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We consider the Landau—Teller model, which is a prototype for the exchanges of energy, in molec-
ular collisions, between internal degrees of freedom and those of the center of mass. We show that
the statistics of the energy exchanges computed through the dynamics over a finite time is of the
Lévy type for high enough frequencies of the internal motions, while it reduces to the familiar gaus-
sian one in the limit of low frequencies. The relevance for the definition of the times of relaxation

to equilibrium is also pointed out.
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The Landau-Teller model was introduced in the years
thirties [1] (see also [2]) and is still commonly used [3]
as the simplest significant model for the dynamics of the
energy exchanges between the internal degrees of free-
dom and those of the centers of mass in molecular colli-
sions. The aim was to estimate the rate of relaxation to
equilibrium in polyatomic gases in order to explain the
phenomenon of anomalous sound dispersion; however, in
our opinion, one is here actually dealing with a problem
of a much more general character first raised by Boltz-
mann [4], namely that of establishing how much does the
specific heat depend on the observation time [5].

The model describes the collinear collision of an “ex-
ternal atom” with a diatomic molecule having one of its
two atoms fixed; the intramolecular force (between the
two atoms of the molecule) is taken linear, while the in-
termolecular potential (between the external atom and
the free atom of the molecule) is chosen to be of expo-
nential type, just for the sake of simplicity in the analyt-
ical estimates. Thus one has a system of two points on a
line, namely the external atom and the free atom of the
molecule; if x and y denote their respective coordinates,
the origin coinciding with the fixed atom of the molecule,
the Lagrangian is then
L(x,y,j:,y) = %m(ﬁ + 92 - w2y2) - Aexp ( - u) )
where m is the mass of the atoms, w the angular fre-
quency of the molecule, A the strength and a the range
of the potential. In the very words of the authors, the
alm was just to “discover the qualitative behaviour” of
the system. This is spirit of the present work too.

In order to estimate the relaxation time to equilibrium,
the dynamical quantity of interest is the exchange of en-
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ergy 0 F between atom and molecule in a collision, and
the main result of Landau and Teller was that it is expo-
nentially small with the frequency of the molecule. In-
deed, at least for a certain set of initial data (vanishing
initial energy E = $m(y? + w’y?) of the molecule), they
found for the modulus of §FE the estimate

|0E| (w,v) ~ Cexp (—wa/v) ,

where v the is velocity of the atom before collision, while
C'is a slowly varying function of w which in a first approx-
imation can be thought of as a constant. Actually such
a formula has an asymptotic character for wa/v large [6],
while for wa/v small it just gives a lower bound, and the
formula for |§E| should be slightly modified.

The relevant point for the aims of the present paper is
however the dependence of § E on the velocity v of the im-
pinging atom. Indeed, thinking of the molecule as being
in dynamical contact with a heat bath, the model is com-
pleted by assuming that the velocity v of the atom before
each collision is extracted from a Maxwell-Boltzmann
distribution at a certain temperature 7. In the litera-
ture on sound dispersion the mean value 6 F of the energy
exchange is computed by averaging over the Maxwell—
Boltzmann distribution for the velocities, and the time
7 of relaxation to equilibrium is then defined as propor-
tional to the inverse of 0F. In such a way, analytical
estimates are obtained, which were usually considered to
fit rather well the experiments, although serious doubts
were also raised. For example, in the words of Rapp
and Kassal [3], “It is impossible to determine whether
the choice of the potential parameters is physically sig-
nificant, because all errors in the theory are compensated
by adjustable potential parameters’. Later, a more ac-
curate analysis using arguments similar to those leading
to the fluctuation dissipation theorem has shown (see for
example the papers [7], which deal with an analogous
problem occurring in plasma physics) that the definition
of the relaxation time 7 should involve not only the mean
value of § E, but also its variance; however, the estimates



for the relaxation times are not essentially changed.

