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Abstract

The FPU problem is discussed in connection with its physical relevance, and it is
shown how apparently there exist only two possibilities: either the FPU problem is
just a curiosity, or it has a fundamental role for the foundations of physics, casting
a new light on the relations between classical and quantum mechanics. To this end,
a short review is given of the main conceptual proposals that have been advanced.
Particular emphasis is given to the perspective of a metaequilibrium scenario, which
appears to be the only possible one for the FPU paradox to survive in the physically
relevant case of infinitely many particles.
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No doubt, the FPU problem (see [1] and the review [2]) did play
a relevant role in the theory of dynamical systems. Indeed, first of
all, with the works of Zabusky and Kruskal it prompted the modern
theories of solitons and of infinitely—dimensional integrable systems.
Then, it prompted the transfer of modern Hamiltonian perturbation
theory to physics: we refer to KAM theory and to the subsequent
weak stability theory of Nekhoroshev. However, one can very well
ask what after all is the physical significance itself of the FPU prob-
lem. Here there seem to exist two extreme possibilities: 1. Just a
curiosity, i.e. no physical meaning at all; 2. A fundamental mean-
ing for the foundations of physics, in connection with the relations
between classical and quantum mechanics. In the opinion of the
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present authors, there is no way for intermediate possibilities con-
cerning the physical relevance of the FPU problem. Moreover, at
present, i.e. fifty years after the original FPU paper, no definitive
answer allowing to decide between twe two alternatives seems to be
available. The attractive feature of the present situation is that one
meets here with a foundational question where little place is left for
generic words, because the numerical computations of Fermi Pasta
and Ulam are somehow obliging the scientific community to strive
for providing a clearcut answer, which should be given by the meth-
ods of the mathematical theory of dynamical systems. The principal
aim of the present paper is to explain why the physical significance
of the FPU problem is bound to oscillate between such two extreme
alternatives. At the same time, a short review is given of the works
which were most influential in this connection.

1 Introduction: the FPU problem in the strict sense and in the
wide sense, and its possible physical significance.

In its widest sense, the FPU problem may be defined as the question whether
the methods of classical equilibrium statistical mechanics are justified, on a
dynamical basis, in the region of very low temperatures. In a restricted sense,
more akin to its original formulation, the FPU problem deals instead with
an estimate of the rate of thermalization (i.e. the rate of the approach to
equilibrium), if one starts out from initial data very far from equilibrium.

These are indeed old problems, but they were reopened in an acute way by
the Fermi Pasta Ulam paper. In fact, the authors were reporting the results
of some numerical computations for the dynamics of a discretized nonlinear
string, and the results were not conforming the expectations at all. This is
very well summarized in the following words, written by Ulam in a preface to
the reproduction of the paper in Fermi’s Collected Papers: The results of the
calculations ... were interesting and quite surprising to Fermi. He expressed
to me the opinion that they really constituted a little discovery in providing
intimations that the prevalent beliefs in the universality of mizing and ther-
malization in non—linear systems may not be always justified. Notice that such
a recollection is particularly important because the direct opinion of Fermi is
not available, since he passed away before the paper was written down.

From the mathematical point of view, at first sight one might be tempted to
range the FPU problem, in both of its senses (wide and restricted), within
the class of problems usually dealt with by ergodic theory. But actually this
is not completely true, because in ergodic theory one looks at the limit ¢ —
oo (t being time), while here one might be dealing with situations involving



metastable states (as in the case of glasses), on which nothing can be inferred

from the properties holding asymptotically in time. On this point we will come
back below.

