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Dedication. It occurred to the five of us to come in contact with Asim Barut in
the very short period from june to september 1994, between a conference in Erice and
“his” conference in Edirne, where he was so kind to invite all of us and for which
the present notes are written down. It was a joyful experience to share with him the
sensation that classical electrodynamics had not been fully exploited, and the hope
that a full appreciation of it might prove relevant even for the foundations of quantum
mechanics. Certainly there will be other people among his pupils that will take up
his heritage, but we very willingly aknowledge that, although working along already
estabilished lines, a great support comes to us from the sensation of continuing also
his work.

INTRODUCTION

By classical electron theory we mean what is in principle a very simple thing,
namely the Maxwell-Lorentz system, which consists of Maxwell equations with
sources due to a point particle, and the relativistic Newton equation for the par-
ticle, with Lorentz force due to the electromagnetic field. The unknowns are then the
fields E(x,t), B(x,t) and the particle motion q(¢), governed by the equations

divE = p divB =0

d mo . 1,
at (W(O =e (E(Qa t)+ Eq x B(q, t))
plx,t) = edx —q(t)  j(x,1) = ~@i(x — q(t))

from which the continuity equation % + divj = 0 follows; here c is the speed of light
while e is the particle’s charge and myg its (bare!) mass. The intent would be to
study such a system as a dynamical system in the standard sense, namely by looking
at the Cauchy problem, also taking into proper account (but we are not able to do
it, at present) the nonlinearities, which appear for example in the definitions of the
charge density p and of the current density j, and in the Lorentz force. The main
mathematical problem comes from the presence of the delta function in the definition
of the current, which leads to a singularity in the Lorentz force at the right hand side
of the equation governing the particle’s motion (think of the Coulumb force in the
static case). This problem can be dealt with by suitable regularizations; a standard
procedure, well familiar from quantum field theory, consists in introducing cutoffs
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removed. In this connection we like to quote one of our favorite authors, namely E.
Nelson, [* who, in his book “Quantum Fluctuations” (page 65) says: “With suitable
ultraviolet and infrared cutoffs, this is a dynamical system of finitely many degrees of
freedom, and we have global existence and uniqueness... . Is it an exaggeration to
say that nothing whatever is known about the behavior of the system as the cutoffs
are removed, and there is not one single theorem that has been proved ?’. Though
incredible, this is just the actual situation: nothing whatever seemed to be known
rigorously for the motion of a point particle in interaction with the electromagnetic
field, when the latter is not assumed to be assigned in advance.

We believe that we were finally able to provide at least some preliminary results
concerning the limit in which the cutoffs are removed, on which we will report below.
The results might at first sight appear to be almost trivial, because we essentially con-
firmed the validity of the famous Abraham-Lorentz (or AL) equation for the particle
in the so—called dipole approximation. But on the other hand this required a strong
conceptual effort, because we had to become convinced of a deep fact, which paradox-
ically was well known, but on the other hand was essentially removed by the scientific
community (see however [2]). Namely, the fact that classical electrodynamics, when
extended to microscopic bodies, is radically different from the macroscopic one, due
to the fact that it requires negative bare masses, and so leads for generic initial data
to absurd runaway solutions; and these can be removed by some prescription a la
Dirac, which leads to a conceptually different theory, exhibiting nonlocal aspects. By
the way, as foreseen by Nelson too, this turns out to have strong implications on the
relations between classical physics and quantum mechanics.

These facts will be illustrated, though in a rather sketchy way, in the present
notes. In this introduction we would like, however, to mention some authorities, in
support of the significance of our studies. Indeed, if it turns out that microscopic
classical electrodymanics has so many and great complications, why at all to insist on
it and not just abandon it 7 Here the quotation we like most is taken from the beautiful
chapter of the Feynman lectures devoted to the electromagnetic mass (page 28.10),
namely: “....it might be a waste of time to straighten out the classical theory, because
it could turn out that in quantum electrodynamics the difficulties will disappear or may
be resolved in some other fashion. But the difficulties do not disappear in quantum
electrodynamics.... The Mazxwell theory still has the difficulties after the quantum
mechanics modifications are made.”. Essentially the same opinion is expressed in
some works of Dirac and Haag; in particular, in the introduction to his famous work
on the selfinteraction of the electron!3 Haag says: “ This often discussed subject will
be here reconsidered in light of the difficulties of quantum field theory’. For other
relevant contributions see [4], [5] (see also [6]).

