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ABSTRACT

A short review is given of two quantum-like effects occurring in classical elec-
trodynamics of point particles, as described by the Abraham-Lorentz—Dirac
equation. They concern: 1) A characteristic nonlocal aspect of classical electro-
dynamics of point particles, related to an analogue of the tunnel effect, which
leads to a violation of Bell’s inequalities; 2) The implementation of an idea,
conceived by Stueckelberg and Feynman, allowing one to describe in a classical
framework the processes of pair creation and annihilation.

1. Introduction. As is well known, the Abraham-Lorentz-Dirac equation was
introduced more or less a century ago in order to describe the self-interaction of a charged
particle with the electromagnetic field, while its relativistic version was found by Dirac [
in the year 1938. In its nonrelativistic version, with which we will be mostly concerned in
this review, the equation has the form

%% L P(x % 1) -
X =X - (x,%,1) ;

2
here ¢ = 2-¢

3 o3, while, as usual, e and m are the particle’s charge and mass, c¢ the speed of
light, x the particle’s position, F an external force, including the Lorentz force due to the
free evolution of the initial field.

In principle such an equation should be deduced from the Maxwell-Lorentz system,
i.e. Maxwell’s equations for the field having the particle as a source for charge and current,
and Newtons equation for the particle, the force being that of Lorentz due to the field plus
possibly an external mechanical one. This system poses no special problems for the case of

a macroscopic body such as a charged stone, but the situation is completely different for a
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point particle or also for a small enough particle. The reason of the difficulty is the presence
of the self-field, typically the Coulomb one, which diverges for a point particle; this causes
the need of mass renormalization, and the existence of the absurd runaway solutions, as
will be briefly recalled below. In any case, due to the fact that all known deductions of the
Abraham-Lorentz—Dirac equation from the Maxwell-Lorentz system are at most heuristic,
while such an equation presents the absurd runaway solutions, the scientific community
essentially performed an action of psicological removal (or repression), behaving as if that
equation did not exist. In consideration of this, a certain relevance should be attributed to
some recent works by Bambusi, Noja and Posilicano (see [2], [3], [4]), where the equation
was deduced from the Maxwell-Lorentz system with the kind of rigour presently accepted
in mathematical analysis. Unfortunately, the result was obtained only for what is called
the “dipole approximation”, which is a linearization of the system; essentially it consists in
replacing the current, namely xd(r —x(t)), simply by x6(r(¢)), where r denotes the generic
point in space, and in retaining just the linear term in the Lorentz force.

So the problem is still open whether in the full nonlinear case, and in particular
also in the relativistic case, the strange peculiarities (runaway solutions) of the Abraham-
Lorentz-Dirac equation will still be present. Here we will proceed by assuming that this
is the case, aiming at illustrating some relevant consequences of such a situation. If the
situation will instead prove to be completely different in the nonlinear case, as is the hope
even of some good friends of ours, we will gladily accept it.

Before entering into a more detailed discussion about the Abraham-Lorentz—Dirac
equation, we presently recall a heuristic argument illustrating the source of the difficulties
related to mass renormalization, following the presentation of Feynman’s handbook (chap-
ter 28 of the second volume). Everyone knows that a particle in uniform motion drags
along with it an electromagnetic field. To this corresponds an electromagnetic momen-
tum, whose intensity pem is immediately computed in the nonrelativistic approximation;
one finds pey, = Memv, where v is the particle’s velocity and the factor mey, (called the
electromagnetic mass) is given by
2 e?
~ 3ac?

if a is the particle’s radius. So, if we denote by mg the “bare” or “mechanical” mass,
namely the one appearing in Newton’s equation of motion, the particle should behave as
if it were endowed with an experimentally detectable mass m given by

Mem

m = Mg + Mem -

Consequently, in an attempt at defining a limit system for vanishing radius from the
Maxwell-Lorentz system, one is naturally led to take the value of m as a given phe-
nomenological parameter. This in turn has the effect that the bare mass mgy has to be
considered as a function of the particle’s radius a; in particular mg turns out to vanish at
the so—called “classical radius” ag = %7;;22, becoming negative below it, and tending to
—oo as a — 0.

Such a heuristic argument is confirmed in the rigorous deductions recalled above,

where it is shown that the classical renormalization procedure is necessary if the limit
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system has to be nontrivial at all, i.e. if in the limit system the particle and the field
have to proceed with some mutual interaction. Particularly elegant from a mathematical
point of view is the deduction given in [3], where also the limit equation for the field was
given for the first time. The following comment might be in order. Many people appear to
have difficulties in understanding how a third order equation occurs at all for the particle.
The point is that one should have in mind the complete (infinitely dimensional) system
particle + field, with the corresponding Cauchy problem involving initial data both for the
particle and the field (see especially [5]). So somehow it is just by chance that a closed
equation for the particle is met at all, and in any case it is clear that in dealing with the
Abraham-Lorentz-Dirac equation a rule should be found to determine the Cauchy datum
for the particle’s acceleration in terms of the Cauchy data for the field. This was done
for the first time in the paper [4] (see also [6]). By the way, another relevant point that
came out of the rigorous deductions recalled above is that, in order to get the limit, in
the Cauchy problem for the system one has to put a constraint among the Cauchy data
of the particle and of the field, inasmuch as the field should have the correct singularity
corresponding to the presence of the point particle.

