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ABSTRACT

We show that Bell’s inequalities are violated in a model of two charged particles
interacting with two potential barriers, which mimic the measuring instruments;
the motion of each particle is described by the Abraham-Lorentz—Dirac equa-
tion in the nonrelativistic version, and the role of the hidden variables is played
by the initial accelerations. The essential nonlocality property of the system
is induced by the celebrated Dirac’s nonrunaway condition, which makes the
measuring instruments have a certain influence on the observed system, by
determining the domain of definition of the hidden variable (the Bopp—Haag
phenomenon). So this model strongly supports E. Nelson’s suggestion, namely
that nonlocality properties suited to violate Bell’s inequalities appear in classical
field theories when regularizing cutoffs are removed.
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1. Introduction It is very well known that the proof of Bell’s inequalities relies
essentially on the assumption of some sort of locality, for example on what Bell calls the
“principle of local causality” [1'2]. So, as experiments seem to violate Bell’s inequalities
in the way predicted by quantum mechanics, one concludes on the one hand that it is
nature itself that seems to present nonlocal properties, and on the other hand that the
formalism of quantum mechanics implicitly contains in itself some appropriate nonlocal
features. Finally, one concludes that classical hidden—variable theories cannot correctly
describe nature, at least if they are conceived, as is usually done, as local theories.

But clearly the same cannot be said of classical theories of nonlocal type. Now, it
is obvious that one could produce some strange model with just the nonlocal properties
required to violate Bell’s inequalities, but this would be too artificial. In Bell’s words:
“On the other hand, if no restrictions whatever are imposed on the hidden variables, ....,
it is trivially clear that such schemes can be found to account for any experimental results
whatever” 131, So, the significant problem for hidden variable theories is rather whether
nonlocal properties might occur in classical theories in some natural way. This was appar-
ently first stressed by Nelson %5, What he had in mind is that the appropriate nonlocal
features might arise naturally in classical field theories in the limit in which one removes
space and momentum cutoffs, previously introduced in order to regularize the theory. Nel-
son gave indeed in support of his thesis some heuristic and qualitative arguments, which
led him to state that ([5], page 438) “A discussion of Bell’s theorem leads to the conclusion
that it is no obstacle to the description of quantum phenomena by classical random fields”;
but neither a general proof nor a concrete example were available to him. However, in [4]
he suggested that it should be of interest to study preliminarly some classical models de-
scribing the interactions of fields with particles; in such a case, the removal of momentum
cutoffs would be equivalent to taking the limit of point particles.

In the present paper we point out that classical electrodynamics of point particles
in the so—called dipole approximation is indeed nonlocal, just in virtue of the celebrated
Dirac’s nonrunaway condition [ (see also [7] and [8]), which plays in fact a constitutive role
in the definition of the point limit itself. We then show how such a nonlocality is effective
in leading to a violation of Bell’s inequalities, although not exactly in the way conjectured
by Nelson; this is obtained in a particular model which exploits a striking phenomenon,
namely that of Bopp[?! and Haag!'% (see also [11]), occurring in classical electrodynamics
of point particles as a consequence of Dirac’s condition.

