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Abstract. We perform numerical simulations for the dynamics of a chainof weakly coupled
particles, and consider the process of occupation of cells in phase space, in the spirit of paper [1]. A
different behaviour is exhibited as the coupling constant is changed. It is discussed whether such a
dynamical behaviour is compatible with the Tsallis statistics.
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INTRODUCTION

In the paper [1] (see also [2]), a method was introduced to deal with Statistical Thermo-
dynamics if reference is made to dynamics through time-averages. This can be useful
for example when one has to deal with metastable states, in which the system remains
frozen far from equilibrium for very long times, so that it isnot clear what measure in the
phase space should be used. In agreement with the opinion expressed by most classics,
one can make the statement that the macroscopic quantities observed are nothing but the
time–averages (up to the observation time–scale) of the relevant dynamical variables.

Indeed, if the system is ergodic, the time–averages overinfinite timescoincide with
the Gibbs phase-averages, but there remains open the problem that nothing is known
concerning the time–averages for large butfinite times. For example, in the literature
cases are reported (see [3]) in which the dimensions of the orbits of Hamiltonian system
appear to have non–integer values according to numerical estimates, notwithstanding
the fact that the dimension of the full orbit (involving all times) is proved(see [4]) to
actually be an integer. This fact was explained in the paper [5]. There it was shown,
for the familiar standard map, that the observed dimension actually depends on the
observation time, and that the attainment of the “true value” (two in that case) would
require an exceedingly large number of iterations (outsideof the computers reach). This,
notwithstanding the fact that, the fractal dimension appears to settle down to a definite
non–integer value on a finite time–scale. It is clear that on time–scales of the latter type
the sojourn time measure too has to appear very odd, i.e. non absolutely continuous
with respect to the Lebesgue one. So, in general, if one has todeal with a metastable
state (i.e. an “ergodic behaviour” is granted only on a times–scale much larger than the
available one), then the orbits could exhibit some strange features (such as a non integer
fractal dimension on the observed time–scale) which may prevent the use of the Gibbs
measure. It has been suggested that in some problems where metastable states show up
(as in systems of rotators with long–range coupling [6], or in galaxies [7]), one has to



replace the Gibbs measure by the Tsallis one [8].
On the other hand, in the paper [1] it was shown that the use of time–averages amounts

to introducing a measure in phase space, suitably defined by the dynamics of the system.
In short (see Section 2 for precise definitions) one has to determine the statistics of the
sojourn times, and then the coarse–grained density of the phase–space measure turns
out to be nothing but the (logarithm of the) Laplace transform of the p.d.f. of the sojourn
time of any cell. In particular, the usual Gibbs measure is recovered if the dynamics is
very chaotic, i.e. the p.d.f. (of the sojourn time) is a Poisson one.

In this paper we numerically estimate the p.d.f. of the sojourn time for two models:
a chain of next neighbours weakly coupled rotators, and a FPUβ -model (i.e. a chain
of next neighbours weakly coupled particles). Both models are know to exhibit a non
ergodic behaviour: for high enough energy the first model (see for example [9]), for low
enough energy the second (see the original paper of Fermi, Pasta and Ulam [10], or [11]
for a review). The numerical results indicate that the the p.d.f. of the sojourn time is not
a Poisson one; moreover using a Tsallis distribution (to be defined in Section 2) with the
appropriate values for the parameters, one can fit the numerical data very well.

The paper is organised as follows. In Section 2 the method to deal with time-averages
is recalled. In Section 3 the models are described and the numerical results exhibited in
Section 4.

TIME–AVERAGES

We recall here, briefly, the method which was introduced in [1] in order to obtain the
relevant thermodynamic functions on the basis of dynamics,namely when use is made
of time–averages rather than of ensemble averages.

Consider a diffeomorphismΦ on a phase–spaceM , and an orbitxn = Φ(xn−1),
n = 1, . . . ,N up to “time” N, determined by an initial valuex0. In our case, we deal
with the orbits generated by iterations of the time–τ map induced by the flow of an
Hamiltonian system. The time–average (up to timeN) of a dynamical variableA(x) (a
real function onM ) is defined by

Ā(x0)
def
=

1
N

N

∑
n=1

A(xn) .

Such a time–average can also be computed by partitioning thespaceM into a large
numberK of disjoint cellsZ j (such thatM =∪Z j ), and reckoning the number of times
n j(x0) the orbit{xn} visits any cellZ j (so thatn j/N is the discrete analogue of the
sojourn time, see also [12]). Indeed one has

Ā(x0) ≃
K

∑
j=1

A j
n j

N
, (1)

whereA j is the value ofA at a chosen pointx∈Z j . In equilibrium statistical mechanics
one considers the limitN → +∞, but in presence of metastable phenomena one has
to consider time averages on some large but still finite time–scale. In the latter case it is
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FIGURE 1. Histogram of the occupation numbers for the rotators chain at temperatureT = 0.25. The
total integration time is 219≃ 5105. Left panel: normal scale; right panel: semi–logarithmic scale.

meaningful to think ofN as a parameter having a fixed “large” value. In this case thereis
nothing analogous to the ergodic theorem, i.e. the functionĀ(x0) is not almost constant
but does depend on the initial datumx0.

