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Abstract

It is well known that the optical branches of the dispersion curves

of ionic crystals exhibit a polaritonic feature, i.e., a splitting about the

electromagnetic dispersion line ω = ck. This phenomenon is consid-

ered to be due to the retardation of the electromagnetic forces among

the ions. However, the problem is usually discussed at a phenomeno-

logical level, through the introduction of a macroscopic polarization

�eld, so that a microscopic treatment is apparently lacking. A micro-

scopic �rst principles deduction is given here, in a classical frame, for

a model in which the ions are dealt with as point charges. At a quali-

tative level it is made apparent that retardation is indeed responsible

for the splitting. A quantitative comparison with the empirical data

for LiF is also given, showing a fairly good agreement over the whole

Brillouin zone.
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1 Introduction

The existence of polariton dispersion curves in ionic crystals is of great phys-
ical relevance, inasmuch as it allows one to explain the phenomenon of the
dispersion of light in such crystals. Polaritonic curves exist only if one takes
into account the retarded nature of the electromagnetic forces among the
ions in the crystal. Indeed, if retardation is neglected one obtains the famil-
iar Coulomb model in which the dispersion curves of the crystal lattice and
those of light are completely di�erent, whereas they coincide along the po-
laritonic lines. So retardation is the essential necessary ingredient in order to
explain the optics of crystals, and it will be shown here that it is the retarded
interaction with the far ions that is actually responsible for the splitting.

Now, a splitting of the dispersion curves of an ionic crystal about the
electromagnetic line ω = ck, was apparently �rst predicted by Born and
Huang (see [1], pages 91 and 94) in the frame of a phenomenological dis-
cussion of the problem in terms of a macroscopic polarization �eld. Further
discussions were then given by Fano [2] and Hop�eld [3], still in terms of
macroscopic polarization densities. The splitting was �nally observed in the
years 60s, �rst in semiconductors and later in LiF and in other ionic crystals.
In conclusion, it is now commonly assumed (see for example [4], sections 7.2
and 7.3) that the phenomenon should be understood as due to retardation.
However, retardation is usually introduced through the phenomenological
Maxwell equations which involve, in addition to the microscopic �eld E, also
the macroscopic �eld D. A microscopic deduction is thus apparently lacking.

In the present paper such a microscopic deduction is given, in a classical
frame. We consider a model in which the ions are dealt with as point parti-
cles, internal degrees of freedom being neglected. The existence of molecular
repulsive forces balancing the Coulomb ones, and thus allowing for the ex-
istence of a lattice, is assumed at a phenomenological level. The Newton
equations of motion for the displacements of the ions, with retardation of
the electromagnetic forces taken into account, are written down in the linear
approximation. At the end the model involves as free parameters the con-
stants entering the repulsive forces, and the e�ective charge of each ion, in
addition to the geometric parameters of the lattice and to the ions' masses.
The normal modes are numerically determined for crystals with a rock salt
structure, through a suitable procedure, which is required in order to take the
e�ect of retardation into account. The three free parameters are determined
by a comparison with the experimental data of the dispersion curves of LiF,
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while the remaining parameters were taken from the literature. Finally, the
electromagnetic �eld generated by the motions of the ions is discussed.

The main results are the following:

1. In the dispersion curves of the lattice vibrations there appear branches
that are absent in the purely �mechanical or instantaneous� model (in
which retardation is neglected), and correspond to the previously men-
tioned polaritonic splitting. The splitting turns out to be actually due
to the retarded interaction with the far ions.

2. The agreement between the theoretically computed dispersion curves
and the experimental ones available in the literature for the case of LiF
(see �gures 1 and 2) is, in our opinion, fairly good for all values of k in
the whole Brillouin zone. This is obtained with no need of introducing
a phenomenological value for the static dielectric constant ε, which is
here deduced from the theory.

3. The electromagnetic �eld created by the motion of the ions can be
decomposed into a microscopic part and a macroscopic one. The former
propagates at the vacuum speed c, while the latter propagates according
to the laws of macroscopic optics, with a phase velocity ω(k)/k.

4. The dispersion relation ω(k) of the macroscopic electric �eld coincides
with the vibrational one of the lattice.

In Section 2 the microscopic model is described and the linearized equa-
tions of motion are obtained. In Section 3 it is shown how, due to retarda-
tion, the secular equation presents a peculiar form, which is responsible for
the occurrence of the splitting. In Section 4 the dispersion curves explicitly
computed for rock salt lattices are reported, and the comparison with the ex-
perimental data is performed. Some further general problems concerning the
microscopic deduction of optics are discussed in Section 5. More comments
are given in a conclusive section. Appendix A is devoted to recalling the role
played by the so called Wheeler�Feynman identity[5] (which is a theorem in
the present model) in ensuring the stability of the lattice. Indeed, such an
identity guarantees that the microscopic dispersion relations do not contain
imaginary terms, if the familiar radiation reaction force[6] acting on each
ion is taken into account. Appendices B and C contain details about some
analytical computations discussed in the text.

3



2 The model

We consider a model in which the ions are described as point charges, in-
ternal degrees of freedom being neglected. The ions interact both through a
phenomenological e�ective potential, that accounts for the well-known short-
range repulsive quantum e�ects associated to the �impenetrability� of mat-
ter1, and through the forces due to the electromagnetic �eld created by all
the other ions. In addition, each ion is subject to the radiation reaction force.
The latter force is included because, although having a negligible magnitude,
it plays a qualitatively relevant role in making the theory consistent, i.e.,
in ensuring the stability of the lattice. So the Newton equation of each ion
(with mass m and position vector x) has the form

mẍ = Frep + Fem + Frr ,

where Frep, Fem and Frr denote, respectively, the short-range repulsive force
describing the interaction with neighboring ions, the electromagnetic force
due to all the other ions, and the radiation reaction force.

Actually the model is studied in its linearized version. So, �rst of all
we assume there exists an equilibrium con�guration in which the ions sit on
the lattice sites r(j)

h of the crystal under consideration, determined by the
repulsive forces and the Coulomb ones. Here, as usual, h ∈ Z3 denotes the
cell, while j = 1, . . . , n denotes the ion's species.

Thus, instead of the actual positions x(j)

h of the ions, the relevant quanti-
ties are the corresponding displacements

u(j)

h = x(j)

h − r(j)

h .