Let us briefly recall what is meant by classical electrodynamics of point particles in the
dipole approximation, and which are the main results for it. Classical electrodynamics of
a point particle is in principle nothing but the familiar Maxwell-Lorentz system, i.e., that
having for unknowns the electromagnetic field and the particle’s position with minimal
coupling, namely: the field obeys Maxwell equations having for source the current due to
the particle, while the particle satisfies the relativistic Newton equation with the Lorentz
force due to the field. But for a point particle the system is ill defined, because of the
infinite “self-force” on the particle (think of the Coulomb self-force in the static case),
and so needs a regularization. This can be performed by imposing space and momentum
cutoffs, or just momentum cutoffs, and then one remains with the problem of studying
the limit in which the cutoffs are removed. Such a program is still unaccopmplished; in
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Nelson’s words ([4], page 65-66): “Is it an exaggeration to say that nothing whatever is
known about the behavior of this system as the cutoffs are removed, that there is not one
single theorem that has been proved?’. There are however partial results. First of all
there are the classical old results for the nonrelativistic case which go back to Lorentz and
Abraham and are concerned with the dipole approximation; this is a linearization in which
the current j(x,t) = qd(x — q(t)), where q(t) is the particle motion, is approximated by
Q0 (x), while in the Lorentz force the magnetic term is neglected. The limit was performed
in a way which today might be considered as heuristic, but in any case the most relevant
result was that the naive point limit (i.e. that with a fixed bare mass) leads to a trivial
dynamics, with the particle and the field actually decoupled. So mass renormalization was
first introduced, with the bare mass diverging to —oo, and in such a way it was shown
that the particle obeys in the limit the well known third—order Abraham-Lorentz—Dirac
equation. The relativistic case was dealt with in the year 1938, still in a not completely
rigorous way, by Dirac (619 who found the relativistic version of the particle’s equation; we
will refer to both equations (i.e. the relativistic and the nonrelativistic ones) generically as
the Abraham—Lorentz—Dirac equation. Such classic results were fully confirmed, at least
in the nonrelativistic case and in the dipole approximation, by the recent works [12], [13]
and [14], where the problem was studied with the present standard of rigour; in particular,
in [14] the limit equation for the field was found for the first time.

In any case, for the aim of the present paper the most striking feature of the point
limit is the generic appearence of the absurd runaway solutions, which apparently were
first discussed by Dirac in connection with his relativistic equation: for example, it turns
out that the free particle accelerates exponentially fast as time increases, and analogous
divergences occur also for ther field.

Now, faced with such an apparently absurd situation one might be tempted to sim-
ply throw classical electrodynamics away. Another possibility, suggested by Dirac himself,
consists of imposing from outside for the limit system a new prescription, which consists in
restricting the phase space to those initial data leading to nonrunaway motions; we recall
that, in the typical case of scattering, such motions are defined by the property that the
acceleration vanishes for ¢ — 4o00. It is thus clear that Dirac’s prescription assumes a con-
stitutive role in the definition itself of the the theory, radically changing its mathematical
structure: namely, classical electrodynamics of point particles as defined by mass renor-
malization and Dirac’s prescription is a new theory, structurally different from standard
electrodynamics of macroscopic (as opposed to point) particles. From the mathematical
point of view, the difference consists in the fact that the nonrunaway prescription leads to
a problem which resembles more to a Sturm—Liouville than to a Cauchy problem. This is
just the reason why many people appear to dislike the Dirac prescription, blaming it of
being, as they say, acausal ['%]. The point we make is instead that such a theory is rather
non locally causal, more or less in the sense of Bell; this is indeed a characteristic nonlocal
feature of classical electrodynamics of point particles which ultimately turns out to lead
to a violation of Bell’s inequalities, a fact that strangely enough seems not to have been
noticed up to now (see however [16] ).

This will be exhibited below in a very simple model, conceived within a setup typi-
cal of the gedankenexperiments related to Bell’s inequalities. The model consists of two
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charged particles which, after having somehow interacted, separate away along two oppo-
site directions, and proceed with no further mutual interaction. Then, each of the two
particles interacts with a measuring instrument, which we take to be an external potential
barrier, the measurement consisting in observing whether the particle crosses the barrier
or is reflected from it. A dicothomic variable is thus defined, which takes for example the
value +1 in the former, and —1 in the latter case. As usual in this kind of problems, we
allow each measuring instrument to be prepared in one of some (typically two or three)
different settings, which here are just three different heights of the barrier.

