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Abstract

We study the dynamics of a chain of coupled particles subjected to
a restoring force (Klein-Gordon lattice) in the cases of either periodic or
Dirichlet boundary conditions. Precisely, we prove that, when the ini-
tial data are of small amplitude and have long wavelength, the main part
of the solution is interpolated by a solution of the nonlinear Schrodinger
equation, which in turn has the property that its Fourier coefficients de-
cay exponentially. The first order correction to the solution has Fourier
coefficients that decay exponentially in the periodic case, but only as a
power in the Dirichlet case. In particular our result allows one to explain
the numerical computations of the paper [BMPO7].

1 Introduction.

The dynamics of chains of coupled particles has been the object of a huge
number of studies, but only recently some numerical works (see [BG08, BMPO07])
have shown that the boundary conditions have some relevance on FPU type
investigations. The goal of the present paper is to study analytically the effects
of the boundary conditions (BC) on the dynamics of a simple 1-dimensional
model, namely the so called Klein Gordon lattice (coupled particles subjected
to an on site restoring force). Precisely, we concentrate on the cases of periodic
and of Dirichlet boundary conditions, and use the methods of normal form to
study the dynamics. This leads to a quite clear understanding of the role of the
boundary conditions and to an explanation of the numerical results of [BMP07].
On the contrary, our theory does not allow one to explain the results of [BGO0S].

More precisely, we study the dynamics of a large lattice corresponding to
small amplitude initial data with long wavelength; we show that if the size N

is large enough and the amplitude of the initial excitation is of order u := %,
then the solution z has the form
2= pz®(t) + 1Pz (t) (1.1)



up to times [t| < O(p~2). In (1.1) 2% is interpolated by a solution of the non-
linear Schrédinger equation (NLS) and has a behaviour which is independent of
the BC. On the contrary z; depends on the BC. Precisely, its Fourier coefficients
decrease exponentially in the periodic case, but only as |k|=2 in the Dirichlet
case.

The theory we develop in order to give the representation (1.1) provides a
clear interpretation of the phenomenon. Indeed, it turns out that the normal
form of the system is independent of the BC (and coincides with the NLS),
but the coordinate transformation introducing the normal form has properties
which are different in the periodic and in the Dirichlet case. In particular, in the
Dirichlet case it maps sequences which decay fast into sequences which decay
as |k|~3. This introduces the slow decay in the Dirichlet case.

It should be pointed out that our result still depends on the size N of the
lattice.! Nevertheless, we think that (within the range of validity of our re-
sult) we clearly show the role of the boundary conditions and provide a good
interpretation of the numerical results.

The present situation has many similarities with the one occurring in the the-
ory of the Navier Stokes equation (see e.g. [Tem91]), where it is well known that
the spectrum of the solution depends on the boundary conditions. Moreover, we
recall that a power law decay of localized object has been previously observed in
nonlinear lattice dynamics in [DP03, Pey04, Fla98, GF05] and that the connec-
tion between the nonlinear Schrédinger equation and the dynamics of long chains
of particles was studied in many papers (see e.g. [Kal89, KSM92, Sch98, GMO0G]).

The paper is organized as follows: in sect. 2 we present the model, state
our main result and discuss its relation with numerical computations. In sect.
3 we give the proof of the normal form construction. In sect. 4 we use the
normal form (in a way similar to that introduced in [BCP02, BP06, Bam05])
and deduce the proof of the decomposition (1.1). Some technical details are
deferred to the appendix. Each section is split into several subsections.
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2 Main result

In this chapter we present the model, we recall some numerical simulations (see
[BMPO07]) which clearly show the dependence of the metastable Fourier decay

1However our normal form holds in the region of the phase points with small energy density
€2, independently of N. The limitation ¢ ~ u comes from the fact that we are only able to
study the dynamics of the NLS in this situation.



on the boundary conditions and we finally state the main theoretical result and
use it to explain the numerics.

2.1 The model.

We consider a chain of particles described by the Hamiltonian function

2
Hipg) = S 2+3 Vi) + > Wiy —a-0) 1)
J j j
where j runs from 0 to N in the case of Dirichlet boundary conditions (DBC),
namely go = g¢n+1 = 0, while it runs from —(N +1) to N in the case of periodic
boundary conditions (PBC), i.e. ¢—ny—-1 = gn+1- The corresponding Hamilton

equations are

G =—=V'(q;) = W'(gj — aj-1) + W'(gj+1 — q5) - (2.2)
We recall that the standard Fermi Pasta Ulam model is obtained by taking

3

V=0and W(x) = % +at + 5%4. Here instead we will take

1 1 1 1
V(z)=z2®+ zaz® + =p2* , W(z)=zaz?, o,3,a>0. (2.3)
2 3 4 2
Explicitly our Hamiltonian has the form
H = Hy+ Hi+ Ho, (2.4)
2, 2 2
3 pita  (4—gi-1)
HO(pv Q) : 9 +a ) ) (25)
J
g q
} : J — 2 : J

Remark 2.1. In the case where
Viz) =V (—x) (2.7)

the equations (2.2) with PBC are invariant under the involution ¢; — —q_;,
p;j — —p—;. As a consequence the submanifold of the periodic sequences which
are also skew-symmetric, is invariant under the dynamics. For this reason when
(2.7) is fulfilled the case of DBC is just a subcase of the case of PBC. This
happens in the standard FPU model and also in the case of the Hamiltonian
(2.1) with the potential (2.3) and & = 0. The case a # 0 is the simplest one
where a difference between DBC and PBC is possible.