So, the system of Newton equations for the ions' motions takes the form

m(j)ü(j)

h = Frep

h,(j) + Fem
h,(j) + Frr

h,(j) , (j = 1, ..., n) , (1)

where m(j) is the mass of the ions of species (j).
Then the equations of motion are linearized with respect to the displace-

ments. So, to start with, the magnetic �eld is completely neglected, and the

1A �rst-principle calculation of the repulsive short-range potential might be attempted

through standard quantum many-body methods. However, here this is a minor issue, since

our main concern is the correct treatment of the electromagnetic interactions.
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Abraham-Lorentz-Dirac radiation reaction force is taken in its nonrelativistic
approximation, given by (see [6])

2
3

(q(j))
2

c3
...
x (j)

h = 2
3

(q(j))
2

c3
...
u (j)

h (2)

where q(j) is the charge of the ions of species (j).
As far as the molecular repulsive forces are concerned, they may be as-

sumed to have a phenomenological simpli�ed form corresponding to two-body
central potentials φ(j,l)(r) (a priori di�erent for each pair of species). Then,
the linearization procedure amounts to computing the derivatives of the to-
tal potential, evaluated at the equilibrium con�guration. Due to the short
range of the repulsive forces, such derivatives rapidly approach zero as the
distance between particles becomes su�ciently large (roughly, for distances
larger than the linear dimension of the unit cell). In fact one may assume
that the interactions occur only over the neighbors of the (h, j) ion. Denoting
by

r
(τj(s))

h−dj(s), s = 1, . . . , nj

the relative positions of the nj neighbors of a j-th species ion with respect
to the ion (h, j), it is easy to show that the linearized repulsive forces have
the form

Frep

h,(j) =

nj∑
s=1

(
α(j),sΠ

‖
(j),s + β(j),sΠ

⊥
(j),s

)
·
(
u

(τj(s))

h−dj(s) − u(j)

h

)
, (3)

where Π
‖
(j),s and Π⊥(j),s are the projection operators, respectively along the

direction of the neighbor separation vector r
(j,τj(s))

dj(s)
, and onto the plane normal

to it. The parameters

α(j),s := φ′′(j,τj(s))

(∣∣r(j,τj(s))

dj(s)

∣∣),
β(j),s :=

φ′(j,τj(s))

(∣∣r(j,τj(s))

dj(s)

∣∣)∣∣r(j,τj(s))

dj(s)

∣∣ ,

for j = 1, . . . , n, s = 1, . . . , nj, are characteristic of the concrete crystal under
consideration. Obviously, if a lattice presents a non-trivial point symmetry
group, some of the parameters are likely to coincide.

Finally, we come to the linearization of the electric forces acting on each
ion and due to all the other ones (the magnetic forces having been neglected).
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The electromagnetic �eld created by the ions is taken in the dipole approx-
imation, i.e., as the �eld obtained from the Maxwell equations when the
charge distribution and the current density of the sources are linearized with
respect to the displacements from their equilibrium positions. So the lin-
earized source corresponding to a certain ion, labeled by a cell index p and
a species index (s), with actual motion r(s)

p + u(s)
p (t), is the superposition of

a static source q(s), of zero�th order in the displacement u(s)
p , and of a �rst�

order dipole source, with a dipole d(t) = qu(s)
p (t), both at the position r(s)

p .
The solution of the corresponding inhomogeneous Maxwell equations at the
spacetime point (x, t) is given by the superposition of the respective �elds:
a static spherically-symmetric Coulomb �eld

E[0](x, t) = q(s)∇ 1

|x− r(s)
p |

(4)

and a variable dipole �eld

E[1](x, t) = q(s) curl curl
u(s)
p

(
t− 1

c
|x− r(s)

p |
)

|x− r(s)
p |

, (5)

which is the one involving retardation . We are using here the standard
representation of the dipole �eld that one �nds in the classical works of
Ewald [7], Oseen [8] and Born [9] on the subject. For a detailed derivation
see for example [10] or [11]. Such electric terms will be referred to as the
�Coulomb term� and the �dipole term� respectively.

We now consider the forces resulting from the action of such �elds upon a
certain ion, identi�ed by the cell index h and the species index (j), due to all
the other ones, in the linear approximation (with respect to the displacements
u's). Its actual motion is similarly denoted r(j)

h + u(j)

h (t).
The dipole �eld given by (5), is already linear in u(s)

p , hence the linear
approximation of the resulting electric force amounts to evaluating it at x =
r(j)

h . Summing over all ions of the lattice, the force due to the dipoles is thus

Fdip

h,(j) = q(j)
∑′

(p,s)

q(s)curl curl
u(s)
p

(
t− 1

c
|x− r(s)

p |
)

|x− r(s)
p |

∣∣∣∣∣
x=r

(j)
h

, (6)

where the prime in the sums denotes that the term (p, s) = (h, j) is excluded.
For what concerns the force due to the static Coulomb �eld, one has to take
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the force given by (4), evaluate it at the point r(j)

h +u(j)

h (t), and expand it up to
the �rst order in u(j)

h (t). The zeroth order term is balanced by the short range
repulsive contribution, because we are evaluating the �eld at the equilibrium
con�guration, while the linear term can be written in a form which resembles
that of the dipole term and highlights the electrostatic potential. In fact, the
�rst order term is given by

u(j)

h (t) · ∇
(
E[0](r(j)

h , t)
)
,

whereE[0] is the gradient of the electrostatic potential. Using the identity(
u · ∇

)
∇Φ = −curl curl

(
uΦ(x)

)
,

which holds for any scalar �eld Φ, and taking for Φ the Coulomb potential,
the linearized electric force given by the Coulomb term reads

−q(j)q(s) curl curl u(j)

h (t)

|x− r|

∣∣∣∣
x=r

(j)
h

.

So, summing over all ions of the lattice one gets

Fcoul
h,(j) = −q(j)

∑′

(p,s)

q(s)curl curl
u(j)

h (t)∣∣x− r(s)
p

∣∣
∣∣∣∣∣
x=r

(j)
h

; (7)

where the prime in the sum denotes that the term (p, s) = (h, j) is excluded.
In conclusion, the linearized equations of motion for the charges of our

ionic lattice read

m(j)ü(j)

h = Frep

h,(j) + Fcoul
h,(j) + Fdip

h,(j) + Frr
h,(j) , (8)

with

Frep

h,(j) =

nj∑
s=1

(
α(j)sΠ

‖
(j)s + β(j)sΠ

⊥
(j)s

)
·
(
u
τj(s)

h−dj(s)
− u(j)

h

)
;

Fcoul
h,(j) = −q(j)

∑′

(p,s)

q(s)curl curl
u(j)

h (t)∣∣x− r(s)
p

∣∣
∣∣∣∣∣
x=r

(j)
h

;

Fdip

h,(j) = q(j)
∑′

(p,s)

q(s)curl curl
u(s)
p

(
t− 1

c
|x− r(s)

p |
)

|x− r(s)
p |

∣∣∣∣∣
x=r

(j)
h

;

Frr
h,(j) =

2

3

(q(j))2

c3
...
u (j)

h ,
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where the prime in the sums denotes that the term (p, s) = (h, j) is excluded.
Equations (8) constitute a system of in�nitely many linear equations with
delay, in the unknowns u(j)

h .

