellation doesn’t occur in the case of a
macroscopic antenna. This is published in a joint paper [36], but is due to him.

As an aside comment, it should be pointed out that the WF identity holds
only if the radiation-reaction force is taken in the standard form involving the
time derivative of acceleration (possibly in its relativistic Dirac’s variant). Other
forms which are often taken into consideration, don’t do the job.

6 Applications to Atomic Physics, Plasma Physics
and High-Energy Physics

6.1 Atomic Physics

Having understood how it happens that in classical physics electrons don’t fall
on nuclei and ions don’t come to rest, by radiation, it is then possible to deal
with atomic physics in a classical frame exactly as is done in a quantum frame,
namely, as if one were dealing with purely mechanical systems, and the electro-
magnetic field did not exist.
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How did we start studying realistic models: the difficulties of QED
with matter in bulk

The passage to studying realistic models of atomic physics occurred in the fol-
lowing way. One day I was illustrating, to Nicola Manini, a colleague working in
Solid State Physics, the results of a quite general character we had just obtained
on the Carati model, and he suggested we should address Giuseppe Grosso and
Giuseppe Pastori Parravicini, who had just published a ponderous book. As
Giuseppe Pastori Parravicini had been my university classmate, and I remem-
bered him as a very kind person, I wrote to him. He immediately understood
our result, which is not an obvious fact at all, and commented that, in light of
our result, we might perhaps be able to provide a microscopic explanation of
the existence of polaritons (a phenomenon concerning ionic crystal that I will
recall in the next subsection). An explanation, he told me, that they (the per-
sons working professionally on that subject) were not able to provide. As far as
Andrea and me understand, the problem seems to be of a quite general char-
acter. Indeed, from a macroscopic treatment of the problem through Maxwell’s
equations, it is clear that the phenomenon is due to retardation, whereas the
available formulation of QED is well known to be suited for dealing with scat-
tering processes (which involve incoming and outcoming states), but not with
phenomena involving bound states or matter in bulk. Which, by the way, is
also the opinion expressed by Dirac himself, the father of QED, in the last page
of his fundamental book.

The realistic ionic crystal model. The WF identity checked. Existence
of macroscopic optics, and of polaritons, proven

Stimulated by the comment of Giuseppe Pastori Parravicini, we started imple-
menting, together with two undergraduate students of physics, Alessio Lerose
and Alessandro Sanzeni, a realistic model of LiF, the paradigm of ionic crystals,
proceeding in a standard way [37]. The ions are dealt with as point particles
with mutual retarded electric interactions (cared as usual through the Ewald
summation procedure), and standard linearization. Following the works of the
Born school, the degrees of freedom of the electrons were neglected and were
implicitly taken into account trough empirical potentials acting among the ions,
and suitable “effective charges” for the ions.

In such a model the WF identity was checked, as was also the existence
of macroscopic optics, i.e., the propagation of light with a macroscopic speed
different from the vacuum speed c. Perhaps such a result had already been
obtained, but, as far as we know, it may be new.

The phenomenon of polaritons consists in a splitting of a dispersion curve “of
optical type”, that occurs where the latter would intersect the dispersion curve
of light in vacuum ω = ck. It is an example of a microscopic matter-radiation
interaction corresponding to an actual macroscopic phenomenon, the proof of
which in a microscopic model is still lacking, in a quantum frame. However, the
existence of polaritons is exhibited, by a numerical computation, in our purely
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classical model.

Existence of infrared spectral lines (in a classical frame)

Once, during a lesson for a course on the foundation of physics, after having
explained why in a classical frame the electrons don’t fall on nuclei, quite natu-
rally the problem was raised how can it be conceivable that spectral lines may
indeed occur in a classical frame, without any possibility at all of invoking the
existence of energy levels or quantum jumps, as is done in the familiar proce-
dures of Bohr and Schrödinger. At the subsequent lesson Andrea came on with
the solution.

Very simply, one has to make recourse to the standard linear response theory
introduced by Green and Kubo in the late years fifties, which is normally applied
in a quantum frame. Such a procedure makes reference to the time-dependent
electric polarization P (t), which is defined in terms of the positions xj(t) of
the ions (of charge ei) by P (t) =

∑
eixi(t). Now, In QM the positions are

operators. However, the formula makes perfect sense even in a classical frame,
so that a naive classical approach is implementable, and even in a quite simple
way, since Newtonian trajectories of the ions are easily determined by standard
computer simulations.4 By applying the standard Green-Kubo type formulas
one can finally determine the spectral curves (as functions of frequency), which
turn out (for example at room temperature) to reproduce in an impressively
good way the phenomenological ones [38, 39, 40]. In other words, one can
neglect not only energy levels, but also, within the Green-Kubo approach, the
commutation problems that occur with products. Our impression is that the
classically computed curves are even better than the analogous ones determined
in a quantum frame.