Now, the measurement would be trivial in the purely mechanical case, because the
particle would certainly cross the barrier or be reflected from it, according to the value of its
energy. But things are completely different if the self-interaction with the electromagnetic
field is taken into account, what we do by assuming that the particle’s motion is a solution of
the nonrelativistic Abraham—Lorentz—Dirac equation in presence of the external potential
barrier. Indeed, use is made here of a relevant, highly nontrivial, property of the Abraham—
Lorentz-Dirac equation which, although being known already to Bopp [*) and Haag ' and
somehow adumbrated in a theorem of Hale and Stokes[!”), was particularly appreciated
quite recently '1]; namely, that in general the nonrunaway solutions of the Abraham-
Lorentz—Dirac equation in presence of an external barrier are not uniquely defined by the
initial mechanical state (position and velocity) of the particle. As a consequence, the
initial acceleration has really to be assigned as an additional variable, not uniquely defined
by the mechanical state, and thus plays here the role of the hidden variable, for which a
probabilistic description is needed. It turns out, as proven in [11], that according to the
value of the hidden variable the particle crosses the barrier or is reflected from it, which
is a situation somehow reminiscent of the tunnel effect. Moreover, such a Bopp-Haag
phenomenon occurs for initial mechanical states in a domain which actually depends on
the setting of the measuring instrument (i.e. on the height of the barrier), and this is the
feature that turns out to attribute indeed an essential nonlocal character to the system.

In section 2 the relevant notions concerning the Abraham-Lorentz—Dirac equation
and the Bopp—Haag nonuniqueness phenomenon are recalled, and it is discussed how the
particle’s aceleration plays the role of the hidden variable; in section 3 the two—particle
model is discussed, and it is shown that Bell’s inequalities are violated for certain unfactor-
ized probability distributions of the hidden variables; some further discussions of a general
type are deferred to section 4, and the conclusions then follow.

Acknowledgement. This work was made possible by a grant to one of us (A.C.) by
Fondazione Cariplo per la Ricerca Scientifica.

2. Relevant features of the Abraham—-Lorentz—Dirac equation: Dirac’s
condition and the Bopp—Haag nonuniqueness phenomenon. Limiting our atten-
tion to the case considered below in our model, namely that of a particle moving on a
line (the z axis) in the presence of an external potential energy V in the nonrelativistic
approximation, the Abraham-Lorentz—Dirac equation has the form

i = —%V’(m)-}-s&'ﬁ, (1)
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where dot and prime denote derivatives with respect to time ¢ and position coordinate
 respectively, m is the particle’s mass, while ¢ = 2 e?/mc® is a parameter (with the
dimensions of a time) depending on the speed c of light and on the charge e of the particle.
The natural phase space for the equation is R3, referred to coordinates (z,v,a) defining
the particle’s position x, velocity v = = and acceleration ¢ = ¢. But it turns out that
generic initial data in such a space give rise to runaway motions. This is immediately seen
in the simplest example, i.e. that of the free particle characterized by V = 0, because
equation (1) then reduces to a closed equation for the acceleration, namely ea = a; the
general solution a(t) = agexp(t/e) thus leads to absurd self-accelerating motions for all
initial data ag, with the only exception of the initial data on the manifold a = 0, which
lead to the natural motions a(t) = 0. Such an invariant subset of phase space, defined by
a = 0 and constituted by orbits not having runaway character, can be called the physical
manifold or Dirac manifold.

More in general, let us consider a scattering problem, with the force vanishing suffi-
ciently fast at infinity. The problem of existence of the Dirac manifold can be stated in
the following way: given an initial mechanical state (¢, vo), one asks whether there exists
an initial acceleration ag such that the corresponding motion, with initial data (xg, vo, ag),
has a nonrunay character, i.e. satisfies the condition a(t) — 0 for ¢ — +o00. This clearly is
a kind of Sturm-Liouville problem. Existence was proven by Hale and Stokes for a large
class of potentials, but they couldn’t prove uniqueness; mathematically, this is due to the
circumstance that the existence problem turns out to be reduced to a fixed point problem
not involving a contraction. Thus, for a given mechanical state one can a priori expect
that there exist several allowed values for the initial acceleration; in other terms, the Dirac
manifold is not a priori the graph of a function @ = f(x,v), and can in general be folded
above the mechanical (z,v) plane.