But why should such rather technical problems have anything to do with the
foundational problem of the relations between classical and quantum mechan-
ics? The point is that the region of low temperatures, with which the FPU
problem is concerned, is just the one where classical equilibrium statistical
mechanics was confronted with its greatest qualitative failure. Indeed classi-
cal equilibrium statistical mechanics predicts a constant specific heat (i.e. one
independent of temperature), while the specific heat is known to tend to zero
as temperature decreases. This is actually the point where quantum mechan-
ics made its appearence, with Planck’s law taking the place of equipartition
(see below). Thus the FPU result, inasmuch as it intimates that the prevalent
beliefs in the universality of mizing and thermalization in non—linear systems
may not be always justified, at first sight appears to cast doubts on the dy-
namical justification for using the methods of classical equilibrium statistical
mechanics.

Consequently, either one is able to show that the phenomenon observed by
Fermi Pasta and Ulam disappears in cases of physical interest, or one is con-
fronted with a delicate problem of interpretation. This is the reason why the
authors dealing with the FPU problem appear to be divided into two classes,
according to the hopes of their hearts: 1. Those who strive for proving, on a
dynamical basis, that the FPU phenomenon disappears in situations of phys-
ical interest, so that the methods of classical equlibrium statistical mechan-
ics are applicable and classical mechanics is proven to fail, as all of us have
learned at school; 2. Those who strive for proving that the methods of classi-
cal equilibrium statistical mechanics are not justified on a dynamical basis at
low temperatures, so that the questions of the relations between classical and
quantum mechanics should be reconsidered, in a completely new perspective.
The present authors frankly recognise themselves in the second class. Most au-
thors probably belong to the first class, although many of them may manifest
sensible oscillations. In any case, such a division proved to be very effective in
stimulating the mathematical research on the subject. The challenge is open.

2  The original FPU paper, and the FPU phenomenon (or para-
dox).

The original FPU paper was concerned with a discretized model of a string,
which may also be interpreted as a one-dimensional model of a crystal. One
deals with NV + 2 equal particles on a line (the extreme ones being fixed), each
of the N moving particles interacting with the two adjacent ones, through a



potential of the type V(r) = (1/2)r? + (a/3)r® 4+ (8/4)r*. For a = 3 = 0 (the
unperturbed case) the system is well known to be equivalent to a system of N
independent harmonic oscillators (normal modes) having certain frequencies
w; = 2sin|(jm)/2(N + 1), and so there is essentially no evolution, because
the energies £; of the normal modes are independent integrals of motion. For
what concerns the perturbed system, Fermi was well acquainted with a famous
theorem of Poincaré (having produced already in the year 1923 a generalization
of it — see [3] or also [4]), according to which in general no integral of motion
exists apart from the Hamiltonian itself, no matter how small the perturbation
be. So the FPU system was expected to be ergodic. By most people this fact
was interpreted as constituting a dynamical justification for the application of
the methods of classical equilibrium statistical mechanics. Indeed ergodicity
ensures that the time—averages of the dynamical variables converge, as t —
00, to the corresponding phase—averages, i.e. the averages with respect to
Gibbs measure (we think of N large enough so that the equivalence of the
various equilibrium ensembles is guaranteed). But how can such a situation
be reconciled, in any reasonable continuous way, with the fact that in the
unperturbed case one has an integrable system, with its N integrals of motion,
somehow the opposite of an ergodic system, while ergodicity comes about
no matter how small the perturbation is? Today, we know very well how
continuity was restored in the measure-theoretical sense by Kolmogorov, with
his formidable work of the year 1954 (the same year of the FPU work), in which
the existence of individual deformed invariant surfaces was exploited (see [5]).
But continuity is also restored if one makes a question of times. One should
look at the relaxation time 7 for the establishment of equilibrium, i.e. the
time needed for the time—averages of relevant quantities to actually converge
to the corresponding phase—averages. One expects that, as the perturbation
decreases to zero, such relaxation time 7 tends to infinity or, equivalently, the
thermalization rate tends to zero. Recalling the words of Ulam quoted above,
and the work of Fermi on the Poincaré theorem, one may guess that such a
perspective was the one that Fermi had in mind: one should look for the time
needed for equilibrium to actually be attained.

