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We 
onsider the Landau{Teller model, whi
h is a prototype for the ex
hanges of energy, in mole
-

ular 
ollisions, between internal degrees of freedom and those of the 
enter of mass. We show that

the statisti
s of the energy ex
hanges 
omputed through the dynami
s over a �nite time is of the

L�evy type for high enough frequen
ies of the internal motions, while it redu
es to the familiar gaus-

sian one in the limit of low frequen
ies. The relevan
e for the de�nition of the times of relaxation

to equilibrium is also pointed out.

PACS numbers: 05.40.Fb, 34.50.-s

The Landau-Teller model was introdu
ed in the years

thirties [1℄ (see also [2℄) and is still 
ommonly used [3℄

as the simplest signi�
ant model for the dynami
s of the

energy ex
hanges between the internal degrees of free-

dom and those of the 
enters of mass in mole
ular 
olli-

sions. The aim was to estimate the rate of relaxation to

equilibrium in polyatomi
 gases in order to explain the

phenomenon of anomalous sound dispersion; however, in

our opinion, one is here a
tually dealing with a problem

of a mu
h more general 
hara
ter �rst raised by Boltz-

mann [4℄, namely that of establishing how mu
h does the

spe
i�
 heat depend on the observation time [5℄.

The model des
ribes the 
ollinear 
ollision of an \ex-

ternal atom" with a diatomi
 mole
ule having one of its

two atoms �xed; the intramole
ular for
e (between the

two atoms of the mole
ule) is taken linear, while the in-

termole
ular potential (between the external atom and

the free atom of the mole
ule) is 
hosen to be of expo-

nential type, just for the sake of simpli
ity in the analyt-

i
al estimates. Thus one has a system of two points on a

line, namely the external atom and the free atom of the

mole
ule; if x and y denote their respe
tive 
oordinates,

the origin 
oin
iding with the �xed atom of the mole
ule,

the Lagrangian is then

L(x; y; _x; _y) =

1
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m( _x
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+ _y
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� !
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)�A exp
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�

x� y

a

�

;

where m is the mass of the atoms, ! the angular fre-

quen
y of the mole
ule, A the strength and a the range

of the potential. In the very words of the authors, the

aim was just to \dis
over the qualitative behaviour" of

the system. This is spirit of the present work too.

In order to estimate the relaxation time to equilibrium,

the dynami
al quantity of interest is the ex
hange of en-
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ergy ÆE between atom and mole
ule in a 
ollision, and

the main result of Landau and Teller was that it is expo-

nentially small with the frequen
y of the mole
ule. In-

deed, at least for a 
ertain set of initial data (vanishing

initial energy E =

1

2

m( _y

2

+ !

2

y

2

) of the mole
ule), they

found for the modulus of ÆE the estimate

jÆEj (!; v) ' C exp (�!a=v) ;

where v the is velo
ity of the atom before 
ollision, while

C is a slowly varying fun
tion of ! whi
h in a �rst approx-

imation 
an be thought of as a 
onstant. A
tually su
h

a formula has an asymptoti
 
hara
ter for !a=v large [6℄,

while for !a=v small it just gives a lower bound, and the

formula for jÆEj should be slightly modi�ed.

The relevant point for the aims of the present paper is

however the dependen
e of ÆE on the velo
ity v of the im-

pinging atom. Indeed, thinking of the mole
ule as being

in dynami
al 
onta
t with a heat bath, the model is 
om-

pleted by assuming that the velo
ity v of the atom before

ea
h 
ollision is extra
ted from a Maxwell{Boltzmann

distribution at a 
ertain temperature T . In the litera-

ture on sound dispersion the mean value ÆE of the energy

ex
hange is 
omputed by averaging over the Maxwell{

Boltzmann distribution for the velo
ities, and the time

� of relaxation to equilibrium is then de�ned as propor-

tional to the inverse of ÆE. In su
h a way, analyti
al

estimates are obtained, whi
h were usually 
onsidered to

�t rather well the experiments, although serious doubts

were also raised. For example, in the words of Rapp

and Kassal [3℄, \It is impossible to determine whether

the 
hoi
e of the potential parameters is physi
ally sig-

ni�
ant, be
ause all errors in the theory are 
ompensated

by adjustable potential parameters". Later, a more a
-


urate analysis using arguments similar to those leading

to the 
u
tuation dissipation theorem has shown (see for

example the papers [7℄, whi
h deal with an analogous

problem o

urring in plasma physi
s) that the de�nition

of the relaxation time � should involve not only the mean

value of ÆE, but also its varian
e; however, the estimates



2

for the relaxation times are not essentially 
hanged.

On the other hand, the way in whi
h the mean and the

varian
e of ÆE are de�ned appears to be questionable.

The problem rests on the distin
tion between averag-

ing over the velo
ities through the equilibrium Maxwell{

Boltzmann distribution, or through a �nite number of

extra
tions from su
h a distribution (i.e. by taking into

a

ount, in the spirit of Boltzmann, the �niteness of the

observation time).