RIGOROUS RESULTS FOR THE LINEARIZED MAXWELL-LORENTZ SYSTEM

We give here a short review of some results recently found by two of us (see [7]),
which somehow constitute the culmination of a long line of research (see [8], [9] and
also [10] from a numerical point of view, and [11], [12] from an analytical point of view;
however, in all these works the bare mass was kept positive, because it took much
time to understand the necessity of negative bare masses for microscopic particles).
Other aspects of the problem were discussed in the very recent work [13]; finally, in a
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obeyed by the field in the limit in which the cutoffs are removed.

The aim is thus to have information on the dynamics when the regularization
is removed. In fact, the preliminary results illustrated here are restricted to the
projection of the solution on the particle variables, i.e. concern only the motion
of the particle, which is induced by the solution of the full system. However, the
main drawback is that such results are obtained not for the original Maxwell-Lorentz
system, but only for its linearization about the equilibrium point defined by the
particle at rest at the origin and vanishing field (a mechanical linear restoring force
acting on the particle is also included); in particular, within such an approximation
(often called the “dipole approximation”) the system is nonrelativistic; finally (but
this is an unessential technical point), the regularization is performed not by imposing
cutoffs on the fields, but by considering, as we use to say, a “fat” particle, i.e. by
substituting the § function appearing in the charge and current densities by a smooth
charge distribution (or form factor) p. Because of this, the limit in which the cutoffs
are removed will be called here the “point limit”.

We chose to work in the Coulomb gauge. Let us recall that in such a gauge
the dynamically relevant parts of the fields depend just on the vector potential A =
A(x,t) (subject to the constraint divA = 0), and that the complete Maxwell-Lorentz
system takes the form

1. dre .
2A - LA =—1I(4d,)

(1)
dt \ /T—(d/0)

where o > 0 is a constant characterizing the external linear force, while J4 is the
delta function translated by q with respect to the ¢ function centered at the origin,
i.e. 04(x) := 0(x — q). Finally II is the projector on the subspace of vector fields
with vanishing divergence, i.e. II(j) is the so called transversal part of the current j,
often denoted by ji,. Now we take the so called dipole approximation, i.e. linearize
the system about the equilibrium point q = q = A = A = 0, and regularize it by
substituting the delta function by a smooth normalized (in L) charge distribution p.
So we obtain the system

d : \
(&) = ~“A(q.1)+ “ax rotA(q.1) ~ aq

1 . 4
C C

moii == [ px)A(x O)d'x ~ aq.
C R3

which is the one actually studied; the appropriate configuration space ¢ is
0:=§.(R*, R’)® R’ > (A,q),

where §, denotes the subset of the vector fields belonging to the Schwartz space § (C°
functions decaying at infinity faster than any power) having vanishing divergence.

Concerning the form factor p one assumes that it is C'°°, decays at least expo-
nentially fast at infinity, is spherically symmetric, and its Fourier transform p, defined
by

1 ~ ikx
) = vz [, 709 5d%,
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the discussion of the point limit one assumes that p has the form

or@) = 75 (%) - ®)

where is a positive, normalized (in L!) function, and R > 0 a parameter characterizing
the “radius” of the particle. For any R > 0 the Cauchy problem for system 2 is well
posed in the phase space X, and the problem is to discuss the limit of the particle’s
motion as the “radius” R of the charge distribution tends to zero.