Consider the vectors

N+1SIH<N—+1)’ k:17...,N,
1 (Jk_ﬂ) -1 N
R COS , yee )
ex(j) = § VIO AN i (2:8)
ON+2’ =0,
(=1)°
N3 k=-N-—-1,
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Figure 1: Averaged harmonic energies distribution. DBC (dots) and PBC
(crosses) with N = 511, a = 0.5, £ = 0.001, 7 = 105. Panel (a): o model
with oo = 0.25. Panel (b): 5 model with § = 0.25.

then the Fourier basis is formed by éj, k =1,..., N and dpp = /2 in the case
of DBC, and by éx, k= —-N —1,...,N and dpp = 1 in the case of PBC. Here
we will treat in a unified way both the cases of DBC and PBC, thus we will not
specify the set where the indexes j and k vary. Introducing the rescaled Fourier
variables (P, 4r) defined by

= b - G o (; .
p]f;ﬁpk ) - ijmkm, (2.9)

where the frequencies are defined by

km
_ .2
wk\/1+4asm <2N+2)’ (2.10)

the Hamiltonian Hj is changed to

~2 A2
Dr + 4
HO:Zwk%. (2.11)
k
2.2 The phenomenon and its numerical evidence.

Let us define the energy of a normal mode and its time average by

A2 42 t

+ 1

Ek = wk]%, <Ek>(t) = ;/ Ek(s)ds .
0

In the case of PBC the oscillators of index k& and —k are in resonance, so the

relevant quantity to be observed is the average (Ey) = +((Ex) + (E_x)).
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Figure 2: DBC with parameters N = 511,a = 0.5, = 0.1,T = 10°.
Panel (a): distribution of (Ey) in semi-log scale.  Energy densities:
& = 0.05,0.025,0.01,0.005,0.001. Panel (b): distribution of (Ej) in log-log
scale. Energy densities: £ = 0.01,0.001,0.0001,0.00001.

Take an initial datum with all the energy concentrated on the first Fourier
mode with energy density £ = Hy/N = 0.001. Integrating the system numeri-
cally one can see that after a short transient time, the averages of the harmonic
energies relax to well defined steady values, which persist for very long times.
In figures 1 we plot in a semi-log scale the time-average energies (Ey)(T) (or
(Ex)(T)) at time T = 10° (subsequent to the relaxation time) as a function
of the index k. The parameters in the two panels are « = 0.25, 8 = 0 and
a = 0, 8 = 0.25 respectively. In both cases a = 0.5. In each distribution the
dots refer to the DBC case while the crosses pertain to the PBC one?.

While in panel (b) one clearly observes a perfect overlapping of the expo-
nential part of the decays, in panel (a) a sharp difference arises. Indeed, while
the PBC solution is once more characterized by an exponential distribution, in
the case of DBC one sees a richer behavior: at an energy approximately equal
to 1078 there is crossover and a new regime appears. Nevertheless, a striking
similarity among the exponential part of the two dynamics is evident.

To describe more carefully the situation in the case of DBC we plot in figures
2 four different distributions of the quantities (F}), in a semi-log and in a log-
log scale respectively. They correspond to different values of the energy density
(see the caption). In the first panel we plot the first part of the distribution: we
notice that by decreasing the energy density, the slope of the exponential decay
of the low frequencies increases. In the second figure, instead, we focus our
attention on the second part of the distribution: we see that the corresponding
curves are parallel. So a change of energy only induces a translation. Except for
the last part, that we will interpret as due to discreteness effects, the curves are
very well interpolated by a straight line giving a power decay with an exponent
close to —6. A similar behavior is also obtained if one excites a few modes of
large wave length.

2 Actually we plot only modes with odd index, since, as shown in [BMP07] the dynamics
involves only modes with odd index k.



2.3 Explanation of the phenomenon.
In order to state our main result we need a topology in the phase space.
Definition 2.1. Let us define the spaces 6?)0 of the sequences p = {pi} s.t.
IplZ 5 = p Y [k M e ]* < oo, [k] := max {1, |k]} (2.12)
k
and the phase spaces P, 1= éia X éia > (p, q).

The main part of the solution will be described by the NLS (its Hamiltonian
will appear as the first term of the normal form, see Corollary 3.5), so we
consider a smooth solution ¢(x,7) of the nonlinear Schrédinger equation

3 10
—i0r 0 = —Owwo+y9l0l*, 7= — (ﬁ ~ gaQ) , zeT:=R/27Z (2.13)

For fixed 7 we will measure the size of a function ¢ by the norm

loll3 o = D _[K*e* Moy (2.14)
k

where ¢y, are the Fourier coefficients of ¢, which are defined by

p() =Y gréi(x); (2.15)
k

here & (z) is the continuous Fourier basis,

ﬁcoskz k>0

e 1 _
PD oin(_
NG sin(—kz) k<O

Remark that the definition of the norm (2.14) for interpolating functions differs
from the definition (2.12) of the norm of sequences, because of the factor u
contained in the latter one.

Remark 2.2. The dynamics of (2.13) is well known [FT87, GK03]. Precisely, if
~v < v* with a suitable positive constant v*, then Vo > 0 there exists 0 < ¢’ < o
such that from [|¢(z,0) =1 it follows ||¢(z,t)||, ., < Cs ~ 1 for all times.

||s,o’ Hs7o'

Corresponding to ¢(z,7) we define an approximate solution of the original
model by

24(t) = (p4(t), ¢4 (1)) == (Re (e"p(ug,ap®t)) , Im (e”o(pj, ap’t)))  (2.17)

Our main result concerns the comparison between z%(t) and the solution z(t)
of the original system with initial datum

2(0) := pz*(0)



Theorem 2.1. Assume ngo(x)Hs o <1, then VT > 0 there exists p* > 0 with

the following properties: if ju < . then there exists z1(t) defined for |t| < Tu=2
such that
2() = (1) + 1221 (1) (2.18)
where z% is the approximate solution just defined and,
1)l <C (2.19)
with

<s, o’ >0 if PBC
$<s<32, o=0 ifDBC

o=

(2.20)

The above result gives an upper estimate of the error z1(¢). We want now
to compute it at first order and for short times, i.e to construct the first cor-
rection to z%. To this end we anticipate from the theory of next sections that
the transformation putting the system in normal form is similar to the map
o(x) — p(z) + cup(x)?, with a suitable complex constant c. Now, the wanted
correction will be constructed as follows: first introduce the normalizing coor-
dinates, then evolve linearly the so obtained data, finally transform back to the
original coordinates. To state in a precise way the result we assume, for sim-
plicity, that ¢ is purely imaginary, i.e. that the initial datum has zero velocity,
and consider the complex function ¢ with Fourier coefficients given by