3 Frequency-dependent dynamical matrix

The problem of discussing equations (8) and solving them represents a formidable
task. As usual, our study will be restricted to the search for generalized nor-

mal modes, i.e., oscillating modes, possibly including damped and unstable
ones. Furthermore, by factoring the spatial cell dependency in the form of a
plane wave, the translational symmetry of the crystal is exploited to get rid
of the cell index, thus obtaining a parametric dependence on a wavevector k
varying in the Brillouin zone.

So we substitute the plane-wave ansatz

u(j)

h (t) = U(j)eik·rhe−iωt (9)

into the equations of motion and look at the corresponding equations. One
obviously has

m(j)ü(j)

h = −ω2m(j)U(j)eik·rhe−iωt ;

Fcoul
h,(j) = −eik·rhe−iωtq(j)

∑′

(p,s)

q(s)curl curl
U(j)∣∣x− r(s)

p

∣∣
∣∣∣∣∣
x=r

(j)
h

;

Frr
h,(j) = −iω32

3

(q(j))2

c3
U(j)eik·rhe−iωt .

and furthermore, as usual in lattice dynamics,

Frep

h,(j) =

nj∑
s=1

(
α(j)sΠ

‖
(j)s + β(j)sΠ

⊥
(j)s

)
·
(
Uτj(s)e

ik·(rh−rdj(s))e−iωt −U(j)eik·rhe−iωt
)

= eik·rhe−iωt
nj∑
s=1

(
α(j)sΠ

‖
(j)s + β(j)sΠ

⊥
(j)s

)
·
(
U(τj(s))e

−ik·rdj(s) −U(j)

)
.

For what concerns the dipole terms, instead, one obtains a qualitatively
di�erent contribution, because, due to retardation, there appear terms which
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depends on ω not simply through the factor exp(−iωt). In fact one has

Fdip

h,(j) = q(j)
∑′

(p,s)

q(s)curl curl
U(s)eik·rpe−iωt−

ω
c
|x−r(s)p |

|x− r(s)
p |

∣∣∣∣∣
x=r

(j)
h

= eik·rhe−iωtq(j)
∑′

(p,s)

q(s)curl curl
U(s)eik·(rp−rh)e−

ω
c
|x−r(s)p |

|x− r(s)
p |

∣∣∣∣∣
x=r

(j)
h

= eik·rhe−iωtq(j)
∑′

(p,s)

q(s)curl curl
U(s)e−ik·rpe−

ω
c
|x|

|x|

∣∣∣∣∣
x=r

(j,s)
p

, (10)

where in the last line we simply replaced the dummy index h− p by p. So,
substituing the above relations into equation (8), after dividing by the com-
mon factor eik·rhe−iωt one gets to the set of linear equations in the unknown
U(j)

−m(j)ω2U(j) =

nj∑
s=1

(
α(j),sΠ

‖
(j),s + β(j),sΠ

⊥
(j),s

)
·
(
U(τj(s))e

−ik·rdj(s) −U(j)

)
+

− q(j)
∑′

(p,s)

q(s)curl curl
U(j)

|x|

∣∣∣∣
x=r

(j,s)
p

+

+ q(j)
∑′

(p,s)

q(s)curl curl
U(s)e−ik·rp ei

ω
c
|x|

|x|

∣∣∣∣
x=r

(j,s)
p

+ +i
2

3

(q(j))2

c3
ω3U(j).

(11)

With j = 1, 2, . . . , n, we have in all 3n linear equations, in which k enters as a
parameter and ω as an unknown. Such equations can be written symbolically
in the form

−m(j)ω2U(j) =
n∑
s=1

[
P̂js(k) + Ĉjs + D̂js(k, ω)

]
·U(s) + i

2

3

(q(j))2

c3
ω3U(j) , (12)

having denoted by P = {P̂js}, C = {Ĉjs}, D = {D̂js} respectively the matrix
of the short-range repulsive forces, that of the Coulomb forces, and that of
the dipole ones. In short, we can also write the equations for the normal
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modes in the form

−m(j)ω2U(j) =
n∑
s=1

Âjs(k, ω) ·U(s) (13)

which involves a dynamical matrix A in a way apparently similar to that
occurring in the case of the �instantaneous� Coulomb model. A sharp di�er-
ence is however that the dynamical matrix A now depends on the unknown
ω, besides on the wavevector parameter k. Such a dependency is obviously
contained in the dipole part. This is a peculiar and remarkable consequence

of retardation, which entails that equation (13) does not give rise to a stan-
dard secular equation. Denoting byM = diag(m1, . . . ,mn) the mass matrix,
the analogue of the secular equation presently takes the form

det
(
ω2M+A(k, ω)

)
= 0. (14)

This makes the dispersion relations more di�cult to compute. Due to the
ω-dependency of the dynamical matrix, the solutions cannot be worked out
through standard diagonalization methods of linear algebra, and a more gen-
eral numerical algorithm is required.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 22

 0  0.2  0.4  0.6  0.8  1

ω
  

  
[1

0
1
2
 H

z
]

   

[ξ00]

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 22

 0  0.2  0.4

   

[ξξξ]

Figure 1: Dispersion relations along three directions of high symmetry in LiF.
Solid curves are the theoretical predictions, and triangles the experimental
data taken from [14]
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Moreover, we see that the ω-dependency of the entries of A is by no
means simple; actually it is not algebraic, neither can it be expressed in
terms of elementary functions. Thus, it is not even possible to foresee how
many solutions, for each value of k do exist. The number of branches and
their topology may vary in a substantial way with respect to the �mechanical
or instantaneous� case, which displays 3n− 3 optical branches and 3 acous-
tic ones. This is indeed what makes the existence of polaritonic branches
possible.

One sees that the instantaneous Coulomb limit case is formally obtained
by taking the limit ω → 0 (or equivalently c → ∞) in the dipole �eld in
(11). In such a limit, the sum of the Coulomb term and of the dipole one
gives simply an additional �mechanical� term, completely analogous to the
molecular repulsive one, the only di�erence being that the long range of the
Coulomb forces makes a resummation procedure necessary. However, it turns
out that this limit misses most of the physics involved in the region about
the e.m. dispersion curve ω = ck, which is the primary goal of the present
discussion.

The sums over the lattice, which de�ne the electric �elds in (11), are
obviously ill-de�ned, due to the long range of the e.m. interactions. A precise
meaning is assigned to them through the well-known Ewald's summation

procedure[7]. This transforms each conditionally convergent series into the
sum of two rapidly convergent ones, which account for the �short�distance�
part and the �long�distance� part of the interactions respectively. The use
of such a method is crucial, for it provides a deep insight into the physical
aspect of the problem. It turns out that only the term describing long-
distance interactions is substantially modi�ed by the ω-dependency (i.e., by
retardation), and that such dependency is important only in the region about
the e.m. dispersion curve ω = ck.