Now, the fundamental result of classical equilibrium statistical mechanics is
the equipartition theorem: up to a small contribution vanishing with the non-
linearity, all the modes should have (in phase average) the same sharing of
energy, actually equal to the quantity 7', where k is the Boltzmann constant
and T the absolute temperature. So what Fermi Pasta and Ulam did was to
numerically integrate the equations of motion of the FPU model for initial
data corresponding to a state extremely far from equipartition (the computa-
tions were done for N = 64 or N = 32 particles, with certain fixed values of
a and [ and also a fixed value of the energy F). In fact they chose an initial
state with the energy concentrated on the lowest frequency mode 7 = 1 or
on a few low—frequency modes (the long—wavelength case). Fermi Pasta and
Ulam expected that, after a suitable time, energy would be uniformly spread



among all modes, producing the flat spectrum of equipartition predicted by
classical equilibrium statistical mechanics. They found instead that, up to the
maximal time availabale, energy was shared only within a small packet of
low—frequency modes, with no approach to equipartition at all. The key point
is that one might have expected to see a progressive approach to equiparti-
tion. Instead (as vividly shown by the last figure reported in the FPU paper,
which gives the time-averages F; of the normal modes versus time) the time—
averages do indeed appear to approach an equilibium, because they stabilize
quite well. But such an equilibrium has nothing to do with the one predicted
by classical equilibrium statistical mechanics, i.e. equipartition, because the
FPU spectrum is an “anomalous” one, which has the form of an exponen-
tial decay towards the high frequencies. This fact, namely that apparently
an equilibrium was reached which is however completely different from the
one predicted by classical equilibrium statistical mechanics, may be called the
FPU phenomenon, or even the FPU paradoz.

3 The first reactions: the way out of Izrailev and Chirikov, the
work of Bocchieri et al., and the proposal of Cercignani, Galgani
and Scotti.

As mentioned above, the first reaction (amply quoted in the already recalled
preface of Ulam) was that of Zabusky and Kruskal (see [6]). They appar-
ently did not deal at all with the physical aspect of the paradox. They just
picked up very seriously the suggestion that there exist meaningful systems
which are perturbations of integrable ones and nevertheless are still integrable.
Thus, they started developing the modern theories of solitons and of infinitely—
dimensional integrable systems, which later took their own way, with no ref-
erence to the FPU problem at all.

A fundamental contribution in connection with the FPU paradox was soon
given by Izrailev and Chirikov (see [7]). By the way, their results made such
strong an impression on one of the present authors, as to lead him to study by
heart, in the original russian language, a consistent part of a subsequent paper
by Chirikov. The mathematical frame Izrailev and Chirikov had in mind is, as
they explicitly mention, KAM theory. According to it, the perturbation of an
integrable system resembles the unperturbed one, in a way which in general
decreases (in a measure theoretic sense) as perturbation is increased. This nat-
urally leads one to expect that the resemblance completely disappears above
a certain threshold (often described as the transition between ordered and
chaotic motions). In the present case, for a and [ fixed, the quantity playing
the role of the perturbation parameter is the energy E (because the cubic and
quartic terms become negligible with respect to the quadratic ones, as energy
tends to zero). Thus one expects that there exists an energy threshold E¢ such



that the FPU paradox disappears above that threshold, i.e. for £ > E°. And
this turned out to actually be the case. Indeed, if one repeats the FPU com-
putations for initial data of the same type as FPU, but with a large enough
energy, the spectrum is found to relax, within the available time, to the flat
one corresponding to equipartition. This is the Izrailev—Chirikov mechanism:
equipartiton is obtained (in a short time) if energy is raised above a threshold
E*, and this certainly was a fundamental contribution.