The first result is obtained for the special class of initial data such that the
particle is at rest in some position gy # 0, and the field vanishes. One has the

Proposition. Having fized mo > 0 and R > 0 denote by q®)(t) the solution of
2 with form factor 3, corresponding to initial data Ay = Ay = qo = 0, and qo # 0.
Assume that g () converges weakly to a distribution q(-) as R — 0. Then there
exists a constant vector q such that q(t) = q-

This means that, for fixed positive bare mass, the limit dynamics of the point
particle is trivial, if it exists. This result would be obvious for physicists of the old
generation, and should be obvious even for undergraduates that are familiar with
the Feynman lectures on physics, where he explains that there is an electromagnetic
contribution to mass, which diverges in the point limit;® in fact, the above proposition
just proves that a point particle is unaffected by the presence of a force (—aqg) no
matter how large it is, so that it behaves as if its actual mass were infinite. From the
mathematical point of view this is seen as follows. The proof of all results discussed
here is based on the use of a representation formula for the solution of the Cauchy
problem of 2 through normal modes, and it turns out that in such a formula the bare
mass mg appears always summed to the quantity

32 ,e* [, 132 ,e? /00‘ ‘z
em ‘= — — = — | — — , 4
m 37 /0 |p(k)|*dk [3 T ; (k)| dk (4)

c2 c?

which is just the electromagnetic mass corresponding to the given charge distribution;
and this is in agreement with the expectation that the particle should behave as if
its experimental mass m were the sum of mg and mem: m = mg + Mem- Notice that
Mem = Mem (R) — +00 as R — 0, so that the effective mass also — oo as R — 0 if
the bare mass my is kept fixed.

So, in order to obtain meaningful results, one has to renormalize mass, i.e. to
consider the bare mass mg as a function of R, by putting

mo(R) :=m — mem(R), (5)

where m is a fixed phenomenological parameter to be identified with the physical
mass of the particle, and which does not appear at all in the original Maxwell-Lorentz

1 This is seen in the simplest way (see the quoted chapter of Feynman’s book) as follows.

Consider a “fat” particle, in the form of a sphere of radius R, in uniform rectilinear motion
with velocity v. Compute by the familiar formulae of retarded potentials the fields £ and B
“created ” by the particle, and the corresponding Poynting vector, proportional to £ x B, and
integrate in the domain outside the particle, thus obtaining the total momentum p,,, of the
electromagnetic field dragged along by the particle. In the nonrelativistic approximation one
immediately finds

2
pem = gmemv ’
2
in terms of the electromagnetic mass meyn, defined by mem = %.
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regularized Maxwell-Lorentz system, and takes the limit R — 0 with the prescription
5, one is in fact defining a new system, which can be said to be just suggested by the
original one. This is particularly evident, if one remarks that, according to 5 there
exists a threshold radius R such that

mo(R) =0, mo(R)<0 ifR<R,

and mo(R) — —oco as R — 0. The critical radius R is called the “classical electron
radius” Concerning the behaviour of the system in the limit R — 0 one has the

Proposition. Consider the Cauchy problem for system 2 with form factor pgr
given by 3, mg given by 5, and initial data Ay = Ay = qo =0, and qp # 0; let q(R)( )
be the corresponding particle’s motion. Then, for any T > 0, as R — 0 the function
a®(.) converges in C*([-T,T], R®) to a non constant function.

So, the particular solution corresponding to the above initial data has a point limit
which is nontrivial, provided mass is renormalized.

Consider now the case where the initial particle’s velocity too is different from
zero; this is a nontrivial generalization, because it requires that one be familiar with
the notion of the field “adapted” to the given initial velocity. This is illustrated by
the following result which shows that, with qg # 0, if one takes a vanishing initial
field the trajectory of the particle turns out to have no sensible point limit. Precisely
one has the

Proposition. Consider the Cauchy problem for system 2 with form factor pr
given by 3, mg given by 5, and initial data Ay = Ay =qp =0, and qo #0; let q(R)( )
be the corresponding particle’s motion. Then, for any T > 0, as R — 0 one has

qP @) =00, Vte[-T,T\,

where is a finite (possibly empty) set.
It is not difficult to prove that the same happens also if one takes as initial data for
the field any regular function (i.e. without singularities).