($10)1 == 6%';5 [deint — 3¢t — 72 _ Giert 4 6i] Dy, (2.21)

where ®(z) := —ip®(z)?, and let 219 = (p10, q10) be the sequence with

P10, +1iqio,;

7 = Y10(pg) -

We have the following

Theorem 2.2. For any 0 < b < 1, one has
<ou'~t < T 2.22
[21(t) = z10(O) |y o < Cp ™", Jt[ < m (2.22)

The above theorems provide the interpretation for the numerical results of
the previous paragraph. Referring to fig. 1, we identify the exponential part of
the distribution as due to the main part of the solution, namely z%, which is
the same for both the boundary conditions. In the case of PBC, the inequality
(2.19) implies that also the error z7 is exponentially decreasing; thus the whole
solution is in particular exponentially localized in Fourier space.

In the case of DBC the situation is different. Indeed the correction, namely
21, is ensured to have coefficients such that the series with general term |k|%*|21 x()|?
is convergent; this is very close to say that

R C
21k < et



which, taking s very close to 5/2 essentially gives a power law decay like |k|~C.
Then Theorem 2.2 shows that this is actually optimal, as seen by taking

©(x) = isinz (2.23)
(as in the numerical computations). Indeed in such a case one has
2 . A1
Dy = (sm2 x)k ~ 13 (2.24)

so that (2.22) shows that after a time of order 1 the energy of the k-th mode is
of order 1% /kS as shown by the numerics.

3 The normal form construction.

In this part we introduce and use the methods of the normal form theory for the
proof of our main result. Accordingly one looks for a canonical transformation
putting the system in a simpler form.

3.1 Preliminaries and main claim.
We first need to introduce some notations:

e 2z will denote a phase point. In particular a phase point can be represented
using the coordinates (p;, g;) of the lattice’s particles or the Fourier coor-
dinates (P, k).

e In the phase space we will also use coordinates ¢ defined by
~ D tigk
(e 5

and, in real space

vy =Y Prér(d)
k

e Given a Hamiltonian function H, we will denote by Xz the correspond-
ing Hamiltonian vector field. Thus if one uses for example the variables

(pj,qj), one has
OH OH 0OH
XH(p7Q) = <_7_) or XH('I/)) = <1——)
9q; " Op; b;
Correspondingly we will write the Hamilton equations of a Hamiltonian

function H by
z = XH (Z) .



e The Lie transform <I>§< generated by a Hamiltonian function yx is the time
one flow of the corresponding Hamilton equations, namely

d
BLm L, Sele) - X, (0) . 0~ 1.

e The Poisson bracket {f, g} of two functions f, g is defined by

(ﬁ@ - ﬁ@)
8qj 8pj 8pj aq]' '

{f,9} =dfX,=)

J

The normalizing transformation will be constructed by composing two Lie
transforms 77 = @;1 and T = <I>§<2 generated by two functions x; and ya.
Taking x; and x2 to be homogeneous polynomials of degree 3 and 4 respectively,
an elementary computation shows that

HoT, 0T, = Hy (3.1)
+ luHo} + Hy (3:2)
+ D Hob + 5 (s b ol + s B + o (33)
+ h.o.t. (3.4)

where the term (3.2) is a homogeneous polynomial of degree 3, the term (3.3)
has degree 4 and h.o.t denotes higher order terms. We will construct a function
X1 such that (3.2) vanishes and we will show that there exists a x2 such that
(3.3) is reduced to a form which as simple as possible, namely the normal form
(see below for a precise definition).

To make precise the construction we need to split Hg as follows

P+ di
Hy = Hy+Ho, Hoo(z) == E 5 (3.5)
%

A2 22 4sin? ( GEm
— Pk + 4 — _ (2N+2)
HOl(Z) = ZykT y Vi = kal 7GT S 2a
k
Definition 3.1. A polynomial Z will be said to be in normal form if it Poisson
commutes with Hyg, i.e. if
{Hoo, Z} =0. (36)

Remark 3.1. In order to study the system with DBC we will always extend
the system to a system defined for j = —(N + 1),..., N with PBC, which is
invariant under the involution ¢; — —q—;, p; — —p_;. When a = 0 the
extension is obtained without modifying the equations, while, when a # 0, the
extension is given by the system

G =pj, Pj=—¢ —a(bdiq); —as;q; — Bqj, (3.7)



where s; is a discretization of the step function given by

1 ifj>1
s;=40 ifj=0 (3.8)
1 <1
and
(A19)j = 2q5 = gj+1 — gj-1, (3.9)

is the discrete Laplacian. The need of the introduction of the sequence s; is at
the origin of the finite smoothness of the solution in the DBC case.

We are going to prove the following

Theorem 3.1. Assume a < 1/3. Then, there exists an analytic canonical
transformation z = T (1), defined in a neighborhood of the origin

HoT = Ho() + Z($) + R() . (3.10)

where Z is in normal form and the following holds true

1) The remainder, the normal form and the canonical transformation are
estimated by

IXr@W)llso < CrIVIL, . (3.11)
IXz)l,, < Czll¥l, (3.12)
o =TW,e < Crlvl:, (3.13)
where ) _
5<s, oc>0 i PBC (3.14)

1 5 _ -
5<s<3, o=0 ifDBC
and Cr.z 1 are constants independent of N.

2) One has T =1+ X, + Rr with x10 given by
(6% 1 3 1—3 —2 c 127
XIO("/J) = _m ; (gwj - 51/13 + 37/}j¢j - 31¢j¢j)- (3-15)

and )
IRT(W)ls—s, .0 < Crz ™ ¥l (3.16)

where the parameters vary in the range

0§51<57%<2, o =0 for DBC

0§81<57%,81§2,020f0TPBC (3.17)

10



3) The normal form has the following structure
Z(wv’l/_)) =Zo+ 2y

where

Zo =7 " A= g (6 - %oP) (3.18)
J

and ;
Xz, (O)ls—s, 0 < O 19I5, (3.19)

with the parameters varying in the range (3.17).