Finally, let us recall what essentially are the celebrated runaway solutions. To go
to the heart of the problem, consider the simplest case, namely that of the free particle,
with F = 0. In such a case the Abraham-Lorentz—Dirac equation is a closed equation
for the acceleration a, of the form ea = a, with general soilution a(t) = agexp (¢/€). So
one sees that for generic initial data the free particle accelerates exponentially fast, which
is absurd. The only nonabsurd solutions (uniform motions) are obtained if one takes as
initial acceleration ag = 0.

2. The Bopp—Haag phenomenon, the analogue of the tunnel effect, the
nonlocality of classical electrodynamics of point particles, and a violation of
Bell’s inequalities.  Our studies on the Abraham-Lorentz-Dirac equation started with
a very simple remark that psicologically was very inportant for us. The problem is the
character of the series expansions (in the parameter €) which define the solutions of the
equation. Looking at the form of the equation, it should be almost obvious that such
series should be asymptotic and in general divergent, because this is typical of situations
concerned with singular perturbation theory, where the order itself of the equation is
lowered (here from three to two) when the expansion parameter is set equal to zero (think
even of the algebraic equation ex?+az+b = 0). And indeed, in the present case the proof
just takes a few lines (see [7]). The point that particularly impressed us is that a scientist
that is usually considered to be one of the main authorities in the field conjectured instead
explicitly the contrary, namely that such series expansions might in general be analytic,
and this even in a paper dedicated to Dirac[8). This fact gave us the impression that some
relevant work might still be performed in the field.

The next result came out indirectly from a suggestion of an anonymous referee of the
paper mentioned above, that we would like to thank personally some time, if we only could
know his name. By an analogy with the situation occurring in the semiclassical regime, the
referee suggested that the asymptotic character of the series might be particularly relevent
in connection with the scattering of a particle by a potential barrier. So we started the
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study of the one-dimensional scattering of a particle by a potential barrier, according to the
Abraham-Lorentz—Dirac equation, and this led us to understand a significative qualitative
property of the equation, that was somehow known already (as we discovered later) to
Bopp 19! and Haag 9], but did not receive the emphasis it would in our opinion deserve. We
now illustrate it briefly; more details can be found in the original paper 10,

The problem is the following. In the one-dimensional case, the relevant phase space
for the Abraham—Lorentz—Dirac equation is three-dimensional, with coordinates z, v = z,
a = v, namely particle’s position, velocity and acceleration; moreover, generic initial data
lead to abusrd runaway solutions, with the acceleration exploding exponentially fast with
increasing time. So one could be tempted to simply throw the Abraham-Lorentz—Dirac
equaition away. A different possibility was however suggested already by Dirac in the year
1938, namely that of restricting the phase space to the invariant manifold (if not empty)
constituted of motions (i.e. solutions of the equation) having nonrunaway character; for
example, in the typical case of scattering from a barrier, one requires a(t) — 0 as t — +00.
Such a manifold will be called here the Dirac or the physical manifold.

Notice that the Dirac prescription should be considered as a constitutive part of the
limit theory itself defining classical electrodynamics of point particles in the framework of
the complete Maxwell- Lorentz system. Namely, classical electrodynamics of point parti-
cles with mass renormalization and elimination of the runaway solutions through Dirac’s
prescription is a new theory, logically distinct from macroscopic classical electrodynamics.
In particular, Dirac’s condition confers to the theory a peculiar nonlocal aspect, being a
prescription on what will occur at ¢ = 400, so that one is in presence of a differential
system to be studied as a Sturm-Liouville type problem.

From the mathematical point of view the problem is then as follows. At an initial
time one fixes the mechanical state (position and velocity), and the initial data should be
completed by assigning freely the initial acceleration. Then one asks whether, for a fixed
mechanical state, there exists an initial acceleration leading to a nonrunawy solution (i.e.
with a(t) — 0 as t — +o00). The problem was defined exactly in these terms by Hale
and Stokes [ who, for a quite general class of forces, could prove existence, but could
not prove in general uniqueness (indeed, existence was proved by topological fixed point
methods, for which nonuniqueness is rather the rule than an exception). Geometrically,
nonuniqueness can be described by saying that the physical or Dirac manifold is folded
above the mechanical plane (z,v).