This result should be not completely astonishing, because it is very well known
(and was also recalled above) that, in the case of a uniform motion, a particle drags
with it a field which in the case of a point particle has a singularity at the particle’s
position. So, it seems natural to study the particular class of initial data such that a
particle with a non vanishing velocity is accompanied by such a “proper or adapted
field”.2 In order to give a precise statement we recall that['®!! in the non-linear
Maxwell-Lorentz system a free particle can move uniformly with velocity v, only if
accompanied by a field X, which is defined as the solution of equation

0? e
AX — i X = —4nr-1I1I
c? Z Y 02 0Ty e (pv)

3,0=1

2 Within our group, the awareness of this elementary fact was obtained through the work

[8], where it was shown that such a field produces a Lorentz force vanishing exactly at the
instantaneous particle position; by the way, it is just this fact that allows dynamically for the
existence of uniform motions (a circumstance that Abraham used to qualify as “consistency of
electrodynamics with the inertia principle”). Moreover, numerical integrations with a positive
bare mass and a cutoff on the field showed that, if the initial data are nonvanishing particle
velocity and vanishing field, then the solution of the complete system is such that the proper
field of the particle tends to be created. As this fact was discovered by Lia Forti, in our jargon
we use to call the proper field “il campo della Lia”, i.e. Lia’s field.
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velocity and in the field, such an equation reduces to

AX = —47r§H(pv) . (6)

We denote by X, the unique solution of equation 6 vanishing at infinity, and study
the point limit of the solutions of the Cauchy problem corresponding to initial data
of the form qg # 0, Ay = Xg,. Initial data of the form (qo, o, Xg,,0) will be called
of “congruent type”. One has then the

Proposition. Consider the Cauchy problem for system 2 with form factor pg
given by 3, my given by 5, and initial data (qo, o, Ao, Ao) = (Qo, o, X4,0); let
q® (t) be the corresponding particle’s motion. Then, for any T > 0, as R — 0 the
function ) (-) converges in C([—=T,T], R?) to a non constant function.

Analogously, for the case of general initial data for the field, one has the following

Theorem. Consider the Cauchy problem for system 2 with form factor pgr
given by 3, my given by 5, and initial data (qo, o, Ao, AO) = (do, 4o, X4, + Ap, AO)
with (A, Ag) € §, (IR, IR®) x §,(IR?, R®); let B (t) be the corresponding parti-
cle’s motion. Then, for any T > 0, as R — 0 the function q(R)(-) converges in
CO([-T,T], IR*). Moreover, the limiting particle’s motion depends continuously on

(a0, do, Ap, Ap) € R? x IR® x §,(R?, R?) x §,(IR3, R?) .

So the above theorem shows that the dynamics of a point particle is well defined
in the point limit, at least for initial fields which are regular modifications of congruent
fields. Moreover, the Cauchy problem is well posed in the sense of Hadamard. By
the way this existence result could be extended to the case of initial fields (Aj, Ay)
which are only C°, and decay at infinity faster than r—3/2.

In the case of congruent initial data it is possible to calculate explicitly the point

limit of the solution of the Maxwell-Lorentz system. Let us introduce some notations:
define

, 2 €2
wh = — Ti=-———
0 3med’
consider the equation
-1 —wi=0, (7)
and denote by v,., vy = v3 + ive, V_ = v3 — ivs its three solutions (vg,v3 > 0). One

has then the

Theorem. The point limit of the particle’s motion corresponding to the solution
of the Cauchy problem for the linearized Mazwell-Lorentz system 2 with initial data
of congruent type (qo, o, Ao, Ao) = (do, 4o, Xg,,0) is given by

: (8)

0 e "3t cos(vat) +4 sin(vat)] +3 €t if >0
qit) = . - .