The proof of this theorem is divided into three parts. In the first one we
will prove an abstract normal form theorem under the assumption that the
non-linearity corresponding to the system (2.4) is smooth. In the second part
we will prove that this smoothness assumption is satisfied by the system under
consideration. In the third part we will compute the first order term of the
normal form and of the transformation and we will estimate the corresponding
errors.

We point out that there are 3 delicate points in the proof: the first one is
to solve the homological equation (see Lemma 3.3); the second one is to prove
smoothness of the perturbation in the optimal space, and the third one is the
actual computation of the main part of the normal form and of the canonical
transformation.

3.2 An abstract normal form theorem.

First we recall that a homogeneous polynomial map F' : P, , — Ps , of degree
r is continuous and also analytic if and only if it is bounded, i.e. if there exists
a constant C' such that

1F)0 < Clizllyq V2 € P (3.20)

Definition 3.2. The best constant such that (3.20) holds is called the norm of
F, and will be denoted by | F'|s,,. One has

|F|5,0 ‘= sup HF(Z)H

21,0 =1

(3.21)

s,0 °

Definition 3.3. A polynomial function f, homogeneous of degree r + 2, will be
said to be of class Hj , if its Hamiltonian vector field Xy is bounded as a map
from Ps , to itself.

Theorem 3.2. Let Hy be as above (see (2.11)) with a < 1/3. Assume that
H; € Hgﬁa for some fized s,0 and for j = 1,2; then there exists an analytic

11



canonical transformation T = Ty 015, defined in a neighborhood of the origin in
Ps,o such that
HoT=Hoy+Z+R, (3.22)

where Z is in normal form and the remainder, the normal form and the canon-
ical transformation are bounded by

4

[Xr()ls0 < Crlzllso - (3.23)
IXz()l,o < Czllzllyy (3.24)
Iz =T, < Orl=lZ,. (3.25)

with constants Cr,z7 depending only on a, | Xu, |516, | Xu, |516.

The rest of this subsection will be occupied by the proof of Theorem 3.2.
First we need some simple estimates.

Lemma 3.1. Let f € H. _ and g € H.?

s,0 5,07

then {f,g} € HZ:;”, and
| Xirigp |sr < 11 +2) | Xy oo | Xg |oo (3.26)
Proof. First remember that
Xipgy = [Xp; Xg] = dXp Xy —dXo Xy . (3.27)

We recall now that, given a polynomial X of degree r + 1, there exists a unique
(r + 1)—linear symmetric form X such that

then, (3.27) is explicitly given by

Xifigy = (r+ 1))?,«()(9(2),2,2, v 2) = (r + D) Xg(Xf(2),2,2,...,2)  (3.28)

moreover from (3.21) one has
X za)| < 1X bzl 2l (3.29)

from which the thesis immediately follows. o

Remark 3.2. Let f € H” _, then the corresponding vector field generates a flow

s,0

in a neighborhood of the origin in P, .

Lemma 3.2. Let x be of class HY ,, and let f € HL',. Let ®) be the Lie
transform generated by x, then each term of the Taylor expansion of f o @i 1
a polynomial with bounded vector field.

12



Proof. Tterating the relation

d
S(f o) =[x, [} o @

one gets that the Taylor expansion of f o <I>§< is given by

fody = Y f

1>0
1
fo =, fzij{xvflq}, I>1.
Then, the thesis follows from Lemma 3.1 O

A key role in the proof of Theorem 3.2 is played by the so called homological
equation, namely

{xj; Ho} + f5 = Z; (3.30)

where f; € HJ, is a given polynomial, and x; € H.,, Z; € HI , are to be
determined with the property that Z; is in normal form.

Lemma 3.3. Consider the homological equation (3.30) with f; of class Hi,,
with j = 1,2. Assume that a < %, then (3.30) admits a solution x;, Z; € Hi,
with 1

Xy lso L —/— | X¢, |so- 3.31
| lev _2(1*3CL)| f]la ( )
Proof. First we rewrite the homological equation as

(Lo + L1>Xj = fj — Zj (332)

where the operators Lo and L are defined by

Lox; == {Hoo,x;} , Lix; :={Ho1,x;}

and Hyp and Hy; are defined by (3.5). We will invert Ly and solve (3.32) by
Neumann series (see [BDGS07]).

We begin by showing that the space HQU, 7 < 2 decompose into the sum of
the kernel Ker(Lg) of Ly and of its range Im(Lg). Moreover, we show that Lg
is invertible on its range.

Given f € HJ , with j = 1,2 define

Z = %A‘HW@»ﬁ’ (3.33)

1 r t t
v = ?/0 EF (U2) - Z (V(2))] dt (3.34)

where ¥! is the flow of Xp,, and T = 1 is its period. Then an explicit compu-
tation shows that Z €Ker(Lg), and that (see [BG93])

Lox=f—-2. (3.35)

13



Thus denoting by @ the projector on the kernel of Ly, and P = I — @ the
projector on the range, one sees that (3.33) is a concrete definition of @, while
(3.34) is the definition of Ly ' restricted to Im(Lg). It remains to show that
Z,x € H] . Remark that, since ¥* is a canonical transformation one has

Xy(2) = XQf(z)z%/OT (T 0 X, 0 W) ()dt | (3.36)
1 T
Xy(z) = XLolpf(z)?/O ("o XppoWh) (2)tdt,  (3.37)
From which it follows that
| Xor [so < | X1 s - (3.38)
| Xisins e = 5 1Xpr b <5 1 X5 Lo = [IL5"] < 5 (339

where the last norm is the norm of Ly ! as a linear operator acting on the space
Hl 5, and thus Qf € H] ,, Ly'Pf e Hi

"We come now to the true homological equation (3.32). We look for a solution
x; = Px; and Z; = QZ;. Applying P or @ to (3.32), remarking that since

[Lo, L1] = 0 one has [P, L] = [Q, L1] = 0, we get
(Lo+Li)x; =Pf;, Qfi=2;. (3.40)