The result we found['®) first numerically and then analytically, by methods of the
qualitative theory of differential equations, is that the Dirac manifold is folded, and even
with infinitely many folds, for all potential barriers with a sufficiently sharp maximum.
More precisely, for an initial position sufficiently far away from the barrier, the nonunique-
ness phenomenon occurs only for initial energies inside a small strip situated about the top
of the barrier. Moreover, for any positive integer n there exists a substrip admitting 2n
nonrunaway solutions, n of which cross the barrier while the remaining n ones are reflected.
So a knowledge of the mechanical state is not sufficient to predict whether the particle will
cross the barrier or will be reflected from it, because this depends on the particular value
of the remaining variable, which in fact acts as a hidden variable. Such a qualification of
hidden seems to be appropriate, because it is found that the different allowed values of the
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variable all tend to a unique value (actually, the value zero) exponentially fast as the initial
particle’s position recedes from the barrier, so that the variable is actually uncontrollable,
and a statistical description for it is needed. In this sense we are here in presence of a
classical analogue of the tunnel effect. We in fact also investigated whether such a classical
analogue might prove to be physically meaningful, but it seems to us that a factor of about
a thousand in the parameter € is lacking in order to explain for example the alpha decay.
Finally. as recalled above, it turns out that the value of the particle’s acceleration is in fact
uniquely defined by the electromagnetic field in the complete Maxwell-Lorentz system, so
that the hidden variable in our model is indeed a variable of a nonmechanical type.

After completing the article we discovered that many years before already Bopp [°! and
Haag[® had found a similar phenomenon, in a particularly simple case (one—dimensional
step) which allowed them to find the solutions by elementary methods. However, what
they found in their particular cases is that there existed just two, and not an arbitrary
number of nonrunaway solutions for a given mechanical state (in a suitable domain). This
led some people to suggest (see the quotation in [12]) that only one (chosen is some way)
of the two solutions should be retained as physically meaningful; but this seems to be
impracticable in the present case, where the interpretation of the acceleration (or of the
electromagnetic field) as a hidden variable requiring a probabilistic description seems to
be almost compulsory.

So we have here a situation which allows to produce a simple highly nontrivial model
of a hidden variable theory (see [13]). In fact, we have a charged particle moving on a
line in presence of a potential barrier, and it turns out that the particle’s initial state is
in general not uniquely defined by its mechanical part (position and velocity), because it
requires the further assignement of a hidden variable (the particle’s acceleration, or rather
the corresponding electromagnetic field in the complete Maxwell-Lorentz system). Such
a variable is properly speaking a hidden one, because it is essentially uncontrollable (the
different allowed values converge to a unique value (zero) exponentially fast on recedes
from the barrier), but its most striking property is its characteristic nonlocal character.
Indeed, the domain of definition of the hidden variable turns out to depend not only on the
initial mechanical state, but also by the height of the barrier (because the initial energies
where nonuniqueness occurs are about the top of the potential barrier), no matter how far
it is situated (say in Tokyo) from the initial particle’s position (say in Milan).

We believe that in such a way we managed to make somehow trivial what E. Nelson
had conjectured [*15], Indeed he suggested that characteristic nonlocal properties might
occur in classical field theories when regularizing cutoffs are removed. From our point of
view, the regularizing cutoff is nothing but the form factor of the particle in the Maxwell-
Lorent system, which is eliminated in the point particle limit. The taking of the limit
requires mass renormalization; this leads to a lack of positivity of energy, which in turn
produces the generic runaway solutions; and this is cared by Dirac’s prescription, which is
essentially nonlocal. Such a nonlocality property (usually described as “acausality”) was
considered as a blame by most people, and we now discover instead that it is exactly what
was to be expected, according to Nelson’s suggestion. Moreover, we know very well that
some nonlocality property should be present in any good description of nature, as Bell and
Aspect seem to have shown, and so this blame for the Abraham—Lorentz—Dirac equation
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appears now to be welcome.

Having this in mind, it was then a simple matter to determine a specific model violating
Bell’s inequalities. The simple idea was to let the barrier act as the measuring instrument
in an Einstein-Podolsky-Rosen type experiment. In the case of a single particle moving
on a line, the particle’s initial mechanical state is taken in the range where nonuniqueness
is guaranteed, so that the initial acceleration is the hidden variable for which a probability
distribution has to be assigned. The dicothomic measurement consists in observing whether
the particle crosses the barrier (result +1) or is reflected from it (result —1), the result
depending on the precise initial value of the hidden variable. In turn, it is assumed that the
measuring instrument (i.e. the barrier) can be prepared in some (typically three) different
settings (i.e. heights), and things can be adjusted in such a way that, for a given initial
mechanical state in a certain open set, the domain of definition of the hidden variable
depends on the setting of the measuring instrument.