e’3t [ cos(vat) +5 sin(vat)] +35 e ¥t if t <0
where i‘, é‘, 3i are real vector constants depending on the initial data and on e, m,
wgy. Moreoverone has the asymptotics

Up = U O(e) T =a+0(e)
c :
q
vy = wy + O(€?) ) %t = w_?) + 0(€%) 9)
vz = woe/2 4+ O(e?) T =0(e)
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We can now compare 8 with the solutions of the celebrated Abraham-Lorentz
(AL) equation
m74 = mq + aq , (10)

which was known since a century, but the deduction of which from the Maxwell-
Lorentz system should be considered as a heuristic one (see [16] or [17]). In this
connection one has the

Theorem. The point limit 8§ of the particle’s motion in the Maxwell-Lorentz
system is also a solution of the problem

—-mTtg=mq+aq, t<0,
mrq=mq+aq, t>0.

So, for initial data of congruent type, the particle’s motion satisfies exactly the AL
equation for positive times, and the corresponding one with the substitution 7 — —7
for negative times. Notice that the fact that different equations occur for negative
and positive times is not a particular feature of the present model; a classical case
where this happens is that of the Boltzmann equation, and a simple and enlightening
mechanical model where this phenomenon occurs was given by Lamb at the beginning
of the century.

A HEURISTIC APPROACH TO THE ABRAHAM-LORENTZ EQUATION

It was shown above that the motion of the particle in the point limit for the
linearized Maxwell-Lorentz system with the prescription of mass renormalization,
for a special class of initial data satisfies exactly the Abraham-Lorentz equation 10.
Now, the rigorous deduction reported above is based on an explicit representation
formula using of the normal modes of the complete system, which does not allow one
to really understand what is going on. So we intend to devote the present section to
the illustration of a heuristic deduction, which allows to see by eyes what is occurring
(see [18]). A rigorous treatment along similar lines can be found in [13], where it was
also shown how the initial acceleration for the AL equation is defined by the initial
field for the complete system.

In order to study the linearized Maxwell-Lorentz system 2, it is convenient to
introduce the space Fourier transform of the vector potential by

1 ~ .
A(x,t) = —=7 | Ak, t)e**dk
(X7 ) (271,)3/2 RS ( ’ )6 ’
so that the system becomes
. e o OA
mo 4(t) = — P / p* (k) W(ka t) d°k — aq + Fext(q)
(11)

d? . - R . (q(t)-k)k
@A(k, t) + k2c?A(k,t) = 47 ec pk) [q(t) — T] ,

where * denotes complex conjugate, and a generic external force Fqy additional to
the linear one —aq has also been introduced. By the variation of constants formula,
the second equation can also be written in the integral form

ep(k) t')-k)k

Ak, t) = Apom(k, t) + —/Ot [f(t’) _ & o

p ] sin[ke(t —t")]dt"
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tution in the equation for the particle, exchanging the order of the integrations and
performing the integrations on the angular variables (by exploiting the spherical sim-
metry of the form factor) one then obtains an integro—differental equation for the
particle, namely

. 327'('2 2 ¢ /. / > 21~ 2 /
moq(t) = — — e dt'q(t") dk k° |p(k)|” cos[ke(t — t')]
0 0

+ Fhom - aq(t) + Fext(Q) 9

where Fnom represents the Lorentz force on the particle due to the free evolution of
the initial field; in particular, Fyq, vanishes if the initial field does. From now on we
wiil simply denote Feyt + From by Fext-

An equivalent interesting form for the particle equation is obtained by performing
two integrations by parts on the variable ¢’. Indeed this leads to

(mO + mem) q(t) = —aq+ Fext +
on2e? [t 0o 2
+ 3;36 / ') / dk \ f(k)‘ coslke(t — )] +
c 0 0

f(k)‘2 {q(o) k sin(ket) — @ cos(kct)} dk

3272e? / >
363 0
where it appears that the bare mass mg occurs only summed to the electromagnetic
mass Mem, defined by 4.