The details of the Ewald's summation method can be found either in his
original paper [7] or in more recent works (e.g., [12]). A compact exposition
can also be found in the appendix of [13]. A slight generalization of the
method had to be devised in order to deal with the dipole �elds. This is
discussed in Appendix B. It turns out that, once the Ewald resummation
has been performed, the dipole part of the dynamical matrix takes, for j 6= l,
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the structure

D̂jl = q(j)q(l)

{
4π

|Vc|
∑
m∈Z3

e−
1

4δ′2

(
|qm−k|2−ω

2

c2

)
|qm − k|2 − ω2

c2

R̂
[
e+i(qm−k)·x

]∣∣∣∣
x=b(j,l)

+
∑
h∈Z3

e−ik·rh
2√
π

∫ +∞

δ′
dη e

ω2

4c2
1
η2 R̂

[
e−|x|

2η2
]∣∣∣∣

x=r
(j,l)
h

}
, (15)

where the �rst term describes the �eld associated to the far charges, while
the second one accounts for the short-range part of the interactions. The
notations are as follows: rh runs over the direct lattice, qm runs over the
reciprocal lattice; b(j) for j = 1, . . . , n are the positions of the ions within
a unit cell (r(j)

h = rh + b(j)); Vc is the region of a cell and |Vc| its volume.
Furthermore, R̂ is the matrix form of the di�erential operator curl curl: for
a scalar �eld f one has

R̂[f(x)] = Ĥ[f(x)]−∆[f(x)]̂I3

where Ĥ[f ] is the Hessian of f (the matrix of its second derivatives), ∆ the
Laplacian and Î3 the identity matrix.

For j = l the matrix element has just the same form, apart from the fact
that the unphysical self-interaction term must be subtracted. Here a very
interesting fact occurs: such a subtracted term gives rise to a non-hermitian
part for the dipole term matrix, that is exactly canceled by the radiation
reaction term (the last one in (11), which is clearly non-hermitian, too).
Indeed, as shown in Appendix A, for all j, s = 1, . . . , n one has

1

2

(
D̂js(k, ω)− D̂†sj(k, ω)

)
+ i

2

3

q(j)

c3
ω3δjsÎ3 = 0.

Hence, the complete dynamical matrix A is hermitian, so that only real fre-
quencies are allowed. We thus see that the radiation reaction force is vital
to the stability of the lattice: a nonvanishing imaginary part in the fre-
quency would correspond to damped or unstable oscillations. This a priori
unexpected cancellation, �rst realized by Oseen[8], and then rediscovered in
[15, 16], might seem �accidental� at �rst sight. The proof of such a cancel-
lation, given in appendix A, shows its deep meaning, �rst pointed out by
Wheeler and Feynman[5].
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The splitting parameter δ′ in (15), involved in Ewald's method, is arbi-
trary, to be chosen so that both series converge rapidly. If it is taken of the
order of the inverse �rst-neighbor interatomic distance, one sees that

ω

2cη
. 10−5 for all η > δ′ ,

if one takes ω in the range of the typical frequencies of crystal dynamics, i.e.,
ω ' 1013 Hz. Hence we may safely take ω = 0 in the corresponding exponen-
tial in the second term: the ω�dependency of the short�distance part of the
interactions is negligible, so that they can be considered as instantaneous.
Instead, the �rst term, which describes the long�distance part of the inter-
actions, is strongly frequency-dependent: the term m = 0 has in fact a pole
at ω = ck, i.e., along the e.m. dispersion line.

This is the main mathematical e�ect of retardation: the part of the dy-
namical matrix which describes the interaction with the far charges strongly
depends on the frequency ω near the e.m. dispersion curve ω = ck. Hence,
very di�erent predictions are expected with respect to the instantaneous
Coulomb model. In the following, we show that such a feature leads indeed
to retrieve the polariton curves.

4 Polaritons in a rock salt lattice

At this point we are no longer able to proceed any further on a general discus-
sion. In order to check concretely the predictions of the model, a numerical
study is needed, and so we concentrate on a speci�c crystal structure. In view
of a comparison with experimental data, we choose the rock salt structure,
which is in fact very simple and is shared by the most common alkali halides.
Concretely, the comparison with the experimental data was performed for
the case of Lithium Floride, LiF. So, we �rst have to explicitly write down
the dynamical matrix A in general, which is done in appendix C. Then, the
expressions thus found have to be specialized to the case of the rock salt
lattice.

In order to solve numerically the generalized secular equation (14), with
the dynamical matrix A now computed for a generic rock salt lattice, we
devised a very general and straightforward algorithm. The overall idea is the
following. The wavevector k is let run along certain directions from the zone
center to the zone boundary, and the frequency ω is let vary in a suitable
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range. Then, considering both k and ω as parameters, the dynamical matrix
is numerically evaluated, and a generalized diagonalization is performed, by
determining the six values λi(k, ω) such that det

(
λiM + A(k, ω)

)
= 0.

Eventually, leaving k only as a parameter, the roots of the equations

λi(k, ω) = −ω2 (16)

are numerically determined for each i = 1, . . . , 6. This yields the admissible
excitation frequencies of the lattice for the given wavevector k. In particular,
as previously mentioned, the pole in the matrix elements along the line ω = ck
gives rise to a corresponding pole for certain eigenvalues (as functions of ω),
and hence the number of solutions of (16) doubles: at variance with the
instantaneous Coulomb model, we have more than 3n branches. For values
of k and ω far from the line ω = ck the whole procedure is actually redundant,
because the instantaneous approximation is perfectly suitable.

Now, the dispersion curves thus found still depend on the three free pa-
rameters entering the model, which are determined by a best �t with the
experimental phonon curves. The best �t thus obtained is exhibited in �gure
1. In table 4 the numerical values employed for the parameters entering the
model are collected.

The three panels give ω versus k for the three high�symmetry directions
of k (0, 0, 1) (left), (1, 1, 0) (center) and (1, 1, 1) (right) for the whole Bril-
louin zone. The triangles are the experimental values taken from [14], while
the continuous lines give the theoretical curves. The global agreement over
the whole Brillouin zone seems to us to be fairly good, in consideration of
the simplicity of the model, and of the small number (three) of free param-
eters. In fact, one can notice that the �t is not so good for the acoustic
branches, especially for high k. A better �t over the whole Brillouin zone
was actually obtained in the paper [14], using second�nearest�neighbor short
range forces, in a model involving seven free parameters. So, presumably, an
analogous better �t could have been obtained by us too by making recourse
to a more re�ned model for the short range forces. However, we did not care
for this, because our main goal is to exhibit the occurrence of polaritons in
the simplest possible way.