On the other hand, the way in which the mean and the
variance of dF are defined appears to be questionable.
The problem rests on the distinction between averag-
ing over the velocities through the equilibrium Maxwell—
Boltzmann distribution, or through a finite number of
extractions from such a distribution (i.e. by taking into
account, in the spirit of Boltzmann, the finiteness of the
observation time).

The point is that, for fixed values of w and a, ac-
cording to the Landau-Teller formula conspicuous en-
ergy exchanges can occur only for velocities which are
high enough, say for v > wa, i.e. lie in the tail of the
Maxwell-Boltzmann distribution. So, if the temperature
is low enough or the frequency high enough, the occur-
rence of such a high velocity is a rare event, whose ac-
tual realization might require an extremely large number
of extractions (i.e. an extremely long time), of the or-
der of exp(mw?a®/2kT), where k is the Boltzmann con-
stant. Thus one expects that the statistics of § E obtained
from a finite number of extractions of the velocity, inas-
much as it actually contains an intrinsic cut—off of the
high velocities, might significantly differ from the equi-
librium one, namely that obtained from a formula for
0F of the type given above, making use of the whole
Maxwell-Boltzmann distribution for the velocity.

So one is led to consider an experiment in which one
observes over a certain fixed time an actual “history” of
energy exchanges of a given molecule through collisions
with a sequence of impinging atoms, whose velocities are
extracted from a Maxwell-Boltzmann distribution at a
given temperature T. In such a case, if the observa-
tion time is not long enough, one should expect that the
statistics for the energy exchanges obtained from the dy-
namics, i.e. from a typical actual history, does not at all
agree with the statistics obtained from the formula for 6 E
of the type given above, using the Maxwell-Boltzmann
distribution for the velocity. Equivalently, for a fixed
temperature and a fixed observation time, the agreement
between the two statistics should occur only if the fre-
quency is low enough.

With such a motivation, we numerically computed ac-
tual histories (or “sample paths”) E,, n = 0,1,2---,
where FE,, is the energy of the molecule after the n—
th collision with an atom, whose asymptotic velocity is
extracted from a Maxwell-Boltzmann distribution at a
given temperature T'; from such data we then computed
some relevant statistical distributions. The result we
found is that, with a fixed observation time, the statistics
induced from the dynamics over a finite time agrees in-
deed with that induced by the Maxwell-Boltzmann dis-
tribution in the case low frequencies, but not at all in
the case of large frequencies. Correspondingly, it turned
out that for high enough frequencies the statistics for the
energy exchanges induced by the dynamics presents a
nongaussian character, exhibiting features typical of the
so-called Lévy processes. Perhaps, the most characteris-
tic of such features is the presence of the so—called Lévy

flights: namely, in the “sample paths” for the energy of
the molecule versus the number n of collisions the energy
remains practically constant (quiescent) for a long time,
while presenting sudden perspicuous jumps from time to
time (see the figure at page 294 of the book of Feller [8]).
In fact, “intermittent” phenomena of the type just de-
scribed had already been observed in numerical studies of
molecular collisions [9], but the general connection with
the frame of the Lévy processes had not been pointed
out. Lévy flights were however observed in recent times
in several domains of physics [10].

Here are some details concerning the computations.
The sample paths were computed up to 10° collisions
for two different values of the frequency of the molecule,
namely w = 3 and w = 15, while the temperature T
of the atoms and the initial energy Ey of the molecule
were fixed at kT = 1 and Ey = 1 (“natural” units hav-
ing being chosen, with m = 1, a = 1 and A = 1). The
“initial” data before each collision and the “final” en-
ergy after each collision should in principle be identified
with the corresponding asymptotic values for t - —oo
and ¢t — 400 respectively; in practice, with an exponen-
tial interaction as in our case, the energy of the molecule
(and of the atom) turns out to remain sensibly constant
when the atom is far enough from the origin. In our com-
putations we thus fixed a convenient distance [ from the
origin, actually | = 32, and determined numerically the
motions, with the atom starting at = [, up to the time
it came back to the same position. The initial phase of
the molecule and the velocity of the atom were chosen
at random before each collision, being extracted, respec-
tively, from a uniform distribution in the interval (0, 27)
and from a Maxwell-Boltzmann distribution at temper-
ature T' (adapted to the present one—dimensional case as
in [9]). The choice of the particular value of the distance
[ was checked to be irrelevant for [ large enough. The
equations of motion were integrated through a suitable
symplectic numerical scheme [11].