As a matter of fact, a case of nonuniqueness was already known to Bopp and Haag,
who could find by elementary methods two solutions corresponding to the same mechanical
state in a certain domain, for a potential step. But such a nonuniqueness property did not
arouse much interest, and apparently was not even known to Hale and Stokes. In addition,
the presence of just two nonrunaway solutions (for a given mechanical state) in the case
discussed by Bopp and Haag led some authors (see the discussion in [18]) to conceive that
only one of them should be retained as physically meaningful, while the other one should
be discarded, although it is not obvious which criterion of selection should be adopted.

On the other hand, in [11] it was shown that such a nonuniqueness phenomenon is
indeed a common fact for a large class of potentials, and was in particular proven to occur
essentially for all potential barriers with a sufficiently sharp maximum; moreover, it was
found that there occur in general not just two, but an arbitrary number of solutions. This
goes as follows. For a given barrier and an initial position x(, there exists an interval of
initial velocities, and thus an interval I of initial energies (located about the maximum of
the barrier), such that the corresponding initial acceleration leading to nonrunaway motion
is not unique. More precisely, for any positive integer n there exists an interval I,, C I with
n nonrunaway solutions crossing the barrier and n nonrunaway solutions reflected from it.
It is thus clear that the allowed initial accelerations corresponding to a given mechanical
state are all apparently on the same footing, and there is no hope to find a natural criterion
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for selecting a particular one among them as privileged. It rather appears that, given an
initial mechanical state with energy in the interval I,,, one should instead more naturally
be led to assign some probability distribution to the allowed values for the “nonmechanical
variable”, i.e. for the acceleration.

Such a qualification of nonmechanical variable for the initial particle’s acceleration
seems to be appropriate. Indeed, in [13] and [14] it was shown that the initial acceleration
to be inserted in the Cauchy data for the Abraham-Lorentz—Dirac equation is a certain
definite function of the initial data of the original Maxwell-Lorentz system describing the
complete system particle plus field; in other words, the particle’s initial acceleration in the
Cauchy problem for the Abraham-Lorentz-Dirac equation is just a trace of the initial
data for the field in the complete Maxwell-Lorentz system.

Furthermore, a property of the allowed initial accelerations (or of the initial field in
the complete system, according to what just said) which naturally favours the interpreta-
tion of the acceleration as the hidden variable with respect to the mechanical ones is the
dependence of the allowed initial accelerations on the initial position z¢ as |zo| is taken
farther and farther away from the barrier, which is the case of interest for the descrip-
tion of scattering processes. Indeed, while the energy strip I (where the nonuniqueness
phenomenon occurs) becomes essentially independent of xy, it turns out that the allowed
initial accelerations corresponding to a given mechanical state collapse to zero exponen-
tially fast as |zg| — +00; and this makes the different accelerations, leading to nonrunaway
motions for a given mechanical state, essentially undistinguishable, as should be expected
of variables to be qualified as hidden. In physical terms, with reference to the complete
Maxwell-Lorentz system, it is thus actually impossible to prepare the initial state with a
concrete control of the initial electromagnetic field required to discriminate whether the
particle will cross the barrier or not. This seems indeed a property to be expected of a
hidden variable, namely of a variable that, according to Bell, should be rather called un-
controlled, “ for these variables, by hypothesis, for the time being, cannot be manipulated
at will by us” 9],