Then comes what we like to call the Izrailev—Chirikov conjecture, which is a
different thing, having to do with the dependence of the critical energy E° on
the number N of degrees of freedom. The conjecture is that E°/N — 0 as
N — o0. More precisely, the conjecture was explicitly put forward for the case
of initial data with excitations of high—frequency modes (the short-wavelength
case), and some semianalytical considerations were also provided in order to
support it. Such considerations were recently adjusted by Shepelyansky (see
[8]) in order to cover the case of initial data of FPU type (the long—wavelength
case). Denote by € = E/N the specific energy of the system. If the Izrailev—
Chirikov conjecture were true, then the FPU paradox would disappear for
all physically relevant energies, i.e. for ¢ > 0. This would be the end of the
problem.

Actually, the situation turns out to be much more complicated. Indeed, the
semianalytical considerations of Izrailev and Chirikov refer to the so—called
criterion of the overlapping of resonances introduced by Chirikov, which, ap-
parently, just ensures the existence of some “local chaos” (local with respect
to the modes), with no direct implication for the global problem of equipar-
tition. For what concerns the considerations of Shepelyansky, they were even
interpreted quite recently (see below) as strong indications in the opposite di-
rection, namely that the FPU phenomenon should persist in the limit N — oo.
In any case, independently of its justification, the Izrailev—Chirikov conjecture
may be considered as playing the role of a fundamental paradigm, namely as
the suggestion that the FPU problem, even it its wide sense, be irrelevant for
physics.

The subsequent main contribution came from a paper of Bocchieri, Scotti,
Bearzi and Loinger (see [9]), in which numerical indications were given that the
specific energy threshold £¢/N would not vanish in the limit N — oo. In fact,
such authors also introduced a slight modification of the FPU model, inasmuch
as the interparticle potential was chosen to be a realistic one, namely that of
Lennard—Jones, V(r) = 4Vp[(c/r)** — (¢/r)®]. This contains the parameters
Vo and o, the first of which has the meaning of the depth of the potential well.
The specific energy threshold could thus be given a physical interpretation,
because it turned out to be of the order of 0.04 Vj, and this corresponds, for
example in the case of Argon, to a temperature of some degrees Kelvin.



So, there could have been space for a BSBL conjecture, opposed to that of
Izrailev and Chirikov, namely that the FPU problem has a physical meaning.
The “crossing of the Rubicon” was done in a subsequent paper by Galgani and
Scotti (see [10]). The main idea was that the FPU spectrum, with its expo-
nential decay towards the high frequencies, is qualitatively of Planck’s type.
So a fit was made to a Planck-like law, namely E(w;) = Aw;/[exp(Afw;) —1],
containing two parameters A (an action) and (. It was found that § depends
on the specific energy as expected (namely, as an inverse temperature), while
the action A appeared to be a constant. The striking fact was that, using for
m (the mass of the particles), V; and o the concrete values corresponding to
Argon, the action A was found to be of the order of magnitude of Planck’s
constant h. It took some time to understand that this had occurred just be-
cause Planck’s constant had actually been introduced from outside into the
model, somehow by hands, through the realistic molecular potentials. Indeed,
as dimensional analysis immediately shows, any action appearing in the results
has to be proportional to the natural action of the model, namely to vmV; o.
On the other hand it is well known that, for example for the parameters of the
noble gases, one has empirically the relation /mVy 0 = 2Zh, where Z is the
atomic number and £ is indeed Planck’s constant. After the appearing of the
paper, Chirikov himself wrote a private letter to the authors, kindly asking
them whether the motions involved were of an ordered or of a chaotic type, a
question to which the authors were not prepared to answer. In a short time,
Cercignani (see [11]) gave a further contribution “of an ideological type”, by
suggesting that the threshold energy should be a function E(w) of the fre-
quency (i.e. should depend on the initially excited mode, as had in fact been
assumed also by Izrailev and Chirikov), and that the quantity £(w) not only
should not vanish in the limit N — oo, but even should be the analog of the
quantum zero—point energy (1/2)hw. This idea still remains in the mind of
Cercignani, as one can see from the paper [12].