A final comment of interest for the FPU problem, is that we also investi-
gated the temperature dependence of the spectral curves. In so doing, we found
out that agreement with experiment is obtained provided temperature is not
identified as being proportional to specific energy. In some empirical way, by re-
quiring agreement with experiment we obtain a state equation E = E(T ) which
seems to require the existence of a non vanishing zero-point energy.

Eventually, Newtonian trajectories for electrons. The case of the
chemical bond in the H+

2 ion

In the microscopic models of ionic crystals used in Molecular Dynamics simula-
tions, one deals with the ions as classical particles, and the role of the electrons
is taken into account through a suitable effective potential acting among the
ions, and suitable “effective charges for the ions. However while, following

4Notice by the way that, instead, a concrete dynamical treatment for nonlinear systems is
essentially impossible in a purely quantum approach. In the case of spectral lines, at variance
with the case of the dispersion curves, non linearity in the dynamics plays an essential role, so
that a full quantum approach is practically non implementable. However, even in the classical
approach a difficulty occurs, because retardation cannot be taken into account in a simple
way, so that the electric forces were taken in the instantaneous approximation.
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Born, we introduced such a potential in a phenomenological way, in MD simu-
lations the effective potential due to the electrons is determined microscopically
in quantum terms, through the Born-Oppenheimer method, which consists in
identifying such a potential (as a function of the positions of the nuclei) with
the energy of the ground electronic state determined for fixed nuclei.

The problem is then whether such a potential can also be obtained in a
classical frame. At the moment we are meeting with apparently insurmountable
difficulties in the general case that involves more than one electron. However,
in the simplest possible case where just one electron is involved, i.e., the ion
H∗

2 of the Hydrogen molecule H2, which consists of two protons and just one
electron, we could show that a stable ion exists, with an effective potential which
is qualitatively correct [41]. Moreover, a potential exists which reproduces in
a surprisingly good way the quantum one computed in the Born-Oppenheimer
approximation. But this occurs only for very particular states, and an instability
is met under generic changes of the initial data. We hope the latter difficulty
may be overcome, together with the more relevant one which is met in the case
of more than one electron.

6.2 Plasma physics. The “little discovery” of Matteo Zuin:
the plasma “disruptions” explained

The application that I’m going to illustrate now, is one that I like very much,
for the peculiar way in which it was invented. It is due to Matteo Zuin, a
young plasma physicist of Padova, to whom I’m personally acquainted since a
long time, together with his family. I also suggested to him plasma physics as
a possible research field. So, when ten year ago there was held in Padova a
conference on the occasion of my seventieth anniversary, he attended the talks
with special attention. One day he was attending the talk in which Andrea
Carati was illustrating the results obtained on his model. In particular, having
explained our understanding of the WF identity, he was showing the figure which
reports the dispersion relation that had been obtained numerically. The figure
contained several curves ω = ω(k), which depended on the size (or step) a of
the lattice at which the oscillators were located. For a of the order of say some
Amstrongs, the curve was just a straight line corresponding to a constant value,
ω(k) = ω0, where ω0 is the common mechanical frequency of the oscillators;
so, the interactions had no effect. But when the step is decreased (i.e. - as
Matteo immediately understood the thing - when matter density is increased -
the curves start bending, tending towards the axis of the abscissas. Then, above
a critical density, they intersect the axis, and come back. In other words, there
exists a critical density, above which some frequencies did become complex. This
is a point that Andrea and me, captured by the opportunity of understanding
the WF conjecture. had completely overlooked.

Instead Matteo knew very well, as all plasma physicist do, that fusion ma-
chines are plagued by the problem of the “density limit”. Electrons are usually
confined by the Lorentz force created by a huge magnetic field, but when, for a
given field, matter density is increased, above a certain density limit an instabil-
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ity (a disruption, as they say) occurs, and the machine stops working or might
even break down. We then checked in several ways that the idea of Matteo Zuin
can be implemented in some suitable model, and the result fits the experiments
qualitatively well [42, 43], and quantitatively not so badly. Now, some theo-
ries exist for explaining such disruptions, and I’m not entitled to discuss them.
Here, however, there is a new one, which is related to some fundamental “first
principles reason”.

Analogous disruptions. or rather explosions, were observed by us, together
with the brothers Gangemi in Brescia, in the realistic ionic models illustrated
above. Perhaps we are meeting here with a phenomenon known as single-crystal
explosion, a kind of phase transition that might have the same general origin
previously discussed, when describing the WF identity.