The first equation of (3.40) is formally solved by Neumann series, i.e. defining

_ _ ko _
(Lo+ L) = Y (-1 (L5 L) Lyt . xg o= (Lo + L) *PSfy . (341)
k>0
To show the convergence of the series in operator norm we need an estimate of
IIL1||. To this end remark that, for any s,c one has

| XHgl |SO’ S 2a’ Y

which using Lemma 3.1 implies || L1]| < 2a(j+1) < 6a. It follows that the series
(3.41) converges provided a < 1/3, which is our assumption, and that
< 1

~ 2(1-3a)’

which concludes the proof. O
End of the proof of Theorem 3.2. From Lemma 3.3 one has that the solution y1
of the homological equation with f; = H; is well defined provided H; € H;U
for some s,0. Then 1 generates a Lie transform 77 which puts the system in
normal form up to order 4. Then the part of degree four of H o 77 takes the
form

(Lo + L1)~ | (3.42)

1 1
f2i= 5 O D Hodd + {x, Hid + Ha = 5 {xa, Hi} + Ho (3.43)

which is of class H2 . It follows that one can use the homological equation with
such a known term and determine a y2 which generates the Lie transformation
putting the system in normal form up to order 4. This concludes the proof of
Theorem 3.2. o

14



3.3 Proof of the smoothness properties of the nonlinearity
In this subsection we prove the following lemma

Lemma 3.4. Let H;, j = 1,2 be given by (2.4). Consider the vector fields
X, of the cubic and of the quartic terms of the Hamiltonian: they fulfill the
estimates

1 .
2 5 <SS o >0 if PBC
< 2 ’
X @, <G, {3250 D20 U000 e
and )
[ Xm, (2|, < G2 Hz||ig , 5<s,0 >0 both cases (3.45)
where we set G := | X, |516.

The proof will be split into two parts. First we show that it is possible to
prove the result working on interpolating functions, and then we show that the
“interpolating nonlinearities” have a smooth vector field when the parameters
s,o vary in the considered range.

Remark 3.3. Define T; as the map ¢; — qé-“ in the case of PBC, and [T1(q)]; =
q7s;j and [T(q)]; := ¢} in the case of DBC. Then the vector field Xz, has only p
components, moreover the norms are defined in terms of the Fourier variables,
so we have to estimate the map constructed as follows

.~ 1 .8 9k F S ~ -1

Qe — Q= ——=r>qj = drek(J)—Ti(q;) —
k \/‘U_k J - k () (])

F1 A 2 .

= P =y e(§) v b = Vorpi,

<.

It is immediate to realize that the maps 1 and 2 are smooth (the frequencies are
between 1 and 3) so it is enough to estimate the remaining maps. The remaining
maps essentially coincide with the map T;(q) read in terms of standard Fourier
variables (without the factors /wy). These are the maps we will estimate.

All along this section we will use a definition of the Fourier coefficients of a
sequence not including the factors \/wy, namely we define G by

g =Y akérlj) -
k

We start by showing how to use the interpolation in order to make estimates.
To this end we define an interpolation operator I by

(@)](2) = Ve () (3.46)
k
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We also define a restriction operator R that associates to a function the
corresponding sequence, by

[B(u)]j = u(pg) (3.47)

We remark that the operator R is defined on functions which do not necessarily
have finitely many non-vanishing Fourier coefficients.

Remark 3.4. With the definition (2.14) one has

allso = llallso - (3.48)
Lemma 3.5. For any s > 1/2 there exists a constant Cg(s) such that one has
[Rully o < Co llull; o (3.49)
Proof. Denote ¢; = (Ru);; using the formula
P e . .
er(uj) = ek+2(N+1)m(MJ) = ﬁek(.j) (3.50)
one gets
N (1) N
A ac . ~C . k+2(N+1)m N N A
g =Y wéi(ui) = Y Ve (i) ) — S i)
kez k=—(N+1) met H k=—(N+1)
from which .
. Uk4+2(N+1)m
Ge = Z ZkA2(N+1)m (3.51)

MEZL \/ﬁ
Let’s define
[k]sea\k\

o B k] s eIkl
'Ym,k(S,U) = [k+2(N+l)m}sea"k+2(N+1)m| B [k+2(N+1)m] e0lk+2(N+1)m|

2

and replace (3.51) in the norm ||¢||; , then we get

8,0
N
lalls, = w D [k Mg =
k=—(N+1)
N 2
_ Z [k]25620|k| Z Upra(Nt1ym| =
k=—(N+1) mez
N (5.0) 2
TYm,k\S,0) .
= Z [k]2s€20|k| Z %ukﬂ—Q(N-i-l)m <
k=—(N+1) mez, TS
N 5 [k/,]QseQO'\k\ )
< Z Z Yo 1 (8,0) Z m|uk+2(zv+1)m| <
k=—(N+1) \m€zZ mez Tm.k\®
2
< Go(s) [ully, -
Indeed, since k = —(N +1),..., N, we can estimate the two factors of v, 1 as

follows:
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|k|7 m:(]a

2(N + L)m + k| > [2(N + 1)|m| — |k]| >
20N + Dm+ k] = [2V + 1| |||—{N+1z|k|, m#£0,

which gives

ealkl
ol = 1
[ )
(] _ {m < e m =0,
[k +2(N + 1)m] |k+2(mr1)m| < 175 < [2—;1]’ m#0

which gives

[k] 2s 1
([kz—i—Q(N—i—l)m}) = s
O

Corollary 3.3. Let T : R2N+D) — R2N+HD) pe g polynomial map, assume that
there exists an “interpolating polynomial map T¢” such that T = RTI. If the
map T is bounded in some space H*?, with s > 1/2, then T is bounded in Zia.