3. The model, and the violation of Bell’s inequalities. In all gedankenexperiments
concerned with Bell’s inequalities, one deals first of all, following Einstein, Podolsky and
Rosen themselves, with two equal subsystems which initially interact in some way and then
separate away along two opposite directions, evolving as free subsystems; then, measure-
ments of some dicothomic physical quantity are separately performed on each of them by
some instrument which can be prepared in a certain number of different settings. In our
model, the system is constituted of two equal charged particles which, after having initially
interacted in some way that doesn’t concern us here, separate away along opposite direc-
tions on a straight line, and then proceed, say for 1 > L and z3 < —L, with no mutual
interaction; the measuring instruments are just two potential barriers located on opposite
sides with respect to the origin (i.e. with respect to the source) very far away from it, with
heights that can assume three different values, and the measurement consists in observing
whether each particle crosses its barrier or is reflected from it. The dicothomic variable is
defined as taking the value +1 in case of crossing and the value —1 in the opposite case.
The motion of each independent particle is described as a solution of the nonrelativistic
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Abraham-Lorentz-Dirac equation with the given potential. It is assumed that the heights
of the barriers are such as to allow for the nonuniqueness phenomenon described above to
occur; so the mechanical state (z,v) of a particle does not uniquely define its motion, and
the role of the hidden variable uniquely defining the motion is played by the acceleration,
which takes values in a domain depending on the height of the barrier, i.e. on the setting
of the measuring instrument.

Consider a time, which following Einstein—Podolsky—Rosen we call T, at which the
two particles are outside the interaction region, i.e. have positions z1(T) = z} > L,
z9(T) = 2% < —L, and assume that the velocities v1(T") = v} > 0, v3(T) = v < 0 are such
that the corresponding initial energies of the two particles belong to the intervals where
the nonuniqueness phenomenon occurs, for all the three possible heights of the barrier;
assume moreover that the barriers are so far away from the interaction region that the
location of the nonuniqueness intervals is practically independent of the precise values of
the positions z7, 5. Fix then the heights of the barriers in the following way: choose three
positive numbers n, (© =1,2,3), and fix the height of the first barrier in such a way that
the allowed values for the acceleration a;(T’) of the first particle are in number of n,, if the
barrier is at p—th height; analogously for the second particle, having chosen three positive
numbers m,, (v = 1,2,3). Denote by a7 (i =1,---,n,) and by a?” (j =1,---,m,) the
allowed values of the hidden variables a1 (T, a2(T), when the instruments are in settings
p and v respectively (u,v = 1,2, 3).

For a given setting of the barriers, i.e. of the measuring instruments, the physical or
Dirac manifold of the two—particle system turns out to be a well defined four—dimensional
manifold in the six-dimensional phase space R3xR? with coordinates (z1, v1, a1, T2, v2, az).
Indeed, in the non-interaction region the Dirac manifold is just the product of the two—
dimensional Dirac manifolds of the uncoupled particles, while in the interaction region
the Dirac manifold is simply defined by prolongation, i.e. by letting the system evolve
backward in time according to the coupled dynamics, whose precise definition is not of
interest here. Concerning the global Dirac manifold, notice in particular that changing
even just one of the barriers produces a change in the complete manifold itself, and that
the manifold does not have a product structure in the interaction region, which is the one
where the initial data are in principle asssigned.

According to the three possible choices for each of the barriers we have nine distinct
Dirac manifolds, say D, (u,v = 1,2,3), and the section of each such manifold D,, with
the two—dimensional plane z; = z7, T2 = 3, v1 = v], v2 = v;3 is just a finite set of
points, namely the set of points (27, v}, a?”, 23, v5,a3"), with i =1,--- ., n,; j =1,...,my;
p,v =1,2,3. So, for any choice of the heights of the two barriers one has a discrete space
of events Q,,,, i.e. the space of the pairs of allowed initial accelerations (a7*,a%"), whose
cardinality depends on the height of both barriers. Now, in order to discuss the outcomes of
our gedankenexperiment, we have to assign a probability to the initial states, i.e. we have to
assign a probability measure Pr,, on each space €, (1, v =1,2,3). It is clear that in such
a way one thus assigns an invariant probability measure on each Dirac manifold D, , and
conversily that every invariant probability measure on D, defines a probability measure
Pr,, on €,,. On the other hand there seems to be no reason to privilege any particular
invariant probability measure on D,,,,, and consequently any particular probability measure
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on 2,,; in particular, as the Dirac manifolds don’t have a product structure, there is
no reason to privilege the factorized measures, i.e. the measures assigning independent
probabilities to the accelerations of the two particles. In consideration of this, we seem to
be authorized to assume that all possible choices of the probability measures Pr,, on {2,,
are on the same footing. In particular, the nine probability measures Pr,, (each defined
on the corresponding space €2,,) can be assigned independently from each other. This is
what we do here; further comments comments will be given below.