Thus, following the general idea of any Einstein—Podolsky—Rosen type experiment,
we consider two charged particles which, having first interacted in some irrelevant way,
then proceed along a straight line in opposite directions, each independently of the other;
finally, they are subjected to separate measurements of a dicothomic quantity, by observ-
ing whether they cross or not two far away potential barriers, adjusted in one of three
possible settings as described above. The two hidden variables are here the values of the
accelerations ay, ag of the two particles at a time (say 7', to use the same letter of Eintein—
Podolsky-Rosen) when they enter the two regions of independent motions; obviously, such
values correspond to some precise values of the accelerations at any previous time, when
the particles were located in the interaction region, and the probability distribution for
such values is just in one to one correspondence with the probability distribution at time 7.
The relevant point is that the latter distribution depends on the settings of both measur-
ing instruments, because even the dimensionality of the probability space (i.e. the number
of possible accelerations) depends on it. This is a characteristic nonlocal property of the
hidden variables which is by definition excluded for Bell’s type hidden variables. So it
is obvious that one can find probability distributions of the hidden variables leading to
a violation of Bell’s inequalities. A specific example is reported in the paper [13], where
reference was made to Bell’s inequalities in the form discussed by Nelson. As shown there,
the violation occurs for initial probability distributions which are unfactorized, i.e. are not
products of independent probability distributions for the two particles; indeed, it occurs
that factorized states correspond to trivial situations where each particle either certainly
crosses the barrier or certainly is reflected from it.

3. Pair creation and annihilation. = Another interesting result was a confir-
mation of the possibility of describing pair creation and annihilation, which are usually
considered to be characteristic features of quantum electrodynamics. The idea is not at
all new because, although generally completely unknown in the scientific community, goes
back to Stueckelberg 16! and to Feynman [17) himself, as we learned from the review article
[12] (see also [18] and [19]). Clearly, here one should make reference to the relativistic ver-
sion of the Abraham-Lorentz-Dirac equation, provided by Dirac in the year 1938, which
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reads

2 .. ..
2e” .. T,ZY
3(.’17;1,"'
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where F),, represents an external electromagnetic field tensor, while, as usual, z, is the
position four—vector and the dot denotes derivative with respect to proper time.

The main idea is the following one. In special relativity the motion of a particle is
described in space—time by a time-like path, the orientation of which is arbitrary. Usually
the orientation is taken with arc—length (or proper time) increasing with time, but the
choice is immaterial because, for time—like paths, time can only increase or only decrease.
On the other hand paths are necessarily time-like if velocity has to be smaller than the
speed of light. But the mentioned authors had the genial idea of conceiving of paths
presenting angular points, for example, in the simplest case, paths just composed of two
time-like “branches” joining at an angle. In such a case the particle, climbing on a branch
with incresing time, would attain in a finite time the speed of light at the angular point,
and then would proceed with decreasing time along the other branch. Equivalently one
might speak of an antiparticle climbing the second branch with increasing time, and the
consideration of both branches would correspond to the description of a process of pair
annihilation. Processes of pair creation are similarly described, as also all other types of
analogous processes familiar from quantum electrodynamics. By the way, people familiar
with Feynman’s original papers in quantum electrodynamics should understand how a
description of the type illustrated above could have come at all to his mind.

However, Feynman was not able to exhibit paths of the type described above within the
framework of classical electrodynamics, and he could only provide an example by making
reference to a nonlocal version of classical electrodynamics introduced by Bopp (whose
description can also be found in chapter 28 of Feynman’s handbook). In any case, the
example dealt with by Feynman consists of a particle interacting with a steep potential
barrier. In the paper [20] the analogous problem was dealt with in the framework of
pure classical electrodynamics of a point particle, described by the relativistic Abraham—
Lorentz—Dirac equation, in the presence of an external potential presenting a singularity.
It was possible to show that there exists a solution corresponding to a particle arriving
in a finite time at the singularity and attaining there the speed of light; moreover such a
solution can be analytically continued beyond the singularity, constituting globally a path
just of the type conceived by Stueckelberg and Feynman. So this shows that their genial
idea is implementable in pure classical electrodynamics.

This seems to be a qualitatively interesting result, which we hope to be able to general-
ize in the future, for example by showing that phenomena of pair creation and annihilation
and the like occur in classical electrodynamics even without the need of considering sin-
gularities due to the introduction of external potentials.

3. Conclusions. @ We do not have time here to illustrate several further ideas on
which we and our friends are presently working, all concerned with quantum-like effects
occurring in classical electrodynamics. We hope that the two examples described above
are however sufficient to show that qualitatively interesting quantum-like effects, somehow
unexpected, do indeed occur in classical electrodynamics of point particles.
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