Now, the polaritonic branches cannot be seen in �gure 1 because they are
squeezed along the ordinate axis. They are exhibited in �gure 2, in which a
zoom of the left panel of �gure 1 is performed, by enlarging by a factor 105

the axis of the abscissæ.
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Parameter Value

α −0.19
β +0.028
q 0.6
a 4.02
m+ 0.005
m− 0.0136

Table 1: Parameters for LiF (units: Å, 10−13s, e). The �rst three ones
(the force constants α, β and the e�ective charge of both ions q) have been
obtained by �tting the experimental phonon dispersion curves taken from
[14]. For the lattice parameter a and the masses m+,m− the commonly
accepted values have been employed.

As expected, near the line ω = ck, the number and the topology of the
branches are drastically di�erent with respect to those of the instantaneous
approximation, and presents a pattern displaying polaritonic curves. As the
acoustic branches are now squeezed on the abscissæ axis, one should look at
the optical branches, which in �gure 1 intersect the axis of the ordinates at
ν ≈ 9 1012 Hz (the two transverse ones) and at ν ≈ 20 1012 Hz (the longi-
tudinal one). One sees that the two transverse branches actually go to zero,
with a slope around c/2.27, whereas there appear two new branches, actually
degenerate, which start from the fundamental frequency of the longitudinal�
modes branch at k = 0 and are asymptotic to the e.m. dispersion line ω = ck.
Namely, the transverse optical branch (which actually represents the two
transverse�mode curves) splits into a lower branch, which approaches zero,
and an upper one. Such a phenomenon is a peculiar e�ect of retardation,
which strongly couples the radiation �eld of far charges to the vibrational
modes.

The longitudinal�modes branch, instead, is untouched by retardation.
This is due to the fact that the electromagnetic waves, being transverse, do
not couple with longitudinal modes. Indeed, the only terms in (15) which are
a�ected by retardation, i.e., the terms m = 0 of the sums over the reciprocal
lattice, contain a projection onto the plane orthogonal to the wavevector k,
which yields zero when applied to longitudinal displacements U(l).

In �gure 2 are reported also (triangles) the experimental values taken
from the work [17], and one sees that the agreement is pretty good for small
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Figure 2: Zoom of the central panel of �gure 1 for small k, exhibiting polari-
tonic branches. Solid curves are the theoretical predictions, dashed line is
the curve ω = ck, while triangles are the experimental data at 420K, taken
from [17]. Acoustic branches superimpose to the axis ω = 0

k, while it is not so good for the asymptotic behavior at larger k. Actually
we found that the agreement in the small k region depends very critically on
the value of the e�ective charge, which had to be carefully chosen. Instead,
the partial discrepancy in the high k region appears to be rather due to a
de�ciency of the model itself, inasmuch as the ions are dealt with as point
charges without any internal structure. In order to appreciate this fact one
should notice that, as better discussed in the following section, the dispersion
curves for the lattice vibrations coincide with the dispersion curves of the e.m.
�eld propagating inside the crystal. In other terms, the slope of the lower
branch in the low�frequency region of �gure 2 should coincide with the speed
of e.m. �eld propagation inside the crystal, i.e., with

c/
√
ε ,

where ε is the static dielectric constant of the medium. In the usual macro-
scopic treatments of electromagnetism and optics, such a constant is a phe-
nomenological parameter related to the polarizability of the system. Here,
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instead, it arises in a natural way as a consequence of the microscopic dy-
namics, and its value is deduced from the geometrical structure of the lattice
and from the physical parameters which characterize the ionic crystal under
consideration (masses, charges and the repulsive force constants). In our case
we found ε ≈ 5.3, while experimentally one �nds ε ≈ 9. We expect that this
discrepancy should be attributed to the approximation of considering the
ions as point particles, thus neglecting polarizability. Now, we expect that
this approximation should be responsible also for the discrepancy concerning
the upper transverse polariton high-frequency slope, which here is c, while
being experimentally smaller. Indeed the modi�cation of the speed of the
e.m. �eld at the optical frequencies should be due to the interactions with
the electrons, which is neglected in the present model.

We also point out that between the upper and the lower transverse
branches there occurs a frequency gap, which should correspond to the fre-
quency of the infrared residual rays.

5 Deduction of macroscopic optics

So far we have deduced, calculated and discussed the mere vibrational prop-
erties of ionic lattices, by determining their normal modes when the elec-
tromagnetic forces are taken into account. In this section we show how
such microscopic lattice dynamics gives rise to a macroscopic propagation
of electromagnetic �elds across the lattice, in agreement with the laws of
macroscopic optics.

The �eld E(x, t) propagating across the lattice is obtained in the linear
approximation by evaluating the superposition of the variable electric �elds
generated by the oscillations of the dipoles at each lattice point, which gives

E(x, t) =
∑
(h,j)

curl curl

(
q(j)

u(j)

h

(
t− 1

c
|x− r(j)

h |
)

|x− r(j)

h |

)
.

Let us now suppose that the ions are oscillating according to a normal
mode, identi�ed by ω and k: the law of motion of each dipole is thus

u(j)

h (t) = U(j)eik·rhe−iωt,
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for some de�nite amplitude vectors {U(j)(k, ω)}j=1,...,n. The �eld is then

E(x, t) =

e−iωtcurl curl

[
n∑
j=1

q(j)

(∑
h∈Z3

eik·rh
ei
ω
c
|x−r(j)h |

|x− r(j)

h |

)
U(j)

]
,

or equivalently

E(x, t) = e−iωtcurl curl

[
n∑
j=1

q(j) Ψ(x− b(j))U(j)

]
, (17)

where we have introduced

Ψ(x) :=
∑
p∈Z3

e+ik·rp
ei
ω
c
|x−rp|∣∣x− rp

∣∣ .
As shown in Appendix B, we can now carry on the manipulation on Ψ(x),
leading to a sum of rapidly convergent series, namely

Ψ(x) = Ψ1(x) + Ψ2(x) :=
4π∣∣Vc∣∣ ∑

m∈Z3

e−
1

4δ′2

(∣∣qm−k
∣∣2−ω2

c2

)
∣∣qm − k

∣∣2 − ω2

c2

ei(k−qm)·x+

+
∑
h∈Z3

eik·rh
2√
π

∫ +∞

δ′
e
ω2

4c2
1
η2 e−|x−rh|

2η2dη .