The main results are illustrated through three figures.
All of them refer to two sample paths, one for the high
frequency case w = 15 (left), and the other one for the
low frequency case w = 3 (right). The presence of the
Lévy flights in the high frequency case is well exhibited
by Fig. 1 (left), where we report the sample path for the
energy FE, of the molecule after the n—th collision as a
function of n = 0,...,10°. The similarity with the above
mentioned illustration of Lévy flights given by Feller is
striking. The difference with respect to the analogous
sample path for the low value w = 3 of the frequency
(right) is also impressive.

Concerning the statistical properties of the process of
energy exchanges, the qualitative difference between the
two cases is illustrated in the next two figures. In Fig. 2
we report the densities p of the probability distribution
functions of the energy E of the molecule induced by the
dynamics, i.e. calculated from the sample paths of Fig.
1. In the case of low frequency (right) the statistical dis-
tribution agrees very well with the one expected at equi-
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FIG. 2: Density of the p.d.f. of E , w =15 (left). w = 3 (right) .

librium, i.e. obtained through the Maxwell-Boltzmann
distribution; the latter is drawn as a continuous line, but
is actually almost invisible in the figure, as it superposes
to the histogram obtained from the dynamics. Instead,
for the high value of w (left) the distribution is completely
different. Recall that the initial value Ey of the energy
was the same in both cases, namely the equipartition
value Ey = 1 expected at equilibrium. Notice moreover
the difference in the scales in the two figures: if plotted at
the same scale of the right histogram, the left one looks
as a delta-like function, centered near £ = 1 and rising
up to a value of 30.

Finally, in Fig. 3 we report (in log-log scale) analogous
densities of the probability distribution functions, still
calculated from the sample paths of Fig. 1, but now for
the quantity dE (with dE > 0), namely for the energy

exchanged in each collision; analogous curves could have
been drawn for the negative values of § E. Notice that a
suitable normalization factor was a used. One sees that
in the high frequency case (left) the curve is rather well
fitted by the power law (continuous line) p = C (6E)
with @ = 2.4 and C' = 0.8 x 10~® (but no special meaning
should be attributed to these particular values), while in
the low frequency case (right) the curve seems to decay,
for §E large, faster than any power. In connection with
the result for the high frequency case, we recall that,
at least for processes with independent increments, from
the general theory it is known (see [8] and [12]) that for
a Lévy process the density decays as a power with an
exponent a < 3.

In conclusion, it has been shown that the main qual-
itative difference between the statistics defined through
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the equilibrium distribution and the one defined through
the dynamics up to a finite time, in the case of high fre-
quencies, is that the second moment of §E is finite in the
former case and diverging in the latter one. This fact
has a nontrivial physical impact in connection with the
estimates for the times of relaxation to equilibrium of the
internal degrees of freedom in polyatomic molecules. In-
deed, the relaxation times are usually defined through
formulas involving the mean and the variance of §F,
while, as shown in the present work, for high enough fre-
quencies the variance is divergent, if the statistics is de-
fined through the dynamics up to finite times. In fact, the

nongaussian statistics that is met in such a case seems to
indicate the presence of an anomalous diffusion, for which
the relaxation times should be defined through more com-
plicated procedures [12]. Thus the present work appears
to have shown that the problem of the theoretical quan-
titative estimates for the relaxation times to equilibrium
in polyatomic molecule, which was considered to be set-
tled since a long time, in instead reopened. We hope to
come back to this problem in the future, even in con-
nection with more realistic models of molecular collisions
and more realistic values of the parameters.
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