Moreover one has
| T IS,U S CG I TC Is,a . (352)

Now we define the interpolating maps we have to study. They are T(u) :=
u!*1 in the case of PBC and Tf(u) = sgn(z)u?(z) and T5(u) := u® in the case
of DBC. Here we introduced the function

1 ifx>0
sgn(z):=4¢ 0 ifz=0
-1 ife<1

The estimates (3.44) in the case of PBC and (3.45) for both boundary conditions
are proved in Lemma A.1 by a standard argument on the Sobolev norm of the
product of two functions. We come to the estimate of T in the case of DBC.

We will denote by H? the subspace of H*° composed by the odd functions
u(z) on [—m, 7.

Lemma 3.6. For any 1/2 < s < 5/2, The operator
Tf (u) := u’sgn(z)
is smooth from H in itself and there exists Cr(s) such that

2
ITull, < C7 flull -

17



Proof. We begin with the case 2 < s < g First, observe that the function
T{(u) is odd when w is odd. We will prove the thesis by showing that the
second weak derivative d>T¢(u) of T¢(u) is in HS~2. First remark that, by an

explicit computation which exploits the fact that «(0) = 0 one has
d*Tf (u) = 2[sgn(z)(u?) + sgn(z)ud?u] .

We show now that both terms are in H~2. The second term can be considered
as the product of the function d?u € H:~? and of sgn(x)u. This last function
is of class H', as it is seen by computing its derivative, namely

d (sgn(z)u) = sgn(z)du(z) + §(x)u(x) = sgn(z)du(z)

which clearly belongs to L2. From Lemma A.1 it follows that the product
sgn(z)uld?u] € H*™2

Concerning the term sgn(x)(u'?), it can be considered as the product of

2 € H*~! and of sgn(x), which is of class H? for all » < 1/2, as it can be
seen by explicitly computing its Fourier coefficients. Thus Lemma A.1 gives the
result.

The case 1 < s < 2 is easier and works in a very similar way. Indeed,
since u(z)sgn(x) € H! and du(z) € H® with 0 < s < 1, the derivative
d(u?(x)sgn(z)) = 2u(z)(du(z))sgn(r) belongs to H* with 0 < s < 1, which
gives the thesis.

Quite different is the case % < s < 1, since by hypothesis no weak derivative
exists for the function u(z). We exploit the following equivalent definition of
the norm of the Sobolev space HE([—m,n]) with real exponent s

™ U 2
2=/ [ '|x_ P+Q'd dy, (3.53)

and the skew-symmetry of the periodic function u(z) € HS. We want to prove
that g(z) := u(z)sgn(z) € H* with § < s < 1; more precisely
s

||u(1:)sgn(x)||§ <4 ||u(:v)||2 % <s<1. (3.54)

The symmetries of g(x) on the given domain allow to simplify the integral in
(3.53)

™ 2
g\xr
lglly = 2/ /W' y|1(+2)5| drdy =
g | lg(=) —g(y)l?
= 2 =
/0/0 [ |1+25 + | + y|T+2s dxdy

WP |, Ju(z) -~ u(y)P
dxdy <
I [WMH% TR R

I
" lu(x )
/0 /0 |1+25 dmdy<4||u\| .

IN
S
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3.4 Computation of the normal form and of the transfor-
mation.

In this section we will concentrate on the case of DBC which is the most difficult
one. Indeed in the case of PBC the formal computations are identical, but the
estimates are less delicate.
Consider again the Hamiltonian (2.4), introduce complex variables &;,n;
defined by
pj +1ig; Pj — g
5] - \/5 ’ 77] - 1\/5 (355)

and split Hy = Hoo + Ho1 with

2 4 2
pjtaq;i .
Hoo = Y oL =ilgme (3.56)
J
Mo = S g -wer =g (A s
—27 2\ iv2 2 /[’
where (§;n) 42 =3, &m;-
Remark 3.5. The above splitting is different from the one introduced in (3.5)

which had been used in the proof of Lemma 3.3, and which was based on the
Fourier variables. In particular one has {Hgg; Ho1} = 0, but {Hoo; Ho1} Z 0.

In the variables (£,7) the flow ®! of Hog acts as follows
5] = eité-ja

—it
77]' = e 77]'.

(&) = { (3.58)

The third order part of the Hamiltonian takes the form
o & —in \*°
H,=— > j 3.59
=55 (222) s (3.50)

where s; is the discrete step function defined in (3.8). The form of Hy will be
given below.

Denoting
Eo = {Hoo, } y [:1 = {H()l; } (360)
we rewrite the homological equation for x; as follows
(ﬁo + El)Xl =H; (3.61)

which is solvable since the kernel of Lo + £1 = Lo + L; on polynomials of third
order is empty. The solution x; of (3.61) is unique and, as shown in Lemma
3.3, exists.

By a direct computation one has

X1 = Eo_lHl — (Eo + £1)71£1£0_1H1; (362)

we are going to show that the second term is much smaller than the first one.
Before starting, a couple of remarks are in order.
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Remark 3.6. The discrete Laplacian is £2-symmetric on periodic sequences

< Alga n >pe=< ga A177 >p2 .

(3.63)

This is an immediate consequence of the fact that in Fourier variables it acts as

a multiplier by a real factor.

Remark 3.7. In Fourier coordinates the discrete Laplacian A defined in (3.9)
acts as a multiplier by sin? ku. It follows that it has norm 1 when acting on

anyone of the spaces £2 ,. Moreover, since
|sin?(kp)| < k*1pst, 51 € 10,2], kp € [0,

one also has
[A1Ells—s, 0 S B €l s1€[0,2].
From (3.64) and (3.57) it follows

. 1
X701 (€50 < Cla)p™ 1€ M0, 0<s1 <53

Lemma 3.7. Assume a < %, then x1 = X10 + X1r with

o Lg 134 2 <2
x10(§,m) = o3 zj: (géj -3t 3&m; — 3, |,

and there exists Cs(a, G1) such that

S1 2
[ X0, (€M, .0 < Csr™ [[(E5 -

with
0§51<57%<2, o =0 for DBC
0§51<57%,51§2 o >0 for PBC

Proof. According to (3.62), let’s define

(3.64)

(3.65)

(3.66)

X10 = Lo ' Hy, xir = —(Lo + L£1) " Lix10 = —(Lo + L1) " Lix10.