(18)

Exploiting the algebraic identity

a2 − b2 = (a± ib)2 ∓ 2iab

in the exponent of the integrand, it is convenient to rewrite the second part
Ψ2(x) of Ψ in the remarkable form

Ψ2(x)e−iωt =
∑
h∈Z3

(
eik·rh

2√
π

∫ +∞

δ′
e

(
ω
2c

1
η
−i|x−rh|η

)2
dη

)
ei
(
ω
c
|x−rh|−ωt

)
. (19)

This expression highlights that, for a not too small splitting parameter δ′

(say, comparable to the inverse interatomic �rst-neighbor distance), Ψ2 is
roughly the superposition of spherical waves coming from the neighboring
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sites and propagating at speed c.
The function Ψ1(x) can instead be written as

Ψ1(x)e−iωt =

(
4π∣∣Vc∣∣ ∑

m∈Z3

e−
1

4δ′2

(
|qm−k|2−ω

2

c2

)
∣∣qm − k

∣∣2 − ω2

c2

e−iqm·x

)
ei(k·x−ωt) . (20)

The term in brackets is a smooth quasiperiodic function over the direct lat-
tice. Thus Ψ1 looks like a plane wave characterized by the phonon wavevector
k and the frequency ω, hence propagating at the speed

v =
ω

|k|
=:

c

nb(k)
. (21)

The refraction index n depends on the considered normal mode, identi�ed by
a wavevector k plus a branch label b = 1, 2, . . . , corresponding to the speci�c
branch considered.

Substituting such expressions of Ψ1 and Ψ2 into (17) and computing the
e�ect of curl curl on them, we �nd the explicit form of the propagating �eld.
We see that the term originating from (19) varies over a microscopic scale
(i.e., one comparable to the linear dimensions of a primitive cell), whereas the
term resulting from (20) is much �smoother�. If we consider that a reason-
able measuring instrument should be necessarily macroscopic, hence much
larger than the atomic scale, then only the latter �eld should be observable.
Therefore, we name the former microscopic �eld, and the latter macroscopic

�eld. Such a distinction is signi�cant at macroscopic scales, i.e., in the usual
frame of the elementary (phenomenological) treatments of optics.

This result means that at least a relevant part of the infrared dispersion
phenomenology in ionic crystals can be deduced from the vibrational dis-
persion relations: indeed through equation (21) the refraction index can be
expressed as a function of frequency. The interaction between radiation and
matter (or phonon-photon coupling, in the quantum picture) can be inter-
preted in terms of such relations.

6 Final considerations

So, by studying a microscopic classical model of an ionic crystal with the
ions dealt with as point charges, we have shown that the retarded action of
the far ions is responsible for the splitting of the dispersion curves about
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the e.m. dispersion line ω = ck, i.e., for the existence of polaritons in ionic
crystals.

A fairly good quantitative agreement between the theoretical polaritonic
curves and the experimental data for Lithium Fluoride is obtained directly
from microscopic dynamics, without further ad hoc assumptions or the use
of any �tting parameters, apart from the three parameters (e�ective charge
of the ions and two constants entering the repulsive forces) related to the
non�retarded part of the problem. In any case, polaritons come out auto-
matically in virtue of retardation, without the need of introducing any new
parameter, once the instantaneous part of the problem has been settled. For
what concerns the choice of the free parameters, one may notice that they
could also be determined from experimental data not related to the disper-
sion curves, as for example thermodynamic quantities such as the internal
energy or data on the infrared absorption (see [18]).

One may now ask whether an explanation of dispersion can in some anal-
ogous way be given also for other types of crystal insulators. The simplest
model is obtained by considering a lattice of pure dipoles. Such a model was
already studied in the work [16], and a phenomenon analogous to that of
existence of polaritonic curves was observed.

We �nally add now a comment concerning the treatment of the problem
given in the book of Born and Huang[1]. We already mentioned that such
authors predicted the existence of polaritons in the �rst part of the book,
where the problem is discussed in terms of macroscopic polarization �elds. It
seems however that a proof is lacking in the second part of the book, which
is devoted to a microscopic discussion of the problem. Apparently this is
due to the fact that, in discussing the secular equation, the authors do not
introduce explicitly ω as an unknown of the problem, limiting themselves to
introduce the ansatz ω = (c/n)k. This entails that the upper polaritonic
branch cannot be detected. Moreover, at page 334, they explicitly say that
�The last term (i.e., the retarded one) can be ignored�.

Acknowledgement: We thank Giuseppe Pastori Parravicini. Having read
the papers [15] and [16], where retardation was taken into account in micro-
scopic models involving internal dipoles only, he suggested that polaritons
may be proven to exist by analogous methods, if one considers a model in-
volving the displacements of the ions.
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A The Wheeler�Feynman identity and the sta-

bility of the lattice

In discussing the secular equation, it was already pointed out that the term
(2), due to the radiation reaction force entering the Newton equation for
each ion, exactly cancels the non-hermitian part of the dynamical matrix, so
that one is left with a hermitian dynamical matrix. This has the consequence
that only real frequencies ω (i.e. stable non-damped oscillations) are allowed,
so that the lattice can exist. As mentioned in [15], such a cancellation was
�rst pointed out by Oseen[8] in the year 1916. Note that a priori such a
cancellation is by no means evident nor obvious: when radiation e�ects are
taken into account, one might expect that non-trivial energy exchanges occur,
and damped oscillations may arise due to uncompensated energy losses. It
should be noted that, if ω has a positive imaginary part, the dipole term series
describing the retarded interaction diverges. The actual role of the radiation
reaction force deserves thus to be pointed out: its inclusion in the equations
of motion is vital in order to make the lattice stable, and in allowing for the
existence itself of a dispersion relation; omitting this term would lead to a
substantial inconsistency of the model.

It might seem that the Oseen cancellation occurring for the non-hermitian
part of the dynamical matrix, arises �accidentally�. Here we provide a proof,
more signi�cant than the straightforward computation implicitly carried out
in the text. The present proof shows that the origin of the cancellation is
actually deeper, and can ultimately be ascribed to the symmetry of electro-
dynamics with respect to time inversion.

In fact, we prove here that the present model of ionic crystal satis�es the
following identity, �rst proposed by Wheeler and Feynman[5]:∑

k

(
F k
ret(x, t)− F k

adv(x, t)
)

= 0, (22)

where the summation index k runs over all the charged particles of the system
and F is the e.m. �eld tensor.2 This evidently points out the symmetrical role
played by the retarded and the advanced solutions of the Maxwell equations.
We will then show that this identity actually implies the Oseen cancellation.

2Alternatively, we might say that the crystal has the property of being a Wheeler-

Feynman complete absorber.
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First of all, it is clear that the zeroth-order Coulomb �elds trivially satisfy
the above identity, because they are independent of time. In addition, recall
that we are neglecting magnetic �elds, which give second-order e�ects. Thus,
verifying (22) amounts to showing that∑

(p,s)

(
E[1],ret

p,s (x, t)− E[1],adv
p,s (x, t)

)
= 0 (23)

or, substituting the normal mode ansatz (9),

0 = e−iωt
n∑
s=1

q(s)curl curl

[∑
p∈Z3

e−ik·rp

(
ei
ω
c
|x−r(s)p |∣∣x− r(s)

p

∣∣ − e−iωc |x−r
(s)
p |∣∣x− r(s)

p

∣∣
)
U(s)

]
(24)

This is immediately seen if one remarks the the only di�erence that shows
up when considering the advanced �elds occurs in the spherical-wave term,
whose direction is inward rather than outward.