Now Bell’s theorem, which we take in Nelson’s version (see [5], page 445), says that,
with suitable assumptions of locality to be recalled in the next section: There do not exist
random variables oy, and B, (for p, v =1,2,3) such that v, and B, is equal £1 and

Pryu(auB,=-1) =1 (2)
Pry (o = 1) < 5 (u#v) (3)

(think of o, as the dichotomic variable corresponding to the first particle crossing or not
the barrier at p—th height, and analogously of 3, for the second particle).

So a violation of Bell’s inequalities occurs if one finds random variables «,, 3, satis-
fying relations (2) and (3). We show now that our dichotomic variables do indeed satisfy
them, for certain probability measures Pr,,. To be concrete, make the following choice:
for barriers of the same height (i.e. for y = v) assign zero probability to all events in which
both particles are reflected or both particles cross their barriers, so that (2) is satisfied;
instead, for barriers of different heights (i.e. for u # v) assign arbitrary probabilities to all
events of the set in which both particles are reflected or both particles cross their barriers,
with the only constraint that their sum be less than 1/2, and distribute arbitrarily the
remaining probabilities in the complementary set. It would be a rather simple exercise to
take into consideration Bell’s inequalities in their usual version involving correlations, and
prove that they can be violated too.

Thus the counterexample to Bell’s theorem was obtained here in a completely trivial
way, just by exploiting the complete arbitrariness of the probability measures Pr,,. This
seems to be in agreement with the quotation from Bell reported at the beginning of the
introduction (it is trivially clear ...). However, the point we make is that the violation
was obtained here for a model which is not a strange ad hoc one, but just classical electro-
dynamics of point particles in the dipole approximation, when due consideration is given
to mass renormalization and to its main manifestation, namely the generic occurrence of
runaway solutions, which is dealt with through Dirac’s nonrunaway condition.

We now add some further comments, trying to emphasize the relevant features of our
model wich led to the violation of Bell’s inequalities.

1. We start by pointing out that nonlocality comes about in our model in two ways.
The first one, which we discuss presently, manifests itself already in the case of just one
particle, when the interaction with the measuring instrument is taken into account. This
is related to the fact that the domain of definition of the hidden variable depends on
the setting of the instrument, no matter how far away it is situated, and is ultimately a
consequence of the nonlocal character of Dirac’s nonrunaway condition (the Bopp-Haag
phenomenon). Then, when the two-particle system is considered, this first nonlocality

8



property leads to the fact that the probability spaces €2,,,, themselves depend on the settings
of both instruments; so one should expect that the probability distributions of the hidden
variables too depend on the settings of both instruments. And this is completely at variance
with the hypotheses used by Bell (“... we supposed that the experimental settings could
be changed without changing the probability distribution of the hidden parameter”, see [1],
page 154, and note 21). In particular, the fact that the domain of definition of the hidden
variable depends on the settings of both instruments is sufficient to completely invalidate
the argument by which, following Mermin [?°, Nelson showed (see [4] sec. 23, especially
page 120) that classical hidden variables should be ruled out.

By the way, it seems to be of interest to point out that the situation described here
for classical electrodynamics, namely that the setting of the instruments has a certain “in-
fluence” on the observed system, is quite similar to that occurring in quantum mechanics.
In the words of Bell: “Since quantum phenomena indicate that the erperimental devices
must be regarded as integral parts of the whole experimental situation, not separable from
the system being studied, there is no reason to expect that there should be any quantities
that can be held fixed as the experiments are changed.” (see also the interesting remark at
page 154 of [1]).