6.3 High energy physics: pair creation and annihilation
in classical physics

According to many theoretical physicists of the previous generation (in Milano, I
recall the late Piero Caldirola), the relevant difference between classical physics
and the quantum one, doesn’t consist in the replacement of Newton equation by
the Heisenberg or Schrödinger equation, but rather in the fact that the number
N of particles constituting a system is fixed in classical physics, whereas in
a quantum system it can change, due to the possibility of pair creation and
annihilations, which is offered by Quantum Field Theory. In this connection, a
result of Andrea Carati seems to be of interest. Things went as follows.

Many years ago, within our group we were discussing an unusual paper in
which Feynman was trying to find a classical implementation (through Newto-
nian trajectories, indeed) of pair creation and annihilation. However, he was
able to implement such an idea only through the introduction of a modified
form of electrodynamics. Some days later Andrea Carati came up with his solu-
tion [44]. In his procedure, nothing is changed in the classical theory, if not for
choosing a precise form for the radiation-reaction force, namely, the relativistic
generalization of the old form (empirically found by Planck, and then studied
by Lorentz and Abraham), introduced by Dirac in his paper of the year 1938,
ten years after his formulation of QED.5

Andrea considers the case of a particle on a line, under the action of an
external potential presenting a singularity at a point of the line. He finds that
in a finite time the particle falls on the singularity. Then he performs an analytic
continuation, and the particle is found to come out of the singularity as if it were
going back in time. This is however equivalent to an antiparticle going forward,
the original particle and the antiparticle annihilating at the singularity. This
is very near to implementing pair creation, or annihilation. Actually, a full
implementation would require to eliminate the external potential, its role being
taken by the mutual Coulomb potential acting between particle and antiparticle.

In any case, the above result seems to be very promising. Concerning the

5A strange thing indeed, the creator of QED who goes back to classical physics.
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mentioned paper, one finds in the Mathematical Reviews a very complimentary
comment by T. Erber [45], to which I completely subscribe.

The comment goes as follows. “. . . Under these circumstances it might seem
foothardly and redundant to reach back to classical electrodynamics to locate
precursors to pair production. But historical experience suggests that the pro-
longed stasis of the currently accepted theoretical framework can be broken only
by the discovery of new phenomena (at still higher energies?); the shift to more
comprehensive theoretical schemes (strings, branes, and “M”); or the renewed
exploration of paths “not taken”. Carati’s paper is one of the rare efforts of this
last kind.”

7 Conclusions

So, I told a fifty-years long story about a group of people aiming at implementing
the Einstein Classical Program, i.e., at proving that Quantum Mechanics is just
a chapter of classical physics, with its realistic character, even in its extreme
form involving Newtonian trajectories of point particles.

Two points were involved, related to different aspects of the problem. The
first one is centered about the alternative of energy equipartition versus Planck’s
law. Here, the progress achieved was not yet sufficient to settle the problem.
Further features remain to be clarified for an appropriate formulation of clas-
sical statistical mechanics. In particular, one should find an effective way for
distinguishing mechanical energy from the thermal one, as occurs typically in
the favourite Boltzmann example, that of perfectly smooth spheres, and in the
Debye-Waller effect.

The second point concerns the idea that, within classical physics, electrons
should fall on nuclei and ions come to rest, due to radiation emission by acceler-
ated particles. Here a fundamental progress was obtained, inasmuch as such an
idea was proven to be an unfounded prejudice, so that the main objection to the
use of classical physics in the atomic domain is completely eliminated. The rele-
vant progress, performed by Andrea Carati, consisted in bringing to completion
the relation between retardation of the forces and existence of a radiation reac-
tion force (in its correct Dirac’s form), that had been formulated as a conjecture
by Wheeler and Feynman. Such a jump having been performed, the path was
opened to the explanation, within a classical frame involving Newtonian tra-
jectories, of several phenomena usually considered to be typical quantum ones,
such as polaritons, infrared spectral lines and chemical bond (at least in the
simplest case involving just one electron). Among them, the most striking one
is perhaps that of pair production.

In the course of such a long path towards a possible implementation of the
Einstein Classical Program, I happened to have the fortunate chance of entering
in strict relation with many persons, who actually became part of my life. For
what concerns science, whether it will be possible to follow the Einstein’s path
up to the end is not yet clear. But I’m sure that my dear late friends Ed Nelson,
Carlo Cercignani and Martin Gutzwiller would be gratified by the present state
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of the problem.
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