In order to prove the Wheeler-Feynman identity in the form (24), we
rewrite the term in square brackets as a sum over the reciprocal lattice.
Using the distributional identities (see e.g. [11])

e±iαx

x
= 4π lim

ε→0+

∫
R3

dm(k)
eik·x

|k|2 − (α2 ± iε)
,∑

h∈Z3

δ(x− rh) =
1

|Vc|
∑
m∈Z3

eiqm·x ,

one gets

∑
p∈Z3

e−ik·rp

(
ei
ω
c
|x−r(s)p |∣∣x− r(s)

p

∣∣ − e−i
ω
c
|x−r(s)p |∣∣x− r(s)

p

∣∣
)

=

4π∣∣Vc∣∣ ∑
m∈Z3

lim
ε→0+

(
ei(qm−k)·(x−b(s))∣∣k− qm

∣∣2 − (ω2

c2
+ iε

) − ei(qm−k)·(x−b(s))∣∣k− qm

∣∣2 − (ω2

c2
− iε

)) = 0.

So (24) is proven.
We �nally show that the Wheeler-Feynman identity leads somewhat di-

rectly to Oseen identity, i.e., to the cancellation between the non-hermitian
part of the dipole term matrix and the radiation reaction term in the linear
equations of motion.
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To this end we let x approach a lattice site r(j)

h , and rewrite (24) by
separating the contribution of the (h, j) ion from that of all the other ones,
thus getting

0 =
e−iωt

2
curl curl

{ ∑′

(p,s)

[
q(s)eik·rp

(eiωc |x−r(s)p |∣∣x− r(s)
p

∣∣ − e−i
ω
c
|x−r(s)p |∣∣x− r(s)

p

∣∣ )U(s)

]
+

+

[
q(j)eik·rh

(eiωc |x−r(j)h |∣∣x− r(j)

h

∣∣ − e−i
ω
c
|x−r(j)h |∣∣x− r(j)

h

∣∣ )U(s)

] }
.

A classical computation, �rst carried out by Dirac [19] (see also [20]), shows
that the second term tends to the radiation reaction force. Since the �rst
one is continuous at r(j)

h , its limit must equal the opposite of the radiation
reaction force. Now we observe that this quantity coincides with

1

q(j)
ei(k·rh−ωt)

nc∑
s=1

1

2

(
D̂js − D̂†sj

)
·U(s).

To see this, factor eik·rh out of the sum, rename the summation index p −
h 7→ p′ and compare the resulting expression with the corresponding term
in (11). At last, it is not di�cult to see that exchanging the indices j and
s in the advanced �eld term yields the complex conjugate of the retarded
one. This term amounts to one-half the di�erence between the retarded and
the advanced �elds generated by all ions but one, evaluated at the excluded
ion site. When multiplied by the charge q(j), it becomes equal to the non-
hermitian part of the dipole forces matrix. Therefore, the proof is complete:
the unexpected cancellation appears now better justi�ed from a theoretical
point of view.

If one looks at the book of Born and Huang[1], one will see that, in
dealing with the secular equation, they take into consideration only the real
part of the equation, which is the one that actually produces the dispersion
relation. Apparently they do not exploit the fact that the imaginary part
identically vanishes if the contribution of the radiation reaction term is taken
into account, and just altogether neglect the consideration of the imaginary
part, as if did not exist. A reading of Born's book [9] of the year 1933 (see
page 431) shows that the relevance of the classical radiation reaction force
was well appreciated by him. However, he had to take into account the fact
that it was not easy to �t such a force within quantum theory3.

3In the very words of Born: �Diese ganze klassische Theorie der Strahlungsdämpfung ist
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B Proof of Ewald's formula

In this appendix we prove Ewald's resummation formula, i.e., the formula
which expresses the part of the �eld due to the �far� dipoles as a rapidly
convergent series over the reciprocal lattice. Usually, in solid state physics
Ewald's resummation formula is used in the static limit ω → 0, i.e., in order
to resum the Coulomb �elds of the far ions. We report here a proof of the
full formula.

So, let us begin considering the following series

Ψ(x) :=
∑
p∈Z3

e+ik·rp
ei
ω
c
|x−rp|∣∣x− rp

∣∣ , (25)

which is the series that enters formula (17) of Section 5 for the electric �eld.
Moreover, it enters also formula (10) of Section 3 for the dipole matrix D̂jl,
inasmuch as one has

D̂jl = q(j)
∑
p∈Z3

q(l)R̂
(
e−ik·rp ei

ω
c
|x|

|x|

) ∣∣∣∣
x=r

(j,l)
p

= q(j)q(l) R̂
(

Ψ(x + b(j,l))

)∣∣∣∣
x=0

.

So, to prove both equation (15) of Section 3 and equation (18) of Section 5,
one needs to prove that

Ψ(x) =
4π∣∣Vc∣∣ ∑

m∈Z3

e−
1

4δ′2

(∣∣qm−k
∣∣2−ω2

c2

)
∣∣qm − k

∣∣2 − ω2

c2

ei(k−qm)·x

+
∑
h∈Z3

(
eik·rh

2√
π

∫ +∞

δ′
e

(
ω2

4c2
1
η2
−|x−rh|η2

)
dη

)
,

(26)

with δ′ an arbitrary positive parameter.
To this end, we �rst reduce the series de�ning Ψ(x) to a series over the

natürlich mit der heutigen Quantentheorie des Licht und der Materie nicht verträglich.�
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reciprocal lattice, by using the identities already introduced in Appendix A

e±iαx

x
= 4π lim

ε→0+

∫
R3

d3k′
eik
′·x

|k′|2 − (α2 ± iε)
,

(2π)3

|Vc|
∑
m∈Z3

δ(x− qm) =
∑
p∈Z3

eirp·x ,

Vc being the cell volume, while qm are the vectors of the reciprocal lattice.
We recall that, given a lattice of points xp in a vector space, the reciprocal
lattice km is the set of vectors of the dual space, namely, the vectors such
that 〈xp,km〉 is an integer multiple of 2π (or zero). In R3, if ai, i = 1, 2, 3,
is a basis for the direct lattice, the vectors ãk = (2π/|Vc|)

(
ai ∧ aj

)
constitute

a basis for the reciprocal lattice. Using the mentioned identities one gets

Ψ(x) =
∑
p∈Z3

4π lim
ε→0+

∫
R3

d3k′
ei(k−k

′)·rpe−ik
′·x

|k|2 − (ω2/c2 + iε)

= 4π lim
ε→0+

∫
R3

d3k′
e−ik

′·x

|k|2 − (ω2/c2 + iε)

∑
p∈Z3

ei(k−k
′)·rp

=
4π

|Vc|
lim
ε→0+

∫
R3

d3k′
e−ik

′·x

|k|2 − (ω2/c2 ± iε)