2. Let us now come to the second nonlocality property; this refers altogether to
the global two—particle system (each particle being in the presence of the corresponding
measuring instrument), and is related to the unfactorization of the initial state. Let us
describe this point in a greater detail. As indicated above, when the measuring instruments
are in settings p, v, one has to consider for the complete system the probability space 2.,
a point of which is constituted by the pair of hidden variables (the accelerations at the
“initial” time T'), and an initial state is just a probability measure Pr,, on €,,. Now,
there exist first of all the states which are factorized (i.e. assign independent probabilities
to each particle’s acceleration), and one immediately proves (see the appendix) that for
them one has .

Pr,, (a8, = —1) > 2 ;

thus the violation of Bell’s inequalities, as in the example above, can be obtained only for
unfactorized states. In other words, the system decouples into two independent subsystems
if the initial probability is factorized, while in the opposite case one has a correlation which
is essential for the violation of the inequalities. Here too there is a strong analogy with
quantum mechanics, where unfactorized states are required to violate Bell’s inequalities;
the corresponding correlation was discussed by Schroedinger 21, who called it entangle-
ment. Now, why should the unfactorized (or entangled) states be preferred, as being the
generic ones? To this we can give two answers. The first one is exactly the same given
by Schroedinger in the case of quantum mechanics, namely that the initial (i.e. at time
T) states are generically unfactorized (or entangled) just because of the previous mutual
interaction of the particles. The second answer is related to the fact that, as one imme-
dialtely proves (see again the appendix), the singlet (i.e. satisfying (2)) states which are
factorized are necessarily trivial, i.e. are such that each particle either certainly crosses its
barrier or is certainly reflected from it; consequently, in a sense “genuine” singlet states
are necessarily unfactorized.



4. Further comments. So we have shown how nonrelativistic classical electrodynamics
of point particles in the dipole approximation in general violates Bell’s inequalities. On
the other hand the fundamental problem raised by such inequalities is the connection
between causality and relativity, and the interesting problem would be to know whether
the inequalities are violated also for the relativistic (and nonlinear) version of our model.
Now, in order to discuss this point we would first of all need a rigorous deduction of the
dynamics of point particles interacting with the electromagnetic field in the relativistic case,
which is still lacking. So we limit ourselves to express here our personal conjecture, which is
as follows. We think that very probably such a rigorous discussion will eventually confirm
the result of Dirac himself, namely that the particle obeys Dirac’s relativistic version of the
Abraham-Lorentz—Dirac equation. Now, for such an equation the situation with respect
to runaway and nonrunaway motions is essentially the same as in the nonrelativistic case.
Thus, all the requirements imposed by relativity should already be there, and Dirac’s
prescription of restricting the phase space to the nonrunaway solutions should be at all
compatible with relativity and causality. As a consequence, no substantial changes should
occur in the relativistic case, and the situation would be essentially the same as discussed
in the present paper. To check whether this is the case or not is a very interesting open
problem.

Now we address the following question: if it can be shown that the correct relativistic
theory in the point limit is that of Dirac, with the essential ingredient of the nonrunaway
prescription, with which form of locality would this be compatible 7

In this connection let us recall the properties of passive and active locality as intro-
duced by Nelson, who verbally describes them as follows ([5], page 446). Let A and B be
space—like separated bounded open sets in space—time, and AT the future cone of A; define
by slice an open subset of space—time bounded by two parallel space—like hyperplanes, and
let X be a slice disjoint from AT |JB*. Passive locality is the property: if the field is
known in the slice X, then an observation in one of A or B gives no additional information
about an observation in the other. Instead, active locality is: an experiment in A affects
the field only in A™.