4 The metaequilibrium perspective.

Thus, the two extreme possibilities mentioned in the introduction had already
been advanced by the year 1972: either the FPU problem is irrelevant for
physics, or it has a fundamental meaning. Apparently, the decision between
the two alternatives ought to be done by looking for estimates of some en-
ergy threshold distinguishing between ordered or chaotic motions. But such a
mathematical scenario proved to be too naive, and a subtler one was indeed
advanced.

The breakthrough was provided by a paper by Fucito et al. (see [13]), worked
out in the year 1982 by a group of people around Parisi, where the new idea
was introduced that the FPU phenomenon should be understood as corre-



sponding to a situation of metaequilibrium. In other terms, the anomalous
FPU spectrum should be not an equilibrium state, but rather an apparent
one (a “frozen” state) which would later evolve, on a much longer time—scale,
to the “true” equilibrium, i.e. to the one predicted by classical equilibrium sta-
tistical mechanics. The novelty of such an idea is that, by the ingredient of the
two different time-scales, it allows to reconcile the prediction of classical equi-
librium statistical mechanics, i.e. energy equipartition, (which concerns the
longer time-scale) with the existence itself of the FPU phenomenon, i.e. the
existence of the anomalous FPU spectrum (which is quickly formed, within the
first time-scale). The idea behind what we like to call the Izrailev and Chirikov
congjecture is that the FPU phenomenon, with its anomalous spectrum, does
not occur at all for physically significant systems. Here instead the idea is
that the phenomenon of the anomalous spectrum does occur, being actually
reached within some short relaxation time; then it would persist, having for
most purposes the appearence of a true equilibrium; but the true final equi-
librium should eventually be reached only within a much longer time-scale.
Concerning the apparent equilibrium, certainly the proposal of Galgani and
Scotti was in the minds of the authors. Indeed the sentence which concludes
the paper reads: One of the main results is that the system approaches equilib-
rium with a logarithmic dependence on t, so that the nonequilibrium spectrum
may persist for extremely long times, and may be mistaken for a stationary
state if the observation time is not sufficiently long. It is amusing to remark
that the quasi—equilibrium distribution is similar to Wien’s law for black—body
with a slowly varying “Planck’s constant”.

For what concerns the problem of the energy threshold, here it does actu-
ally take a new form. Indeed, in the new interpretation, the existence of the
FPU phenonemon requires the existence of two well separated time—scales,
one leading to the metaequilibrium FPU state, the other one leading to the
final equilibrium. Both of them are expected to increase as the specific energy
¢ decreases to zero (possibly, the “short” one as a power of 1/¢ — see below — |
whereas the “large” one as a stretched exponential). However, above a certain
threshold the two time-scales might merge, and the final equilibrium should
be reached within the short time—scale.

The main idea for the analytical mechanism of the quick formation of the
anomalous spectrum proposed in the paper [13] is as follows. Think of a field
o(z,t) interpolating the discretized model, and assume it is real-analytic in
x; consider also the corresponding space—Fourier transform ¢(k,t). Then it is
well known that at any time ¢ the spectrum extends up to a characteristic
wave number , beyond which it decays exponentially fast in k/k. In turn,
the parameter x(t) is essentially equal to the width of the analyticity strip
about the real axis. So one has to estimate the width () of the analiticity
strip, i.e. to look for the singularities of the field and estimate their minimal
distance from the real axis, as a function of time. This could be accomplished



in a quite elementary way, at least for short times, in the case of a slight
modification of the FPU model, namely the well known ¢* model. Indeed, in
such a model each particle, in addition to being subject to the forces of the two
adjacent ones, is also attracted towards its equilibrium position by a potential
proportional to the fourth power of its displacement. Thus, considering initial
data of long-wavelength type (as in the FPU work), the term ., related to
the interactions of adjacent particles can be neglected (at least for short times)
and one remains with an equation in which each particle moves independently
of the other ones, obeying an equation of Newton type with a quartic potential,
the analytical properties of which are well known. This is the way in which the
singularities could be quite simply estimated analytically, for short times, in
the ©* model, thus explaining the quick formation of a packet of low— frequency
modes. Concerning the time—scale characterizing the subsequent approach to
the final equilibrium, in the paper [13] only some heuristic considerations were
given, based on qualitative estimates of “exit times” familiar from the theory
of large deviations.

