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Abstract. We perform numerical simulations for the dynamics of a chafinveakly coupled
particles, and consider the process of occupation of cepihase space, in the spirit of paper [1]. A
different behaviour is exhibited as the coupling constamhianged. It is discussed whether such a
dynamical behaviour is compatible with the Tsallis statsst
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INTRODUCTION

In the paper [1] (see also [2]), a method was introduced tbwigla Statistical Thermo-
dynamics if reference is made to dynamics through timeames. This can be useful
for example when one has to deal with metastable states, ichwie system remains
frozen far from equilibrium for very long times, so that itiet clear what measure in the
phase space should be used. In agreement with the opinioesseal by most classics,
one can make the statement that the macroscopic quantiseswed are nothing but the
time—averages (up to the observation time—scale) of tegaat dynamical variables.
Indeed, if the system is ergodic, the time—averages ioNmite timescoincide with
the Gibbs phase-averages, but there remains open the iprofsée nothing is known
concerning the time—averages for large boite times. For example, in the literature
cases are reported (see [3]) in which the dimensions of thiesaf Hamiltonian system
appear to have non—integer values according to numeritahass, notwithstanding
the fact that the dimension of the full orbit (involving alintes)is proved(see [4]) to
actually be an integer. This fact was explained in the paperihere it was shown,
for the familiar standard map, that the observed dimensaina#ly depends on the
observation time, and that the attainment of the “true va(two in that case) would
require an exceedingly large number of iterations (outsfdbe computers reach). This,
notwithstanding the fact that, the fractal dimension appéasettle down to a definite
non—integer value on a finite time—scale. It is clear thaimme-tscales of the latter type
the sojourn time measure too has to appear very odd, i.e. Inswidely continuous
with respect to the Lebesgue one. So, in general, if one hdedbwith a metastable
state (i.e. an “ergodic behaviour” is granted only on a tirseale much larger than the
available one), then the orbits could exhibit some strapgtifes (such as a non integer
fractal dimension on the observed time—scale) which mayeprtethe use of the Gibbs
measure. It has been suggested that in some problems whistabde states show up
(as in systems of rotators with long—range coupling [6],;ogalaxies [7]), one has to



replace the Gibbs measure by the Tsallis one [8].

Onthe other hand, in the paper [1] it was shown that the usmeHaverages amounts
to introducing a measure in phase space, suitably defindeelgytnamics of the system.
In short (see Section 2 for precise definitions) one has terohe the statistics of the
sojourn times, and then the coarse—grained density of theepispace measure turns
out to be nothing but the (logarithm of the) Laplace transfof the p.d.f. of the sojourn
time of any cell. In particular, the usual Gibbs measure eevered if the dynamics is
very chaotic, i.e. the p.d.f. (of the sojourn time) is a Poisene.

In this paper we numerically estimate the p.d.f. of the sgjdume for two models:
a chain of next neighbours weakly coupled rotators, and a BRtbdel (i.e. a chain
of next neighbours weakly coupled particles). Both modedskaow to exhibit a non
ergodic behaviour: for high enough energy the first moded {eeexample [9]), for low
enough energy the second (see the original paper of Fersta Bad Ulam [10], or [11]
for a review). The numerical results indicate that the thikfpof the sojourn time is not
a Poisson one; moreover using a Tsallis distribution (toddamdd in Section 2) with the
appropriate values for the parameters, one can fit the noalelata very well.

The paper is organised as follows. In Section 2 the methodabwiith time-averages
is recalled. In Section 3 the models are described and thencahresults exhibited in
Section 4.

TIME-AVERAGES

We recall here, briefly, the method which was introduced inrjlorder to obtain the
relevant thermodynamic functions on the basis of dynamiasiely when use is made
of time—averages rather than of ensemble averages.

Consider a diffeomorphisn® on a phase—space?, and an orbitx, = ®P(Xy-1),
n=1,...,N up to “time” N, determined by an initial valugy. In our case, we deal
with the orbits generated by iterations of the timenap induced by the flow of an
Hamiltonian system. The time—average (up to tif)eof a dynamical variablé\(x) (a
real function on/#) is defined by

A(Xo) = A(Xn) .
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Such a time—average can also be computed by partitioningghee.# into a large
numberK of disjoint cellsZ] (such that# = UZj), and reckoning the number of times
nj(Xo) the orbit{xn} visits any cellZj (so thatn;/N is the discrete analogue of the
sojourn time, see also [12]). Indeed one has

whereA,; is the value oA at a chosen poink € Zj. In equilibrium statistical mechanics
one considers the limiN — +oco, but in presence of metastable phenomena one has
to consider time averages on some large but still finite tenate. In the latter case it is
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FIGURE 1. Histogram of the occupation numbers for the rotators cheieraperaturd = 0.25. The
total integration time is ¥ ~ 51. Left panel: normal scale; right panel: semi—logarithnaials.