The point is that, for �xed values of ! and a, a
-


ording to the Landau-Teller formula 
onspi
uous en-

ergy ex
hanges 
an o

ur only for velo
ities whi
h are

high enough, say for v > !a, i.e. lie in the tail of the

Maxwell{Boltzmann distribution. So, if the temperature

is low enough or the frequen
y high enough, the o

ur-

ren
e of su
h a high velo
ity is a rare event, whose a
-

tual realization might require an extremely large number

of extra
tions (i.e. an extremely long time), of the or-

der of exp(m!

2

a

2

=2kT ), where k is the Boltzmann 
on-

stant. Thus one expe
ts that the statisti
s of ÆE obtained

from a �nite number of extra
tions of the velo
ity, inas-

mu
h as it a
tually 
ontains an intrinsi
 
ut{o� of the

high velo
ities, might signi�
antly di�er from the equi-

librium one, namely that obtained from a formula for

ÆE of the type given above, making use of the whole

Maxwell{Boltzmann distribution for the velo
ity.

So one is led to 
onsider an experiment in whi
h one

observes over a 
ertain �xed time an a
tual \history" of

energy ex
hanges of a given mole
ule through 
ollisions

with a sequen
e of impinging atoms, whose velo
ities are

extra
ted from a Maxwell{Boltzmann distribution at a

given temperature T . In su
h a 
ase, if the observa-

tion time is not long enough, one should expe
t that the

statisti
s for the energy ex
hanges obtained from the dy-

nami
s, i.e. from a typi
al a
tual history, does not at all

agree with the statisti
s obtained from the formula for ÆE

of the type given above, using the Maxwell{Boltzmann

distribution for the velo
ity. Equivalently, for a �xed

temperature and a �xed observation time, the agreement

between the two statisti
s should o

ur only if the fre-

quen
y is low enough.

With su
h a motivation, we numeri
ally 
omputed a
-

tual histories (or \sample paths") E

n

, n = 0; 1; 2 � � � ,

where E

n

is the energy of the mole
ule after the n{

th 
ollision with an atom, whose asymptoti
 velo
ity is

extra
ted from a Maxwell{Boltzmann distribution at a

given temperature T ; from su
h data we then 
omputed

some relevant statisti
al distributions. The result we

found is that, with a �xed observation time, the statisti
s

indu
ed from the dynami
s over a �nite time agrees in-

deed with that indu
ed by the Maxwell{Boltzmann dis-

tribution in the 
ase low frequen
ies, but not at all in

the 
ase of large frequen
ies. Correspondingly, it turned

out that for high enough frequen
ies the statisti
s for the

energy ex
hanges indu
ed by the dynami
s presents a

nongaussian 
hara
ter, exhibiting features typi
al of the

so-
alled L�evy pro
esses. Perhaps, the most 
hara
teris-

ti
 of su
h features is the presen
e of the so{
alled L�evy


ights: namely, in the \sample paths" for the energy of

the mole
ule versus the number n of 
ollisions the energy

remains pra
ti
ally 
onstant (quies
ent) for a long time,

while presenting sudden perspi
uous jumps from time to

time (see the �gure at page 294 of the book of Feller [8℄).

In fa
t, \intermittent" phenomena of the type just de-

s
ribed had already been observed in numeri
al studies of

mole
ular 
ollisions [9℄, but the general 
onne
tion with

the frame of the L�evy pro
esses had not been pointed

out. L�evy 
ights were however observed in re
ent times

in several domains of physi
s [10℄.

Here are some details 
on
erning the 
omputations.

The sample paths were 
omputed up to 10

5


ollisions

for two di�erent values of the frequen
y of the mole
ule,

namely ! = 3 and ! = 15, while the temperature T

of the atoms and the initial energy E

0

of the mole
ule

were �xed at kT = 1 and E

0

= 1 (\natural" units hav-

ing being 
hosen, with m = 1, a = 1 and A = 1). The

\initial" data before ea
h 
ollision and the \�nal" en-

ergy after ea
h 
ollision should in prin
iple be identi�ed

with the 
orresponding asymptoti
 values for t ! �1

and t! +1 respe
tively; in pra
ti
e, with an exponen-

tial intera
tion as in our 
ase, the energy of the mole
ule

(and of the atom) turns out to remain sensibly 
onstant

when the atom is far enough from the origin. In our 
om-

putations we thus �xed a 
onvenient distan
e l from the

origin, a
tually l = 32, and determined numeri
ally the

motions, with the atom starting at x = l, up to the time

it 
ame ba
k to the same position. The initial phase of

the mole
ule and the velo
ity of the atom were 
hosen

at random before ea
h 
ollision, being extra
ted, respe
-

tively, from a uniform distribution in the interval (0; 2�)

and from a Maxwell{Boltzmann distribution at temper-

ature T (adapted to the present one{dimensional 
ase as

in [9℄). The 
hoi
e of the parti
ular value of the distan
e

l was 
he
ked to be irrelevant for l large enough. The

equations of motion were integrated through a suitable

symple
ti
 numeri
al s
heme [11℄.