The perspective was however completely clear, and was very well illustrated in
the papers [14] and [15]. In such works, numerical computations on the FPU
model itself (rather than on the ¢* model) were reported. They appeared to
support, first of all, the existence of an apparent equilibrium of FPU type
below a certain specific energy threshold €¢, thus providing a beautiful quanti-
tative confirmation of the previous indications of Bocchieri et al. in connection
with the limit N — oco. It was however quite explicitly pointed out that such
a phenomenon should be interpreted in the metastability perspective, in anal-
ogy with the phenomenology of glasses. In this connection, the result of some
discussions with Parisi was summarized (see [14], page 1044) in the follow-
ing terms: The situation can be likened to the very slow relaxation behavior
in disordered systems, where the evolution towards “equilibrium” takes place
through metastable states approached at different time scales. After some very
interesting qualitative considerations concerning the exchanges of energy to be
expected below the threshold €¢ after the “frozen state” has been approached,
it was finally added: If this were the case this energy transfer would be highly
inefficient and very slow, and therefore difficult to detect numerically. In any
case, the equipartition threshold observed for the integration time discussed in
this paper is physically sensible when we are interested in the behavior of a
system for long but finite times.

5 An intriguing debate.

At this point, a very interesting scenario had been advanced. This allowed
for the possibility of saving the FPU phenomenon, i.e. the anomalous FPU
spectrum, below a certain critical specific energy €, so that the phenomenon



would survive in the limit N — oo. This was obtained by interpreting the
FPU phenomenon in the metastability perspective (i.e. as a frozen state), thus
making it compatible with the predictions of classical equilibrium statistical
mechanics, which should be applicable only after a second, extremely longer,
relaxation time.

The remaining open problem was then, apparently, that of confirming such a
scenario, or of disproving it: certainly not an easy task, because it had been
clearly stated that one would be dealing here with phenomena that are dif-
ficult to detect numerically. What followed was instead a much complicated
phase, with an intriguing debate, about which we are not prepared to draw
any clear conclusion, and in which, strangely enough, the idea of the metasta-
bililty scenario was apparently lost (see [16], and the very interesting paper
[?], in which a semi-analytical result for the largest Lyapunov exponent in the
thermodynamic limit was given).

The only comment we, the present authors, can safely make is that the perspec-
tive advanced by Parisi was not really fully understood by us. Indeed, in the
meantime we happened to be fully immersed in a related quite difficult and in-
teresting problem. This was mostly concerned with the “final” extremely slow
approach to equilibrium, looked at in the perspective of Nekhoroshev theorem
(see [17]), or of the “Landau-Teller method”, rather than with the existence
of intermediate frozen states. The discussion of this point would require a long
digression on the analog of the FPU problem for polyatomic molecules (see
for example [18] and [19]), on which we do not enter here.

The metastability perspective did actually reemerge in the FPU problem af-
ter it had been rediscoveved in the framework of the studies on the specific
heat (see the next section), and, later on, in some recent studies on the FPU
problem itself (see [20]). A relevant contribution in this direction also came
from two recent analytical works which shed some light on the quick forma-
tion of the metastable “frozen” state. We refer to the works of Ponno and
Bambusi (see [21], and the paper [22] appearing in this issue). In such papers,
the mechanism of Fucito et al. explaining, in the ¢* model, the short-time
formation of a packet involving low—frequency modes with an exponential tail
towards the high frequencies, is reinterpreted in a way which allows to extend
it to the FPU problem itself (for a previous attempt, see [23]), and moreover
has the beautiful feature of building up a bridge with the original works of
Zabusky and Kruskal. The very simple idea is that one should look at the
analytical properties of suitable PDE’s (such as the familiar KdV equation,
which is suited for long-wavelength initial data). Indeed, along the lines of
Zabusky and Kruskal, such PDE’s are shown to provide approximations (i.e
suitable normal forms) for the FPU model which are good up to a short time,
increasing as an inverse power of the perturbation. In such a way, through
the analyticity properties of such PDEs, the analyticity properties of the FPU
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model too are estimated, for times short enough as the ones involved in the
FPU phenomenon.