meaningful to think olN as a parameter having a fixed “large” value. In this case ikere
nothing analogous to the ergodic theorem, i.e. the fundieg) is not almost constant
but does depend on the initial datug

If a certain probability distribution is assigned for thétim dataxg, thenA(xo) turns
out to be arandom variable, in the sense that it will assufffereint values with different
probabilities. It is then natural to consider the expeotatvalue< A > of the time
averageA(xp) with respect to the initial data distribution, i.e. the gtign

1K
:NXAj<nj>, (2)

where we have denoted by > the expectation with respect to the a priori distribution.
This formula shows that the time average of every dynamiaabble can be expressed
in terms of the averages of the random varialnlggo), so that the probability distribu-
tion functionF;j(n) of the occupation number; turns out to have a fundamental role.
Our aim is to give a numerical estimate of the functigm;), and to check if it is com-
patible with a thermodynamics given by a Tsallis statistic.

Notice that, in statistical thermodynamics one does nottdieactly with the a priori
probability, because it is generally assumed that the tawerage of the energy of the
system has a given vallk which should play the role of an independent variable. So we
consider the energy of the system, which we denote,land the corresponding time—
averages = ¥ j€jnj/N. One has then to impose on the numbeys- -, ng the further

condition ﬁ Z}ffl gjnj = U = const. Thus the quantity of interest is the posteriori
expectation oA given U, which can by expressed in term of the a posteriori expexctati



p.d.f.

0.2
0.18 - ' Poisson distribution, p=4.5 i
0.16 ’
0.14 |
0.12 |

0.1

Il
p.d.f.

0.08

0.06

0.04 |/
/ Tsallis distribution, 0=13, p=1.
0.02

1 L -2 &
0 5 10 15 20
Number of visits

0.1

0.01 |

0.001

le-04

le-05

le-06
0

Poisson distribution, p=4.5

2\ Tsallis distribution, 0=13, p=1

L L L
5 10 15 20
Number of visits

FIGURE 2. Histogram of the occupation numbers for the rotators chaithe same temperature
T = 0.25 of Figure 1, but at larger total integration time (the kditae is 2! ~ 10°). Left panel: normal

scale; right panel: semi—logarithmic scale.

Vj =< nj >y of the occupation numbers by

— 1
<A>U:NZA1V1 .
J

The quantitieyj /N are then the coarse—grained analogues of the density abihessd
equilibrium measures. In particular standard Gibbs thelynamics are recovered if
vj ~ exp(—0¢j), while Tsallis statistics is obtainedj ~ (1 — 6¢;)9.

For large system one finds thgtcan be computed by making reference to a function
Xj(2), which is the logarithm of the Laplace transform of the cuative p.d.f.Fj(n).

Namely definingx;(z) by

exp(xj(2)) d:ef/Re‘”zdFj : (3)
one finds 0
vj:—x]f('wjta) : (4)

wherea andf are determined imposing that the mean enerdy &nd the total number
of iterations isN. In particular (see [1]), if the process of occupation of @eyl is a
Poisson one, i.e. if the successive visits of a given celiratependent events, one finds

thatv; ~ exp(—0¢;).

Instead, the Tsallig—distribution is obtained if the variables are distributed in such

a way that

def

Xi@=x"2=

p(1+2) " —p; )
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FIGURE 3. Histogram of the occupation humbers for the rotators chateraperaturd = 0.5. The
total integration time is ¥ ~ 51. Left panel: normal scale; right panel: semi—logarithnaials.

herep and o are positive parameters, moreoweis related to the so—called “entropic
index” q by the relationo = 1/(q— 1). From the Laplace transform' S(z) one can
find the distributionF TS(n) of the occupation numbers, and then make a comparison
with the actual finding in the numerical experiments. It &iout thatF TS(n) doesn’t
have a closed expression in terms of known functions, exXoepbme special cases, but
expression foF TS(n) can however be given as a series expansion (details can ke find
ref. [13], see also [14]).

In the next section we show that, by choosing appropriateegfor p and o, the
functionFTS(n) fits the distributiorF; (n) one gets from the numerical computations, in
a better way with respect to a Poisson one.

THE MODELS

So the problem becomes to estimate the fundggn) by numerical computation. Make
this using the definition offj(n) requires a great computational power because one has
to integrate a large number of orbits for long times. So we &kifferent approach.

Consider the time flow ma@’ with 1 sufficiently large, and compute juatsingle
orbit, with an initial datum taken at random. Then, one takes ardeobthe cells the
orbit visits and builds the histogram of how many cells agted one time, how many
cells are visited two time, and so on. In the hypothesis tianf are independent and
equidistributed (alF; are equal to the same functié) this histogram is closed 16 (n)
(because for the law of the large numbers the frequency sdlto the probability).