We now concentrate our attention on a particularly convenient form factor,
namely the sharp one corresponding to a cutoff X in momentum space, defined by

1

@ 0(KC — k)

plk) =

where 6 is the usual step function; this is somehow equivalent to considering an ex-
tended particle of spatial dimension (or “radius”) R with R ~ K. Correspondingly,
we affix an index (K) to the quantities of interest, and we will be looking for the limit

as IC — oo. In particular, for the electromagnetic mass one has then
4 e?
men) = g

Introduce now time Fourier transforms, so that one has for example, for the particle
acceleration a(®) (t) = fi(’C) (t),

1 > .
K _ ~(K wt
a®@) = n)i7? /_Oo a®(w) et dw ,

while the time Fourier transform of the external force is given by

(K 1 = W
ngt)(w) = W [oo Fext(q(n)(t)at)e tdt7

and turns out to be a functional of the particle motion q®)(t).

8
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form

) FU ()
A% (w) = S P ey s (12)
mo + Mem (K:) + 3mwced w log w+ec K + w?

By the way, it is of interest to remark that for w = 0 equation 12 reduces to

a%)(0) = FU (0) — ag(0)

with m = mg + mem; this relation is consistent with a kind of “correspondence
principle” because it is analogous to the mechanical equation mq = Fey for the

integrated quantities a%)(0) = f_+ooj a®) (¢)dt and F&)(0) = fj;o Fexs (@) (1))dt.
Equation 12 for the Fourier transform of the particle acceleration allows in a
rather simple way, through a control of its poles, to obtain an information on the
function q(t) itself. Clearly there are poles due to the particular form chosen for the
external force, but the most relevant ones are those that are independent of it, namely

those corresponding to the zeroes of the denominator, i.e. the zeroes of the function

2¢2 w—ckK a

K
(W) = mo + Mem(K) + 3ocs wlo

One easily proves that:
* if mg > 0, then the function {(w) has two real zeroes +w, with @ > ¢K;
* if mg < 0, then the function {(w) has two conjugate imaginary zeroes.

This result allows one to deduce several interesting consequences. The first one is
that if one goes to the point limit X — oo while keeping the bare mass positive, then
the system presents oscillations of increasingly high frequencies, diverging with the
cutoff. The second remark concerns the case in which the point limit is taken while
performing a coherent renormalization procedure, i.e. one considers, for any cutoff K,
a corresponding bare mass mg(K) such that mg(KC) + mem () = m where m is a fixed
positive mass; in particular this requires to take mo < 0 if X > k where k ~ R™!,
R = €2 /mc? being the so called “classical radius”. In such a case one has that the real
poles escape to infinity, reaching it for L = k; then they reappear on the imaginary
axis, tending to +i7~!, where 7 is the familiar parameter defined by 7 = e2/mc3.
In particular this has the fundamental consequence that for large enough cutoff the
solutions for generic initial data have runaway character, i.e. diverge exponentially
fast with time ¢ as ¢ — +o00, due to the presence of the pole in the lower half plane,
and also for ¢ — —o0, due to the other pole in the upper half plane.

In the literature it appears that the existence of oscillatory motions for “fat”
particles with positive bare mass was put into evidence particularly by Bohm and
Weinstein 19, after the classical works of Schott.[2?] The idea of such authors was
to find a relation between the bare mass mg and the form factor in order to have
exactly periodic (and thus non radiating) solutions for the complete system; moreover
they were stressing that such oscillations “do not constitute a form of instability,
as does the self-acceleration of the Dirac classical electron”. What we have shown
here for the case of the sharp cutoff is that the presence of nonradiating oscillatory
motions for “fat” particles (i.e. for particles with R > R) is just a premonition
of the appearence of runaway motions for “thin” particles (i.e. for particles with
R < R), and in particular also in the point limit. The classical radius R appears
thus as a critical radius or a threshold: for “thin” particles of radius R < R the

9
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present for larger radii. In fact for R > R the motions are just the smooth ones to
which we are accustumed in macroscopic electrodynamics, and the transition to the
absurd microscopic electrodymanics occurs with the premonition of the high frequency
nonradiating oscillations of Schott and Bohm—-Weinstein.