Nelson shows (in the proof of the theorem quoted above) that at least one of the two
locality properties has to be abandoned, if Bell’s inequalities are to be violated, and says
he is inclined to think that passive locality should be abandoned. We are rather inclined
to think that neither active nor passive locality are imposed by relativity, at least if one
takes for granted that the relativistic version of the Abraham-Lorentz—Dirac equation
is correct. This is essentially due to the Bopp—Haag effect. Indeed, consider first active
locality, which is in fact concerned with just one particle. This requires that an experiment
(i.e. the setting of the instrument) in A affects the field only in its future cone A™; but
this is not the case (i.e. active locality does not hold) with the Abraham-Lorentz-Dirac
equation, because the setting of the instrument affects also the past cone A~ inasmuch as
it determines by Dirac’s condition, through the initial particle’s acceleration, the domain
of the possible initial data of the field (such a phenomenon is often referred to as the
phenomenon of preacceleration). Neither does passive locality hold, again because the
domain of definition of the field in X (J(A~ () B~) is determined by the setting of both
instruments.
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These are the reasons that lead us to think that neither active nor passive locality in
Nelson’s sense should hold in relativistic theories. Which form of locality, in some suitable
weak sense, should then be appropriate in relativistic theories is a very interesting question
of principle, discussed by many authors (see for example [22], [23], [24]), on which we are
unable to say anything conclusive at the moment.

5. Conclusions.

In conclusion, we have pointed out that, in classical electrodynamics of point particles
in the nonrelativistic and dipole approximation, the setting of the measuring instruments
has a certain “influence” on the observed system, inasmuch as it determines the possible
range of the parameters playing the role of hidden variables; this is indeed the essence
of the Bopp—Haag phenomenon, and is ultimately due to Dirac’s nonrunawy condition.
Then we have shown how this property leads in a particular model, for some unfactorized
initial states, to a violation of Bell’s inequalities. Furthermore, we have pointed out that
analogous results might be expected to hold in the full relativistic nonlinear version of
the model. In such a way we believe we have given a strong indication in favour of the
correctness of the idea suggested by Nelson, namely that a nonlocality property suited to
violate Bell’s inequalities might appear in classical field theories when the regularization
cutoffs are removed.
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APPENDIX

We prove here two simple lemmas concerning probabilities for factorized states. The
formal description of the situation is the following one, referring to a given setting of the
measurement instruments (so that the indices p, v will be omitted here). We have two
random variables a; nad as (in our model, the hidden variables, i.e. the accelerations of
the first and of the second particle at the “initial” time T') whose possible values are a1,
azj, (1=1,---,n,j=1,---,m). The space of the elementary events is the set Q of pairs
(@14, a25). A state is a probability measure in Q, i.e. a probability distribution p;; (with
pij >0, pij = 1), and a state is factorized by definition if

pij =piqi , Pi>0,¢; >0, Zpi:Zszl)-
i J

(2

Let o, 8 be two dichotomic random variables, i.e. real valued functions on €2, taking
values +1 or —1; moreover, let o depend just on a; and 8 depend just on ay (in our case,
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whether the first particles crosses the barrier or not just depends on the value of a;, and
analogously for the second particle), i.e. assume

aj=ai, Py=p0, (i=1--n j=1.--,m),
Then, denoting by Pr(A) the probability of an event A, one has

Lemma 1: For factorized states it is

Proof. One has Pr(af = —1) = pg+ (1 — p)(1 — q), where p = Pr(a = 1), and
g = Pr(8 = —1). One thus has to look for the minimum, in the unit square, of the
function f(p,q) = pg+ (1 — p)(1 — q), which is immediately found to be %

Consider now a singlet state, i.e. one such that Pr(af = —1) = 1. Say furthermore
that a state is trivial if each of the variables «, (3 takes just one of the two possible values
+1, —1 (i.e. each particle either certainly crosses the barrier or is certainly reflected from
it). Then we have

Lemma 2: Singlet states which are factorized are trivial.

Proof.  Let
a;=4+1 for i=1,---,n", a;=—-1 for i=n"4+1,---,n,
Bj=+1 for j=1,---,m", Bij=—-1 for j=m*"+1,---,;m.

Then the singlet condition requires

pigj =0 for s=1,---,n*, j=1,--- m"

pig; =0 for i=n"+1,--- n,j=m"+1,---,m.
One of the probabilitities q1, - - -, g, has to be nonvanishing, and assume for example ¢; # 0.

Then necessarily one has p; = 0 for i = 1,-- -, n*, which means that « takes only the value
—1, and consequently 3 just the value +1.
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