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ABSTRACT

We study the statistical mechanics very far from equilibrium for a classical
system of harmonic oscillators colliding with point particles (mimicking a heat
reservoir), for negligible initial energies of the oscillators. It is known that for
high frequencies the times of relaxation to equilibrium are extremely long, so
that one meets with situations of quasi equilibrium very far from equilibrium
similar to those of glassy systems. Using recent results from the teory of dynam-
ical systems, we deduce a functional relation between energy variance and mean
energy that was introduced by Einstein phenomenologically in connection with
Planck’s formula. It is then discussed how this leads to an analogue of Planck’s
formula. This requires using Einstein’s relation between specific heat and en-
ergy variance to define an effective temperature in a context of quasi equilibrium
far from equilibrium, as is familiar for glassy systems.

(*) Grant from Fondazione Cariplo per la Ricerca Scientifica

PACS numbers: 05.20.-y 05.45.-a 05.70.Ln 61.43.Fs 82.20.Mj Rivedere: mettere
meccanica statistica e glasses (o aging)



1. Introduction.

Classical statistical mechanics is confronted with a paradoxical situation concerning
the mean energy U of a system of harmonic oscillators of angular frequency w in contact
with a heat reservoir at absolute temperature 7,.s. Indeed, while the equilibrium Maxwell-
Boltzmann distribution predicts equipartition of energy, i.e. U = Tyes (with Boltzmann’s
constant put equal to 1), it turns out that the times of relaxation to equilibrium depend
exponentially on frequency and inverse temperature, so that for sufficiently high frequencies
or low temperatures equilibrium will never be reached within the available times; this is
very well known since the times of Boltzmann and Jeans!"?] and of Landau and Teller 3,
and was amply discussed in recent times in the frame of the theory of dynamical systems.
(see for example [4-8] and [9,10]). In a typical example one can have a frequency w ~
10'# hertzs which relaxes to equilibrium in 1 second, while the relaxation time is 1073
seconds and 10° years for the frequencies /2 and 2w respectively. Situations of such a
type are actually met in plasma physics where the description is essentially classical [:10],
Thus, systems of oscillators of sufficiently high frequencies are in general very far from
equilibrium, and one is confronted with the problem whether a thermodynamic description
can be given for them, presenting some kind of universality. An analogy with the themes
discussed in the physics of glasses was pointed out quite recently [*1].

In the present paper we show that a quasi-thermodynamic formula for the mean
energy U of a system of a large number N of oscillators of the same frequency w very far
from equilibrium indeed exists and has the analytical aspect of Planck’s formula, namely

€

U=N(m—=+3) (1)

with suitable parameters ¢ and 8. The main difference is that while in Planck’s law one
has € = hiw (% being Planck’s constant) and 37! is the temperature of the reservoir, here
instead one has € = a*w with a suitable action a* depending on the initial data, while 3—!
is an “effective” temperature, which is different from that of the reservoir, and depends on
time in a practically imperceptible way, as is familiar in the aging phenomena of glasses
(see especially [12-15]). This result is obtained by combining two ingredients, which we
call Finstein’s thermodynamic fluctuation formula and Finstein’s dynamical fluctuation
formula respectively. The former is just the familiar formula relating specific heat to
variance of energy ['®l, which is an identity in the canonical ensemble and is here used
far from equilibrium as a tool for defining an effective temperature, in the sense familiar
for glassy systems. The latter formula is instead a functional relation between energy
variance and mean energy which was conjectured by Einstein['7) to be possibly true for
some “mechanics’. To such a formula we address our attention in the present paper,
proving that it is a consequence of pure dynamics. The proof is obtained by considering
the exchange of energy between an oscillator and a point particle under smooth collisions
according to classical dynamics, and by exploiting a simple formula which was recently
proven % to describe the essence of the phenomenon when the energy of the oscillator is
negligible with respect to that of the particles mimicking the reservoir.

Einstein’s formulae concerning Planck’s law are recalled in the next section, while the
proof of the funtional relation between energy variance and mean energy is given in section
3. In such a section the model is also described, and the relevant dynamical facts presently
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available are summarized. Some further considerations of a heuristic character concerning
Einstein’s thermodynamic formula and its use for the definition of an effective temperature
are given in the conclusive section 4.

2. On Planck’s formula, and its interpretation by Einstein in terms of energy
fluctuations.

To explain the motivation of the present paper, it is convenient to recall how Planck’s
formula (1), without the zero—point energy term Ne/2, was deduced by Planck in his origi-
nal first memoir '8, and how it was interpreted by Einstein in terms of energy fluctuations
in his paper [17]. In fact Planck was working in terms of the entropy S as function of the
energy U, while Einstein was working in terms of the energy U as a function of temperature
T; we equivalently work in terms of U(3), the energy as a function of inverse temperature.