We have built such an histogram for two kind of system. A systék = 16 rotators

with Hamiltonian
H=Y pf/2+1/45 co@1—q),
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FIGURE 4. Histogram of the occupation numbers for the FPU model at ézatpreT = .11. The total
integration time is~ 51C°. Left panel: normal scale; right panel: semi—logarithnaiale.

and periodic boundary conditions. We take initial data emmfly distributed for the
anglesq@, while the momentg; are extracted from a Maxwell-Gibbs distribution with
temperaturd . We divided the phase space itP2ells of equal (Gibbs) measure, in the
following way: for each = 1, ... k we consider the sets

Ai={lpl<aT}, A°={|p|>aT}

o = 0.6745... being the quartile of the normal distribution. The cells amaply ob-
tained by all the possible intersectiom;, whereB; is eitherA; or its complemenA‘C.

We also consider a FPU system loi= 16 moving particles, i.e. a linear chain of
particles coupled through non linear springs, with Hamitho

H=3 pP/2+ 3 (i1 —%)+1/43 (612—%)*,

and fixed end conditions. We take initial data distributecbading to exp—H,/T), H>
being the quadratic part of the Hamiltonian. The partitibthe phase space is obtained
considering 2° cells defined in the following way: denoting wikh is the energy of the
i-th normal mode, for each=1,...,k we considers the sets

A ={E <log2T}, A°={E >log2T}

Notice that the value log 2 is the median of the normal modeggrdistribution accord-
ing to the Gibbs distribution (in the harmonic approximajiol he cells are obtained as
before by the all the possible intersectioB;, beingB; eitherA; orAic.
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FIGURE 5. Histogram of the occupation numbers for the FPU model at e&zatprel = .06. The total
integration time is~ 51C°. Left panel: normal scale; right panel: semi—logarithnaiale.

NUMERICAL RESULTS

The first three figures refer to the system of rotators. Wellré¢lsat this system is
integrable (i.enot chaotig in the limit of high energy, while it is expected to becomes
very chaotic in the limit of low one. In Figure 1 is illustratehe histogram of the
occupation number, for a temperature= 0.25. As one can see, the fit with a Poisson
distribution is quite good. But if we increase the integyattime of a factor 4, the
histogram departs from the Poisson distribution, as oneleack from the data reported
in Figure 2. Instead, the data can be represented in a veywap using a distribution
FTS(n) with parametep = 1 ando = 13.

If we rise the temperature the departure from a Poissonlaisitvn happens at earlier
times. This is illustrated in Figure 3, where the histogrditine occupation numbers, for
a temperaturd@ = 0.5, is reported. The integration time is the same as that afrEig.
We see that the departure of a Poisson distribution is cheal,also that a distribution
FTS(n) with parametep = 1 ando ~ 1.9 agrees very well with the numerical data.

One can ask for the dependence of the paranped@do both on time and on the size
of the system. For example, the dependence tstbm the particles numbdvis crucial,
because ith — o for k — oo then, in the thermodynamical limit, one would obtain again
the Gibbs distribution. We have not deal with this fundarakguestion, because this is
only a preliminarily work, aimed at showing that Tsallistdisution is compatible with
the dynamics of simple Hamiltonian systems.

The histograms for the FPU model show the same behaviouigurd-4, the data
for the FPU model at temperatufe= .11 are reported. Looking at the data in the left
panel, one can see that the Poisson distribution gives afgo8dit, looking at the data
in semi—logarithmic scale (right panel), one can checkttiaPoisson distribution fails
in the tail of the distribution, whereas a distributiBiS(n) with parameterg = 2 and



0 = 4 seems to agree better with the data, in the whole range tiagsthat the tail
of the distribution is computed with a lower precision thha bulk (where the Poisson
distribution and the Tsallis one agrees), so that this tadtlalso be considered not very
significant. But data computed at the lower temperafuse.06, indicate that a Poisson
distribution is not adequate also in the bulk of the histagras one can clearly see
from Figure 5. On the contrary a Tsallis distributiBhs(n), with p=2.25 ando = 1.4,
seems to fit the data in a quite good way.

In conclusion, this preliminary numerical results seenntiigate that the distribution
of the sojourn time in not a Poisson one for system which algweakly chaotic. If this
is the case, the Maxwell-Gibbs measure is not the apprepoia to use in statistical
thermodynamics computations.

At the same time, the numerical results also show that thaliison of the sojourn
time is compatible with the Tsallis one. Obviously, more muital confirmations are
need, besides a study of the dependence’s of the quamtiird o from the parameters
entering the system.
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