If a certain probability distribution is assigned for the initial datax0, thenĀ(x0) turns
out to be a random variable, in the sense that it will assume different values with different
probabilities. It is then natural to consider the expectation value< Ā > of the time
averageĀ(x0) with respect to the initial data distribution, i.e. the quantity

< Ā >=
1
N

K

∑
j=1

A j < n j > , (2)

where we have denoted by< ·> the expectation with respect to the a priori distribution.
This formula shows that the time average of every dynamical variable can be expressed
in terms of the averages of the random variablesn j(x0), so that the probability distribu-
tion functionFj(n) of the occupation numbern j turns out to have a fundamental role.
Our aim is to give a numerical estimate of the functionF(n j), and to check if it is com-
patible with a thermodynamics given by a Tsallis statistic.

Notice that, in statistical thermodynamics one does not deal directly with the a priori
probability, because it is generally assumed that the time–average of the energy of the
system has a given valueU , which should play the role of an independent variable. So we
consider the energy of the system, which we denote byε, and the corresponding time–
averagēε = ∑ j ε jn j/N. One has then to impose on the numbersn1, · · · ,nK the further
condition 1

N ∑K
j=1ε jn j = U = const. Thus the quantity of interest is thea posteriori

expectation of̄A given U, which can by expressed in term of the a posteriori expectation
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FIGURE 2. Histogram of the occupation numbers for the rotators chain at the same temperature
T = 0.25 of Figure 1, but at larger total integration time (the total time is 221 ≃ 106). Left panel: normal
scale; right panel: semi–logarithmic scale.

ν j =< n j >U of the occupation numbers by

< Ā >U=
1
N ∑

j
A jν j .

The quantitiesν j/N are then the coarse–grained analogues of the density of the standard
equilibrium measures. In particular standard Gibbs thermodynamics are recovered if
ν j ≃ exp(−θε j), while Tsallis statistics is obtained ifν j ≃ (1−θε j)

q.
For large system one finds thatν j can be computed by making reference to a function

χ j(z), which is the logarithm of the Laplace transform of the cumulative p.d.f.Fj(n).
Namely definingχ j(z) by

exp(χ j(z))
def
=

∫

R
e−nzdFj . (3)

one finds

ν j = −χ ′
j

(ε jθ
N

+α
)

, (4)

whereα andθ are determined imposing that the mean energy isU and the total number
of iterations isN. In particular (see [1]), if the process of occupation of anycell is a
Poisson one, i.e. if the successive visits of a given cell areindependent events, one finds
thatν j ≃ exp(−θε j).

Instead, the Tsallisq–distribution is obtained if the variablesn j are distributed in such
a way that

χ j(z) = χTs(z)
def
= p

(

1+
z
σ

)−σ
− p ; (5)
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FIGURE 3. Histogram of the occupation numbers for the rotators chain at temperatureT = 0.5. The
total integration time is 219≃ 5105. Left panel: normal scale; right panel: semi–logarithmic scale.

herep andσ are positive parameters, moreoverσ is related to the so–called “entropic
index” q by the relationσ = 1/(q− 1). From the Laplace transformχT s(z) one can
find the distributionFTs(n) of the occupation numbers, and then make a comparison
with the actual finding in the numerical experiments. It turns out thatFTs(n) doesn’t
have a closed expression in terms of known functions, exceptfor some special cases, but
expression forFTs(n) can however be given as a series expansion (details can be findin
ref. [13], see also [14]).

In the next section we show that, by choosing appropriate values for p and σ , the
functionFTs(n) fits the distributionFj(n) one gets from the numerical computations, in
a better way with respect to a Poisson one.

THE MODELS

So the problem becomes to estimate the functionFj(n) by numerical computation. Make
this using the definition ofFj(n) requires a great computational power because one has
to integrate a large number of orbits for long times. So we take a different approach.

Consider the time flow mapΦτ with τ sufficiently large, and compute justa single
orbit, with an initial datum taken at random. Then, one takes a record of the cells the
orbit visits and builds the histogram of how many cells are visited one time, how many
cells are visited two time, and so on. In the hypothesis that then j are independent and
equidistributed (allFj are equal to the same functionF) this histogram is closed toFj(n)
(because for the law of the large numbers the frequency is closed to the probability).