Planck’s remark was that formula (1), without the zero—point energy term Ne/2, is
obtained by integrating the differential equation

du

B —(eU + U?/N) (2)
with a suitable choice for the integration constant (such that in the limit ¢ — 0 the
classical equipartition formula U = N/ ,8 is recovered). As a matter of fact, Planck had
remarked that the differential equations 4 d ﬂ = -U?/N and = —eU lead to the relations
U(B) = N/B and U(B) = Cexp(—p¢), C = const, namely equipartition and Wien’s law,
which are valid for low frequencies and high frequencies respectively, and this suggested to
him the interpolation formula (2).

The contribution of Einstein, of interest for the aims of the present paper, con-
sisted in an interpretation of formula (2) in terms of energy fluctuations. Indeed, having

remarked [19] that the relation

dU — _DE

ap = PE
where DE is the energy variance, holds as an identity in the canonical ensemle, and having
given arguments to show that such a relation should have a broader range of validity [2°]
(see also [16]), he was led to split relation (2) into two relations, namely (3) and

3)

DE = eU +U?/N, (4)
the second of which might have, in his opinion, a dynamical basis. In his very words['7]:
formulee (3) and (4) “exaust the thermodynamic content of Planck’s’ formula; and: “a me-
chanics compatible with the energy fluctuation (4) must then necessasily lead to Planck’s’
formula.

The original contribution of the present paper consists in showing how the functional
relation (4) between energy variance and mean energy with a suitable € is deduced, with
a quite naturale procedure of averaging, from the most advanced results of the theory of
dynamical systems concerning energy exchanges in atomic collisions (see Benettin’s formula
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recalled below). This is shown in a simple model, describing a system of oscillators of the
same frequency in interaction with a heat reservoir.

3. The model, and the deduction of Einstein’s fluctuation formula from dy-
namics.

Our model is a minor variant of one already discussed by Poincaré 21! in connection
with the dynamical foundations of statistical mechanics, which was subsequently studied
by Jeans and Landau and then rather intensively discussed in recent times in the spirit
of the theory of dynamical systems. To start up, we consider a harmonic oscillator of
frequency w suffering a smooth collision with a point particle on a line through a given
interatomic potential, and recall some relevant facts. The energy exchange de in a single
collision, for negligible initial energy of the oscillator and a significative class of potentials,
was recently proven to be given to a very good approximation [®! (see also [22,23] and [2])
by what we call Benettin’s formula, namely

21]

Se =n? +2n\/eq cos o - (5)

Here eq is the oscillator’s initial energy and ¢q the oscillator’s initial phase, while n? is a
quantity exponentially small in the frequency, namely

n® = € exp(-wv™?), (6)

where v is the velocity of the incoming particle, while £ and a are positive parameters
depending on the interaction potential.

Obviously the first qualitative consequence of formulz (5) and (6) is that, for suffi-
ciently high frequencies or low reservoir’s temperatures (i.e. for small v), the oscillators
are almost frozen, i.e. essentially don’t exchange energy at all; this is indeed the reason for
the need of a nonequilibrium description in the present model. Notice that, while formula
(6) exhibits a quite nonuniversal character, inasmuch as it contains parameters £ and a
which depend on the specific interaction potential, formula (5) presents instead in its an-
alytic strtucture a great character of universality. To illustrate this point, we recall that
a formula of the analytical structure of (5) holds exactly for a harmonic oscillator subject
to any given forcing, i.e. governed by the equation

&+ wilz = f(t)
with any given function f. Indeed, in terms of z = & + iwx this is immedialtely solved by
z(t) = zpexp(iw(t — to)) + g(t)
with a suitable complex valued function g. Formula (5) then immediatley follows by
remarking that the energy E = (2 +w?22)/2 is given by E = |z|?, if one obviously defines
the exchanged energy de by de = F(400) — E(to) with tg — —o0, and 5 by n? = |g(+00)|%.
The validity of a formula of the type de ~ n? (with n? of the form (6)) for the exchanged
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energy between an oscillator and a point particle, according to the exact solution of the
corresponding coupled system of Newton equations, was proven by Jeans and by Landau
and Teller. The relevance of the fluctuating term proportional to 17 was pointed out in the
paper [22], and a complete Fourier expansion in the phase ¢o was discussed in [23] and
proven in [6]. From the results of the latter paper it can be proven that Benettin’s formula
(5) is a good approximation for the energy exchanged in a collision between a harmonic
oscillator and an atom interacting through a smooth potential if the initial oscillator’s
energy is sufficiently small.

To define our model, we consider the energy exchange de in a single collision between
a harmonic oscillator and a point particle on a line, and assume it to be given exactly by
formula (5), which, as recalled above, is is physically meaningful if e is sufficiently small.
We then study a sequence of k such collisions. For simplicity’s sake, we introduce in the
present paper the further asumptions (which could rather easily be removed) i) that the
incoming particles have all the same initial velocity v, and ii) that the time of flight between
two successive collisions is a constant. Consequently, the quantity 7 in (6) appears as a
constant, and the current time ¢ is just proportional to the number k of collisions suffered
by the oscillator. Finally, the complete model is defined by considering a global system of
N independent oscillators of the same frequency w, each suffering k£ independent collisions
with point particles as described above. The energy exchanges of the global system of
oscillators are thus trivially obtained from the energy exchanges of the single oscillators,
simply by means of the central limit theorem.