Notice furthermore that the work of Shepelyansky mentioned above was also
reconsidered in this perspective (see [24]). It was thus shown that the analytical
considerations of Shepelyansky do actually appear to bring support to the
persistence of the FPU phenomenon in the limit N — oo, inasmuch as all the
available estimates turn out to be functions of the energy E only through the
specific energy e = E/N.

Coming finally to the problem of applying the methods of perturbation theory
in the limit N — oo, which is the one of interest for the FPU problem,
one should mention that one meets here with a great difficulty, because the
available formulation of the theory loses sense in that limit (see for example
[25]). A preliminary step forward was made in the papers [26]. But a consistent
approach which be able to combine the methods of perturbation theory with
those of probabilility theory, to the effect that very improbable situations
are excluded, is still lacking. Fortunately enough, such a difficulty seems to
have now been overcome. Indeed, just in these days it has been possible (see
[27]) to implement a few steps of perturbation theory in the limit N — oo
in a probabilistic frame. This was actually performed for a model which is
physically significant though analytically simpler than the FPU one (the so
called model of rotators). One may hope that such results can be extended to
any order of perturbation theory (so that estimates of Nekhoroshev type could
be obtained), for quite generic models. This would allow to obtain estimates
of an exponential type for the relaxation—time to the “final” equilibrium, by
a method somehow complementary to that of Parisi.

6 The FPU problem in the wide sense: the problem of the specific
heats.

Sometimes it occurs that, in a field of research, a relevant step forward which
a posteriori might even appear trivial, takes instead a long time to be made.
In the case of the FPU model the relevant step involved two features, namely:
1. To look at quantities having a physical interest; 2. To make predictions
for initial data of generic type, i.e. extracted from a Gibb’s distribution at
a certain temperature. Here, the main quantity of physical interest certainly
is the specific heat as a function of temperature; indeed, as recalled above,
it should be constant (apart from a small contribution due to the nonlinear-
ity) according to classical equilibrium statistical mechanics, while it should
tend to zero for vanishing temperatures according to the phenomenology (the
third principle of thermodynamics), in agreement with quantum equilibrium
statistical mechanics.
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The merit of doing such a step forward, i.e. of producing estimates for the
specific heat in the FPU model for generic initial data, goes to Livi, Pettini,
Ruffo and Vulpiani, with their work [28] of the year 1987. Their conclusion
was that the FPU model predicts a specific heat in complete agreement with
classical equilibrium statistical mechanics, but it will be discussed below how
the correct conclusion, at least for the one—dimensional case d = 1, may rather
be the opposite one.

The way in which they proceeded was completely far from trivial, because their
reasoning actually had a noble antecedent, although they might be unaware
of that. We refer to the celebrated dreimdnner Arbeit, namely the work of
Born, Heisenberg and Jordan [29] of the year 1926. The main idea behind
that celebrated paper was to study the energy fluctuations of a small piece of
a string. As the computers were not yet available, and computations had to
be made by hand, the attention was restricted to the integrable case, namely
the linear one (which corresponds to the unperturbed case of the FPU model).
The physical relevance in the present case is that the energy fluctuations of
a piece of the chain might (see below) be expected to provide an estimate of
the specific heat of that piece, because of the familiar relation between energy
fluctuations and spercific heat which holds in the Gibb’s ensemble.