We have built such an histogram for two kind of system. A system of k = 16 rotators
with Hamiltonian

H = ∑ p2
i /2+1/4∑cos(φi+1−φi) ,
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FIGURE 4. Histogram of the occupation numbers for the FPU model at temperatureT = .11. The total
integration time is≃ 5108. Left panel: normal scale; right panel: semi–logarithmic scale.

and periodic boundary conditions. We take initial data uniformly distributed for the
anglesφi , while the momentapi are extracted from a Maxwell–Gibbs distribution with
temperatureT. We divided the phase space in 216 cells of equal (Gibbs) measure, in the
following way: for eachi = 1, . . . ,k we consider the sets

Ai = {|pi | < αT} , AC
i = {|pi| > αT}

α = 0.6745. . . being the quartile of the normal distribution. The cells aresimply ob-
tained by all the possible intersection∩Bi , whereBi is eitherAi or its complementAC

i .
We also consider a FPU system ofk = 16 moving particles, i.e. a linear chain of

particles coupled through non linear springs, with Hamiltonian

H = ∑ p2
i /2+∑(xi+1−xi)

2+1/4∑(xi+1−xi)
4 ,

and fixed end conditions. We take initial data distributed according to exp(−H2/T), H2
being the quadratic part of the Hamiltonian. The partition of the phase space is obtained
considering 216 cells defined in the following way: denoting withEi is the energy of the
i-th normal mode, for eachi = 1, . . . ,k we considers the sets

Ai = {Ei < log2T} , AC
i = {Ei > log2T}

Notice that the value log2 is the median of the normal mode energy distribution accord-
ing to the Gibbs distribution (in the harmonic approximation). The cells are obtained as
before by the all the possible intersection∩Bi , beingBi eitherAi or AC

i .
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FIGURE 5. Histogram of the occupation numbers for the FPU model at temperatureT = .06. The total
integration time is≃ 5108. Left panel: normal scale; right panel: semi–logarithmic scale.

NUMERICAL RESULTS

The first three figures refer to the system of rotators. We recall that this system is
integrable (i.e.not chaotic) in the limit of high energy, while it is expected to becomes
very chaotic in the limit of low one. In Figure 1 is illustrated the histogram of the
occupation number, for a temperatureT = 0.25. As one can see, the fit with a Poisson
distribution is quite good. But if we increase the integration time of a factor 4, the
histogram departs from the Poisson distribution, as one cancheck from the data reported
in Figure 2. Instead, the data can be represented in a very good way using a distribution
FTs(n) with parameterp = 1 andσ = 13.

If we rise the temperature the departure from a Poisson distribution happens at earlier
times. This is illustrated in Figure 3, where the histogram of the occupation numbers, for
a temperatureT = 0.5, is reported. The integration time is the same as that of Figure 1.
We see that the departure of a Poisson distribution is clear,and also that a distribution
FTs(n) with parameterp = 1 andσ ≃ 1.9 agrees very well with the numerical data.

One can ask for the dependence of the parameterp andσ both on time and on the size
of the system. For example, the dependence ofσ from the particles numberk is crucial,
because ifσ → ∞ for k→ ∞ then, in the thermodynamical limit, one would obtain again
the Gibbs distribution. We have not deal with this fundamental question, because this is
only a preliminarily work, aimed at showing that Tsallis distribution is compatible with
the dynamics of simple Hamiltonian systems.

The histograms for the FPU model show the same behaviour. In Figure 4, the data
for the FPU model at temperatureT = .11 are reported. Looking at the data in the left
panel, one can see that the Poisson distribution gives a goodfit. But, looking at the data
in semi–logarithmic scale (right panel), one can check thatthe Poisson distribution fails
in the tail of the distribution, whereas a distributionFTs(n) with parametersp = 2 and



σ = 4 seems to agree better with the data, in the whole range. It istrue that the tail
of the distribution is computed with a lower precision than the bulk (where the Poisson
distribution and the Tsallis one agrees), so that this test could also be considered not very
significant. But data computed at the lower temperatureT = .06, indicate that a Poisson
distribution is not adequate also in the bulk of the histogram, as one can clearly see
from Figure 5. On the contrary a Tsallis distributionFTs(n), with p = 2.25 andσ = 1.4,
seems to fit the data in a quite good way.

In conclusion, this preliminary numerical results seem to indicate that the distribution
of the sojourn time in not a Poisson one for system which are only weakly chaotic. If this
is the case, the Maxwell–Gibbs measure is not the appropriate one to use in statistical
thermodynamics computations.

At the same time, the numerical results also show that the distribution of the sojourn
time is compatible with the Tsallis one. Obviously, more numerical confirmations are
need, besides a study of the dependence’s of the quantitiesp andσ from the parameters
entering the system.
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