So, microscopic classical electrodynamics is qualitatively completely different
from the macroscopic one, and one could be tempted to decide to throw it out, be-
cause it could be “a waste of time to try to straighten it”. Another possible attitude is
to take the Maxwell-Lorentz equations seriously even for “thin” particles, and to try
to give sense to them by restricting the attention to a special class of initial data, as
was suggested by Dirac and will be recalled in the next section. This is the attitude
we are trying to pursue.

As a final comment we indicate how equation 12 allows one to understand qualita-
tively that the particle motion q(¢) in the point limit has to satisfy approximately the
Abraham-Lorentz equation for times larger than the characteristic time 7. Indeed,
defining ©

a(w) = lim a™(w),

one finds ~
Fext (w)
m + im7 w Sign[Im(w)] + %

a(w) = (13)
So the function a(w) has a cut on the real axis and two poles of the first order at the
points +i7~!. Thus, for positive times the upper pole gives an exponentially small
contribution which can be neglected after a convenient time. In such a limit equation
13 reduces to

(m — dwmTt + %)é(w) = f‘ext(w) ,

which, by performing the inverse Fourier transformation, gives the Abraham-Lorentz
equation
md — m7q = Fexi(q) — aq.

In an analogous way, for negative sufficiently large times one gets approximately a
similar equation with —7 instead of +7, namely

mq + m7§ = Fext(q) — aq

in agreement with the time reversal symmetry of the full problem.

We do not have time to report here on some numerical computations (see [18])
which illustrate very well the role eof the electromagnetic mass as a function of the
cutoff.

QUANTUM-LIKE ASPECTS OF CLASSICAL ELECTRON THEORY

In his paper of the year 1938, where the relativistic version of the Abraham-
Lorentz equation was introduced, Dirac [?Y] pointed out that generic solutions of such
an equation are absurd, presenting the so called runaway character. Apparently, the
scientific community has not yet really digested this fact, which in our opinion is of
great importance; so we concentrate now on it and on its qualitative implications.

The runaway solutions were already mentioned in the previous section. But
the simplest example in which they occur is the nonrelativistic Abraham-Lorentz

10
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for the acceleration a(t), namely ( for ¢ > 0) 7a = a. The general solution is then
a(t) = aget/™, where ag is the initial acceleration. So the solution for the free particle
explodes (i.e. diverges exponentially) for positive times, unless one takes the initial
datum ay = 0, which gives the “physical solution” a(t) = 0. It is rather easy to
understand by qualitative arguments that runaway solutions occur generalically for
the AL equation with an external force (see [22] and also [23]). Moreover, as should
be clear from the discussion of the previous section, the generic runaway character is
a property of the complete system and not just of the particle equation. Thus, for
generic initial data microscopic classical electrodynamics is absurd.

One has then the following general mathematical problem. Given an initial “me-
chanical state” (qo, vo), does there exist an initial acceleration ag (in the case of
the AL equation) or an initial field (in the case of the complete system) such that
the corresponding solution does not have runaway character? For example, in the
case of a scattering problem, the nonrunaway character could be defined by the “final
condition” a(t) — 0 as t — oco. In geometrical terms (considering for example of the
AL equation) one asks whether there exists in the complete phase space (q,v,a) a
surface constituted of trajectories not having runaway character. Moreover, one has
the problem whether such a surface can be expressed in the explicit form a = a(q, v)
(one speaks in such a case of “uniqueness” of the runaway solutions, in the sense that
the nonrunaway solution is then uniquely determined by the mechanical state). The
idea of Dirac was to considee electrodynamics of point particles as defined only for
initial data restricted to such a “physical surface”.