Since x10 solves the homological equation {Hoo, x10} = Hi, it can be explicitly

computed by

x1w0(&m) = /H1(<I>t(«£,77))dt:

0

@ L3, i3 2 )
— 76\/52(9] (ggj + §77J — 3£j77j +31§j7]j

which also implies

| XXIO |s,<7 S | XH1 |s,o’-

1
2
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The thesis follows from (3.28), (3.42) and (3.64). O
We move to the second homological equation

{X27H0}+I~‘IQ =7 (367)

where Hy = H2+% {x1, H1} can be split according to (3.62) into Hs = Hog+ Hoy
with 1 1
Hy = H2+§{X10,H1}, Hyy = §{X1T,H1}- (3.68)

More explicitly, the leading term Hyy is composed of

1 . .
5 Do i} = (& + 4iln; + 1085 — 4igm) + 1)),

o
24 &
J
p 4 _ gie3 2.2 | gi¢ 3 o4
Hy, = 1_62 (5] — 4ig5n; — 65505 + 4ig;m; Jrﬁj)-
J

Before proceeding, it is useful to perform the change of variables

\_ Pr i

Py, vk Y = ;T/Afkék(j) - (3.69)

which puts the quadratic part into diagonal form. This implies a modification
of Hyg, which however is of higher order and therefore will be included into the
remainder terms. Indeed, the Lemma below shows that the difference between
£ and ) is small

Lemma 3.8. For any 2 > s1 > 0 it holds true
1€ =Vl o < an” [Wllss, o > Nin=2l,, S an™ [0l » . (3.70)
> 1 >0
§s>—,0 .
2" =

Proof. By definition

2

le=vlE, = i, - H(EE ) <
k
< STV, — 120+ 1)

k

a Taylor expansion of the frequencies wy gives

1 .
|\/u_}k o 1|2 < Z(12481114 <2N7j_2> < 002M2&1k251

which is the thesis.
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Corollary 3.4. In terms of the variables 1,7 one has Hy = Hoo + Hoy where

2
Hao(p,9) = 523 () + 40, — 100 +4iv,%; + 5, ) +
J

+ 1—662_(1/1?7411#?%+6|¢j|474iwj-’+aj), (3.71)
J

and there exists Cy(a, G1) such that

| X #r21 (0,9)] < Cop* |92, (3.72)

§—81,0 —

Just averaging (3.71) with respect to the flow ®¢ it is now immediate to get
the following Corollary.

Corollary 3.5. The normal form Z is composed of two terms, Z = Zy + Z,,
where the leading term Zy is smooth and reads

aw =il =g (r-get). e
J

while the remainder is small

|W||3 0§31<3—%<2,U:OforDBC
5,0 0§31<s—%,51§2,020f0rPBC
(3.74)

1Xz, (D)l s—s,,0 < Cop™

Thus we have proved that the formula for Zy holds. The formula for xio
implies that the canonical transformation has the structure (3.15) and this con-
cludes the proof of Theorem 3.1.

4 Proof of Theorem 2.1

To discuss this issue we first write the equations of motion of the first part of
the normal form, namely of Hy + Zj, in the form

i = (Av); — uilsl* (4.1)

where A is a linear operator which in the Fourier variables acts as a multiplier
by wi =1+ £p°k* + O(u*k*), namely

(Ab) = withy = (1+ Sp2K o+ O(u) = (Anzs) + O(u) . (4.2)
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Take now an interpolating function for v, in other words a function u such that

¥ = eu(uj) (4.3)

where € is a small parameter representing the amplitude. Then, up to corrections
of higher order, u fulfills the equation

—iuy = u 4 apPug, — eulul? (4.4)

which, up to a Gauge transformation and a scaling of the time introduced by

it

u(z,t) = ez, 1), 7= ap’t, (4.5)

gives the NLS equation

. €
1pr = —QPgz + ’790|90|27 Y=g (46)

In order to get a bounded value of v, from now on we take € = p.

We now compare an approximate solution constructed through NLS and the
true solution of our Hamiltonian system. More explicitly, corresponding to a
solution ¢%(t) of the NLS with analytic initial data, we define an approximate
solution ) of the original model by

P (t) = peo® (g, ap’t) . (4.7)

We also consider the true solution (¢) of the Hamilton equation of the original
model, with initial datum ’(/JJO» = pp®(ug,0).

From now on we will restrict to the case of DBC which is the complicate one
since the smoothness is finite.

We first work in the variables in which H is reduced to the normal form

H=Hy+Zy+Z.+R. (4.8)

Lemma 4.1. Let ¢ be the solution of the equations of motion of (4.8) with
initial datum (0) = T 1(4)°) and let ¥* be defined as in (4.7), then

Y =9"+
with 5 . T
2
||1/}1(t)||s,o§CM ) 5 <S<§ ) |ﬁ|S E

Proof. Observe that the NLS equation for ¢ may be rewritten as

V= Xbypso@*) + Xz(99) + Xr () — Xr, (%) (4.9)
where
Ri1 = (Ho—Hnrso)+Zr+R
Hypso(d) = Y. (1 + a%;ﬁlf) b
p
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so that X, fulfills the estimate

a a s1 a3 a4
1XR @ eo < Crp® 19 opao + Crt® 195 1ay 0 + Cr 1950 <
1 5
< 4 - =
< Gy, 5 <5<3

We compare 1® with the full solution ¥ of the equation

= Xp, (V) + Xz(¢) + Xr (1)

with initial datum o = 7 ~1(y)"), whose difference from ° (initial datum for
1) is controlled by

11Ol = [[0° = T @], o < Cr ||, < Cr®
So we apply the Gronwall lemma (see Lemma A.3) with
A=Xp,, P=Xz+Xg, R=Xg,,
obtaining that the error ¥y := 1 — 9* from the NLS dynamics satisfies

U1 = Ay + [P + 1) — P(p™)] + Xr, () (4.10)

and is estimated by

2 C 4 2
[1(0)l, < CueCnt 4 G5 (O —1) < O, <T/w? (411)
6

where Cg := 6C7.
O
When we go back to the original variables, the solution z may be split as