∑
m∈Z3

δ(k− k′ − qm)

=
4π∣∣Vc∣∣ ∑

m∈Z3

ei(qm−k)·x∣∣k− qm

∣∣2 − ω2/c2
. (27)

For any δ′, the series over the reciprocal lattice can be conveniently split as
follows

Ψ(x) = Ψ1(x) + Ψ2(x) :=

4π∣∣Vc∣∣ ∑
m∈Z3

e−
1

4δ′2

(∣∣qm−k
∣∣2−ω2

c2

)
∣∣qm − k

∣∣2 − ω2

c2

ei(k−qm)·x

+
4π∣∣Vc∣∣ ∑

m∈Z3

1− e−
1

4δ′2

(∣∣qm−k
∣∣2−ω2

c2

)
∣∣qm − k

∣∣2 − ω2

c2

ei(k−qm)·x ,

where now the �rst series converges absolutely, while the second one can
be expressed as an absolutely convergent series by going back to the direct
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lattice. In fact, using

1− e−
1

4δ′2

(∣∣qm−k
∣∣2−ω2

c2

)
∣∣qm − k

∣∣2 − ω2

c2

=

∫ 1/4δ′2

0

dξ e−ξ
(∣∣qm−k

∣∣2−ω2
c2

)
together with the identity (see below)

(4πξ)3/2∣∣Vc∣∣ ∑
m∈Z3

e−|qm−k|2ξ eiqm·x =
∑
h∈Z3

e−
1
4ξ
|x−rh|2 eik·(x−rh) , (28)

one obtains

Ψ2(x) =
∑
h∈Z3

∫ 1/4δ′2

0

dξ (4πξ)3/2e−
1
4ξ
|x−rh|2 eik·(x−rh)

and putting η2 = 1/4ξ one gets

Ψ2(x) =
∑
h∈Z3

(
eik·rh

2√
π

∫ +∞

δ′
e

(
ω2

4c2
1
η2
−|x−rh|η2

)
dη

)
,

which is the relation (26). To complete the proof, there remains to prove
identity (28). This, however, is in fact rather straightforward, once one
realizes that both sides of it are quasiperiodic functions of x. One just has
to show that the plane-wave coe�cients at the left-hand side are indeed the
Fourier coe�cients of the function at the right-hand side, that we name f(x)
for convenience. Hence:

f̃m =

∫
Vc

d3y∣∣Vc∣∣e−iqm·yf(y) =
1∣∣Vc∣∣ ∑

h∈Z3

∫
Vc

e−iqm·y e−
1
4ξ
|y−rh|2 eik·(y−rh) d3y .

We now apply the change of variable y′ = y− rh, so that the integrand does
no longer depend on h:

f̃m =
1∣∣Vc∣∣ ∑

h∈Z3

∫
Vc+rh

e−
1
4ξ
|y′|2 ei(k−qm)·y′ d3y′

=
1∣∣Vc∣∣
∫
R3

e−
1
4ξ
|y|2 ei(k−qm)·y d3y

=
1∣∣Vc∣∣

3∏
µ=1

∫
R
e−

1
4ξ
y2µ ei(k−qm)µyµ dyµ .
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Next, we exploit the integral formula∫
R
e−αx

2+βxdx =

√
π

α
e
β2

4α

to �nally get

f̃m =
(4πξ)3/2∣∣Vc∣∣ e−

1
4ξ
|k−qm|2 .

Hence we have

f(x) =
∑
m∈Z3

f̃me
iqm·x =

(4πξ)
3
2∣∣Vc∣∣ ∑

m∈Z3

e−
1
4ξ
|k−qm|2eiqm·x ,

and the proof is complete.

C Computable form of the dynamical matrix

For the sake of completeness, in this appendix we report the computable
form of the dynamical matrix A(k, ω) that appears at the right-hand side of
the generalized secular equation (11), i.e., after Ewald's summation has been
performed.

The term P concerning the phenomenological repulsive short-distance in-
teraction (�rst term at the right-hand side of (11)) is already in a computable
form.

For the Coulomb term C, we have

Ĉjj
q(j)

= −
∑
i 6=j

q(i)
{

4π

|Vc|
∑′

m∈Z3

e−
|qm|2

4δ2

|qm|2
R̂
[
eiqm·x

]
x=b(j,i) +

∑
h∈Z3

R̂
[

erfc
(
δ|x|

)
|x|

]
x=rh+b(j,i)

}

− q(j)
{

4π

|Vc|
∑′

m∈Z3

e−
|qm|2

4δ2

|qm|2
R̂
[
e+iqm·x

]
x=0

+
∑′

h∈Z3

R̂
[

erfc
(
δ|x|

)
|x|

]
x=rh

+ R̂
[

erf
(
δ|x|

)
|x|

]
x=0

}
;

for all j = 1, . . . , n, and

Ĉjl = 0 if j 6= l .

The o�-diagonal blocks vanish because the Coulomb term describes the force
exerted on an ion by all the other charges, supposed �xed at their equilibrium
positions: no coupling between two di�erent ions occurs.
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Finally, for the dipole term D, we have

D̂jj(
q(j)
)2 =

4π

|Vc|
∑
m∈Z3

e−
1

4δ′2

(
|qm−k|2−ω

2

c2

)
|qm − k|2 − ω2

c2

R̂
[
ei(qm−k)·x

]
x=0

+
∑′

h∈Z3

e−ik·rh
2√
π

∫ +∞

δ′
e
ω2

4c2
1
η2 R̂

[
e−|x|

2η2
]
x=rh

dη

+ R̂
[

1

|x|
2√
π

∫ ∞
δ′

e
ω2

4c2
1
η2 e−|x|

2η2 dη − ei
ω
c
|x|
]
x=0

for all j = 1, . . . , n, and

D̂jl
q(j)q(l)

=
4π

|Vc|
∑
m∈Z3

e−
1

4δ′2

(
|qm−k|2−ω

2

c2

)
|qm − k|2 − ω2

c2

R̂
[
ei(qm−k)·x

]
x=b(j,l)

+
∑
h∈Z3

e−ik·rh
2√
π

∫ ∞
δ′

e
ω2

4c2η2 R̂
[
e−|x|

2η2
]
x=r

(j,l)
h

dη

for all j, l = 1, . . . , n, j 6= l.
It can be seen that the total electric term (Coulomb plus dipole) takes

the form of a standard �mechanical� dynamical matrix in the instantaneous

limit, the potential being

φ(j,l)(r) =
q(j)q(l)

r
.

As already pointed out, this limit is formally obtained by putting ω = 0 in
the matrix elements of D. Thereby, the electric force matrix C +D (actually
its hermitian part) reduces to a �mechanical� dynamical matrix, analogous
to P , the only di�erence being related to the long range of the interaction.
However, the purpose of this work is to investigate precisely those situations
where the instantaneous limit loses validity.
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