From the mathematical point of view, the problem of the existence of the physical
surface in the case of the AL equation was solved positively by Hale and Stokes 24l
in the year 1962, for external forces of quite general a type. But in general there
is no uniqueness. In fact this was already known long ago to Bopp 25! and Haag, [?!
who gave an example with two solutions; but this was apparently forgotten, being not
even mentioned in the most popular handbook on electron theory. 26! However, this
nonuniqueness property was encountered again quite recently, 22 and even understood
in terms of familiar concepts of the theory of dynamical systems. The case dealt with
is the one—dimensional scattering of a particle by a barrier, and the nonuniqueness
is described as follows: there exists an interval of energies for which there are any
number of distinct nonrunaway solutions, that turn out to be divided into two classes.
The first class corrsponds to solutions reflected by the barrier, and the second one to
solutions transmitted beyond the barrier (for the same initial mechanical data!); so
one is here in presence of a classical effect qualitatively analogous to the tunnel effect.

Now, is this fact, namely the occuring of a phenomenon qualitatively analogous
to a quantum one already within the framework of classical electron theory, just an
accidental fact? In our opinion it is not so. The deep reason is that classical electron
theory in the sense of the “physical solutions” a la Dirac described above is not at all
the standard classical electron theory. As we tried to show, classical electrodynamics
loses sense for point particles (or more precisely alreday below the so called “classical
radius”), and so one could just abandon it. Another possibility is to try to keep it in
some extended sense, for example just by taking the Dirac’s point of view of restricting
it to the “physical surface”. But notice that such a prescription is a kind of nonlocal
one, because it is a prescription on the “final time”, which mathematically leads to
a kind of Sturm-Liouville problem. So it is not astonishing to find that such a new
classical electrodynamics presents peculiar properties with respect to the standard (or
macroscopic) one, which deals instead with “fat” particles, having dimensions larger
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Ltne s0—Called ClassiCal radlius.

We quote in passing two examples on which some of us are presently working.
First, 27 on can show that the microscopic classical electrodynamics ¢ la Dirac dis-
cussed here leads to violations of the Bell inequalities (think of the initial acceleration
as the hidden parameter, and take into account the nonlocality — or passive locality in
the sense of Nelson — implied by the Dirac prescription). Second, [28] in the problem
of the scattering of electrons by an uncharged conducting sphere one finds diffraction
patterns corresponding to electron wavelengths of the order of one hundredth of the
de Broglie wavelength.

This second fact might appear astonishing at first sight, but is in fact quite
obvious. Indeed, for what concerns the wavelike properties of the classical electron,
they are just due to the wave properties of the field which is intrinsically related to
the particle (think of the complete Maxwell-Lorentz system). For what concerns the
appearence of an action of the order of one hundredth of Planck’s constant, this is
just due to the fact that in classical electron theory one has available the action e?/c,
which is just equal to (1/137)h.

Now, the fact that the action e?/c naturally enters in problens of classical elec-
trodynamics is very well illustrated by the following example, where reference is made
to elementary formulas that can be found in the Landau handbook but, as far as we
know, were never understood previously in this way. 2% The problem is the scattering
of an electron by a nucleus, with atomic number Z. In the Landau handbook one
finds the formula for the emitted energy AE (computed in first order approximation
by Larmor’s formula along the trajectory of the purely mechanical approximation);
the formula is a complicated one depending on Z. One also finds a formula for the
emitted spectrum, which was known since always (particularly by Kramers) to de-
cay exponentially at the high frequencies, so that there is a corresponding cut—off
frequency w; the formula for @ is also a complicated one depending on Z. But for
the ratio AE /w, which is an action, one finds the simple formula AE/w = %(v /c)?,
which is independent of Z and exhibits indeed e2/c, namely essentially a hundredth
of h.

In conclusion, we hope we were able to show that classical electron theory can be
extended to point (or microscopic) particles in an interesting way, leading to a theory
which presents some aspects reminiscent of quantum aspects.
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