The main results are illustrated through three �gures.

All of them refer to two sample paths, one for the high

frequen
y 
ase ! = 15 (left), and the other one for the

low frequen
y 
ase ! = 3 (right). The presen
e of the

L�evy 
ights in the high frequen
y 
ase is well exhibited

by Fig. 1 (left), where we report the sample path for the

energy E

n

of the mole
ule after the n{th 
ollision as a

fun
tion of n = 0; : : :; 10

5

. The similarity with the above

mentioned illustration of L�evy 
ights given by Feller is

striking. The di�eren
e with respe
t to the analogous

sample path for the low value ! = 3 of the frequen
y

(right) is also impressive.

Con
erning the statisti
al properties of the pro
ess of

energy ex
hanges, the qualitative di�eren
e between the

two 
ases is illustrated in the next two �gures. In Fig. 2

we report the densities � of the probability distribution

fun
tions of the energy E of the mole
ule indu
ed by the

dynami
s, i.e. 
al
ulated from the sample paths of Fig.

1. In the 
ase of low frequen
y (right) the statisti
al dis-

tribution agrees very well with the one expe
ted at equi-
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FIG. 1: Sample path of E

n

versus n, ! = 15 (left), ! = 3 (right) .
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FIG. 2: Density of the p.d.f. of E , ! = 15 (left). ! = 3 (right) .

librium, i.e. obtained through the Maxwell{Boltzmann

distribution; the latter is drawn as a 
ontinuous line, but

is a
tually almost invisible in the �gure, as it superposes

to the histogram obtained from the dynami
s. Instead,

for the high value of ! (left) the distribution is 
ompletely

di�erent. Re
all that the initial value E

0

of the energy

was the same in both 
ases, namely the equipartition

value E

0

= 1 expe
ted at equilibrium. Noti
e moreover

the di�eren
e in the s
ales in the two �gures: if plotted at

the same s
ale of the right histogram, the left one looks

as a delta{like fun
tion, 
entered near E = 1 and rising

up to a value of 30.

Finally, in Fig. 3 we report (in log{log s
ale) analogous

densities of the probability distribution fun
tions, still


al
ulated from the sample paths of Fig. 1, but now for

the quantity ÆE (with ÆE > 0), namely for the energy

ex
hanged in ea
h 
ollision; analogous 
urves 
ould have

been drawn for the negative values of ÆE. Noti
e that a

suitable normalization fa
tor was a used. One sees that

in the high frequen
y 
ase (left) the 
urve is rather well

�tted by the power law (
ontinuous line) � = C (ÆE)

��

with � = 2:4 and C = 0:8�10

�8

(but no spe
ial meaning

should be attributed to these parti
ular values), while in

the low frequen
y 
ase (right) the 
urve seems to de
ay,

for ÆE large, faster than any power. In 
onne
tion with

the result for the high frequen
y 
ase, we re
all that,

at least for pro
esses with independent in
rements, from

the general theory it is known (see [8℄ and [12℄) that for

a L�evy pro
ess the density de
ays as a power with an

exponent � < 3.

In 
on
lusion, it has been shown that the main qual-

itative di�eren
e between the statisti
s de�ned through
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FIG. 3: Density of the p.d.f. of ÆE > 0 in log{log s
ale, ! = 15 (left), ! = 3 (right).

the equilibrium distribution and the one de�ned through

the dynami
s up to a �nite time, in the 
ase of high fre-

quen
ies, is that the se
ond moment of ÆE is �nite in the

former 
ase and diverging in the latter one. This fa
t

has a nontrivial physi
al impa
t in 
onne
tion with the

estimates for the times of relaxation to equilibrium of the

internal degrees of freedom in polyatomi
 mole
ules. In-

deed, the relaxation times are usually de�ned through

formulas involving the mean and the varian
e of ÆE,

while, as shown in the present work, for high enough fre-

quen
ies the varian
e is divergent, if the statisti
s is de-

�ned through the dynami
s up to �nite times. In fa
t, the

nongaussian statisti
s that is met in su
h a 
ase seems to

indi
ate the presen
e of an anomalous di�usion, for whi
h

the relaxation times should be de�ned through more 
om-

pli
ated pro
edures [12℄. Thus the present work appears

to have shown that the problem of the theoreti
al quan-

titative estimates for the relaxation times to equilibrium

in polyatomi
 mole
ule, whi
h was 
onsidered to be set-

tled sin
e a long time, in instead reopened. We hope to


ome ba
k to this problem in the future, even in 
on-

ne
tion with more realisti
 models of mole
ular 
ollisions

and more realisti
 values of the parameters.
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