We show now how (5) leads to Einstein’s dynamical fluctuation formula (4). Consider
first the case of a single oscillator suffering k£ successive collisions. Its energy ey after k
collisions is conveniently written as

k
er = eg + kn? +27)Z\/ej—_1 COS Pj_1 .
j=1

Given the initial energy eg, this is a function of the phases g, ..., ¢x_1, which are assumed
to be independent and uniformly distributed; thus, averaging over the phases in the familiar
way of random walk theory, one gets for the mean energy uy :=< e > after k collisions
the expression

u, = eg + kn? . (7)

Analogously, with < (cos ¢;)? >= 1/2 and (7), one finds < e} >= u} + 2n? Z?Zl Uj_1.
Using again (7) with j — 1 in place of k, the variance Dey, :=< e > —u} then takes the
form Dey, = 2eokn? + k(k — 1)n* or also, in the approximation of large k so that we can
identify k(k — 1) with k2,

Dey, = 2egkn® + (kn®)? . (8)
The relevant point is that in (8) the “time” k enters only in the combination kn?, so
that it can be eliminated through (7); this leads to an analogue of relation (4), namely
Dey, = 2e(ur, — e,) + (ug — e9)2. The analogy becomes even stronger if one introduces the
“exchanged energy” after k collisions, € = ex — eg, because the corresponding expectation
1y, and variance D¢y are then related by

Déy, = 2epiy, + i} - (9)
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A similar relation also holds for the global system of N independent identical oscil-
lators. Indeed, the quantities of interest are the total energy Ej = va 1 e,(ﬂ) (where e,(;)
denotes the energy of the i—th oscillator after & collisions) and the corresponding exchanged
energy Ek = F — Ey, where Ej is the initial energy. By the central limit theorem FEj, is
normally distributed with a mean Uk and a variance DEk which are obtained by adding
up the corresponding quantities for each oscillator, namely are given by Ur = N1y, and
DEy, = NDéy. So, denoting by U and DF the expectation and variance at any “time” k,
from (9) one gets between DE and U a functional relation which is independent of “time”
k, namely

DE = 2a*wU 4+ U?/N , (10)

where a* denotes the initial action per oscillator, a* := Ey/(wN). Notice that the quantity
7, which contains the molecular parameters £ and a, has now completely disappeared.
Formula (10) is our analogue of Einstein’s functional relation (4), and its proof constitutes
the original contribution of the present paper. In connection with Einstein’s sentence
recalled above (a mechanics compatible ...), one might thus say that the energy fluctuation
formula (4) is indeed consistent with a mechanics which is nothing but the familiar classical
mechanics.

4. Back to Planck’s formula, via the definition of an effective temperature:
heuristic considerations.

We finally add some considerations which are mostly of a heuristic character. If one
uses Einstein’s thermodynamic relation (3), then obviously one finds for the mean energy
U = U + E, exactly Planck’s formula (1) with € = 2a*w. However it is clear that in such
a way one has 37! # T,e, because the mean energy U increases linearly with the number
k of collisions (i.e. with time), and so (3, which can be obtained by inverting the relation
U = U(p), depends on time too.

Actually, such a fact is consistent with the present frame, where one deals with a
system in a state of quasi equilibrium very far from equilibrium. Indeed, first of all we
notice that the mean energy U depends linearly on time (see (7)), but with a proportionality
factor n? which is exponentially small with the frequency, so that its increase with time
can be said to be practically imperceptible. Thus Planck’s formula (1) should be read, in
the present context, in the following way: the second term at the right hand side is nothing
but the initial energy Ey = Na*w, while the first term gives the additional energy that
the system acquires from the reservoir, and is actually increasing, extremely slowly, with
time (as 3 too does). The essence of our result is that such an additional energy does not
depend on the details of the interatomic potentials (entering through 7 in (6)), but has
instead a quasi—-thermodynamic character.

The quantity A~! so introduced can be said to present the character of an effective
temperature, in the sense which is by now rather common in the theory of aging phenomena
of glassy systems. To define it, one formally proceeds as follows. One considers Einstein’s
thermodynamic relation (3) with the variance DE given explicitly in terms of the mean
energy U through Einstein’s functional relation (4). This leads to the differential equation
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(2) which by integration gives (1) and by inversion a corresponding effective temperature
B~ 1, depending extremely slowly on time. It can be easily proven that the inverse of such
an effective temperature is an integrating factor for the expression of the heat exchanged
with the reservoir, a fact supporting the above interpretation. But we leave this interesting
problem for possible future work.
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