2=T(W) =T + 1) = pz® + p’z1 + (2

where we have defined

a X a _ a _ ,,2
RN . .S ) N e S VR DY

2 I w3
More precisely, we claim that it holds
Lemma 4.2. We have
[21]l5,0 < Ch, l[22]l5,0 < Co,

up to times s.t. |t| < #—7;
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Proof. The first inequality comes directly from the Lemma 4.1. Concerning the
second one, we remark that

z = TW"+vU1) =90+ + [T +1¢1) — (W + 1)) =
= YT+ Xy (00 + 1) + O + n |2 ) =
= Y7+ P1+ Xy () + Ol 0 9% 5.0 + 19 + 12 o)

(by differentiability of X, and Lagrange mean value theorem). Finally from
(3.66) with s; =1 we have

X (%) = Xy (%) + O [[0° )12, )

O
This concludes the proof of Theorem 2.1.
Proof of Theorem 2.2. We analyze the first correction z;. To this end we analyze

separately its two terms.
First remark that, from (4.10) one has ¢ = 910 + O(]¢t] ||¢a||§’ o), Where 119

solves the equation ¥y9 = Athy with initial datum 71 (¢°) —4°. Thus we have

1o = AT (Y0) — 1) = —eM Xy, () + O |42, ) (4.13)

We now analyze the other term. To this end, with the aim of considering the
short time dynamics, we rewrite the equation (4.9) as

P =i+ O(d) = ="y’ + O(ult]) .

Thus exploiting the differentiability of X,,, we have

PPz = —eM X, (00) + Xy, (790) + O(17]1]) - (4.14)
Since
AN (80) = s [3eAE + Bie o + A
6v/2
i - i . —2it 72
Ko (") = Tov2 [31/’362 " 6ilgo[* + e t%]

which yields to

2Z__a
H-z1 —6\/5

In the case of 19 = ipzg (zero velocity initial datum) we have

[3(e4 = eB1)ud + 6i(e™ = 1)[o[2 + (e — e~ 21)hg | + O (1),

@ At 2it —2it . At 1,2
21 = ——= |4e" —3e”" —e — 6ie”™" + 61| 25 + O(p|t
1= 57 [ ] 25 + O(ult])
which gives immediately the thesis. o
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A Appendix: a few technical lemmas.

Lemma A.1. Let u € H™? and v € H>? with s > % and s > r >0, 0> 0.
Then there exists C = C(r, s) such that the following inequality holds

[woll, o < Cllull,q Mol 5 (A1)

Proof. In this proof it is useful to use the expansion of v and v on the complex
exponentially. Thus we will write u(z) = >, ., @xe'*® /27, and remark that
if in the definition of the norm cf. (2.14) we substitute such coefficients to the
coefficients on the real Fourier basis, nothing changes. This is due to the fact
that both the basis of the complex exponentials and the real Fourier basis are
orthonormal. The advantage is that in terms of the complex exponentials the
product is mapped into the convolution of the Fourier coefficients, thus we have
simply to estimate the norm of the function whose Fourier coefficients are

(@ D) = > iy kb - (A.2)

As a preliminary fact we define the quantities

Rk
TEETL

and prove that there exists a constant C(s,r) such that

> i <C (A.3)

k ik

To obtain (A.3) we need some preliminary inequalities. For any positive a and
b one has

(a4 b)*" < 2% max {a;b}”" < 47(a* + b*") (A4)
and for any j and k in Z
1 1 1 1
, S — < — + . A5
T I R Y N [ e F e P

From (A.4), (A.5) and [j] < [j — k] + [k] it follows

% : (%)%S(#+W)%S
< (@ ) <
< (g 5o )

2s [ ;o k12s
which gives (A.3) with

k]

+

s ]

C—3x4’“xzi

- [k]Qs'
keZ
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Hence

uv]l?, = DU N Dy ikl <
k

J

. ; 1 L
et (32 2 ) (S otiinnt ) <
j k Yk k
< C? Z [] _ k]2r620\j—k\|ak_j|2[k,]2se2o|k||,ﬁk|2 <

IN

gk
< C? (Z [l]2r62<7l||,&l|2> <Z [k]2T€2UIkI|'ELk|2> ,
l k
which concludes the proof. O

We state here a version of the Gronwall Lemma which is suited for our
estimates. First we recall the following lemma.

Lemma A.2. Let x : [0,T] — P be a differentiable function and P a Banach
space. Assume that Yt € [0, T] it fulfills the integral inequality

t
le@] < K+/O (allz(s)ll +b) ds (A.6)
with a,b real and non negative parameters, then
lz@®)| < e™K + g (e®—1) . (A7)
The lemma we use in sect. 4 is the following one.
Lemma A.3. Let z(t),z2%(t) € P, t € [-T,T] be respectively the solutions of

{2A2+P(z), {z = Az% 4 P(2%) — R(2%),
2(0) = 2o 2%(0) = 2§

where A is the generator of a unitary group in P, and ||z*(t)|| < C. Assume
also that the non-linearity P has a zero of third order at the origin and that for
all t € [T, T] and all z with ||z]] < 2C

3 2
1P < pr izl 1dP(2)[| < 3pa ||z,
and the remainder R is estimated by
IR @) < p2,  VEE[-T,T].
Let § := z — 2%, then the following estimate holds

6] < [[6(0)] e + % (e 1), te[-T,T]. (A.8)
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Proof. The difference §(¢) is solution of the differential equation

6= A8 + (P(z%(t) + 6) — P(2%(t))) + R(z%(t)) ,

by Duhamel formula one has

5(t) =

e'5(0) + e /O e [(P(2(s) +0) — P((s))) + R(2"(s))] ds

Using Lagrange mean value theorem to estimate P(z%(s) 4+ d) — P(2%(s)) and
the fact that A is unitary one has

611 < [15(0)]] +/O Bor [16(s)I| + pa] ds,

which fulfills (A.6), from which the thesis follows. O
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