In the paper [28] the analogous computations were made for the actual non-
linear FPU model, by evaluating the dynamical fluctuations of the energy of
a piece of the chain, through numerical solutions of the corresponding equa-
tions of motion. The initial data were of generic type, i.e. were extracted
from a Gibbs distribution at a given inverse temperature (3, i.e. at a given
specific energy € ~ 1/3, with § in a certain range. The specific heat thus
estimated turned out to be in complete agreement with the equilibrium fluc-
tuation formula, i.e. to be constant (apart from a small contribution due to
the nonlinearity) as a function of temperature. The key point is that this oc-
curred in the whole range of temperatures explored, notwithstanding the fact
that the corresponding range of specific energies contained the critical spe-
cific energy €, which, according to a series of other numerical computations,
had been estimated as characterizing the threshold between equipartition and
nonequipartition in the FPU problem in the restricted sense (with initial data
very far from equilibrium). In more explicit terms: the possible energy thresh-
old of the standard FPU problem appeared to have no relevance for the specific
heat.

The next step was made in a series of papers by a group of people around
Tenenbaum (see [30]). The general approach was in principle the same as that
of Livi et al. The relevant difference was however the choice of the subsystem,
of which the energy fluctuations should be calculated. Indeed, the subsystem
was not a spatially localized one, i.e. a piece of the discretized string, but
rather a subset of normal modes, typically a packet of normal modes with
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frequencies in a certain range (w, w+Aw). The specific heat was then estimated
as in the paper [28], with reference however to the energy fluctuations of
the given packet of modes. The computations were performed for the FPU
model in dimension d = 3, with realistic Lennard—Jones potentials, and the
specific heat thus estimated appeared to decrease from the “classical value”
to zero, as temperature decreases. No systematic study was however made of
the dependence of the results on the observation time.

The situation thus seemed to be rather paradoxical, and it was not at all clear
how one could possibly reconcile such a striking difference in the results. It
is the opinion of the present authors that actually no one of the above two
procedures for estimating the specific heat is completely justified, although the
second one might perhaps be in a better position. It was eventually understood
that a more sound basis for estimating the specific heat in terms of dynamical
energy fluctuations should be found in the fluctuation—dissipation theorem, as
will be described below.

A first step in this direction was to eliminate at all the problem of which
type of subsystem should be chosen, and this was done by making reference
to the way in which the specific heat measurements are actually performed.
Indeed, in the actual thermometric measurements there is no subsystem at
all. The whole system in study is put in contact with a calorimeter, and the
quantity which is actually considered is the energy exchanged between the
whole system in study and the calorimeter, the exchange being measured
through the temperature change of the calorimeter.

So a new model was considered (see [31]), in which the familiar one-dimensional
FPU system is put in interaction with a a calorimeter. The latter was mod-
eled by a perfect gas, each molecule of which could exchange energy with one
extreme particle of the FPU system through collisions involving a molecular
potential. In turn, the temperature of the calorimeter was defined in the famil-
iar mechanical way through the mean kinetic energy of its molecules. In such
a way it was found that the specific heat appears to decrease as temperature
decreases. More precisely, here too a systematic study of the dependence of
the results on the observation time was lacking. But now this occurred by an
explicit choice. Indeed the numerical experiment was conceived as simulating
what in the phenomenology of glasses is called a cooling process (or, analo-
gously, a heating process), namely a process in which the temperature of the
calorimeter is changed by a fixed quantity after a fixed time step. In such a
work, by the way, it was strongly emphasized that the behaviour of the FPU
system actually presents a strong analogy with that of glasses. In fact, as was
mentioned above, this analogy had been previously suggested by Parisi but
was later somehow forgotten.

Eventually, the specific heat of a FPU system was indeed estimated just in
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these days (see [32]), by making reference to the relation between specific heat
and energy fluctuations provided by the fluctuation—dissipation theorem. One
considers a FPU system, with initial data extracted from a Gibb’s distribution
at a given inverse temperature 3, the system being in contact with a heat reser-
voir (modeled as above) at the same inverse temperature 3. The energy F of
the FPU system then changes with time, as does the energy (heat) exchanged
with the calorimeter, and the measured specific heat C'z too. According to the
fluctuation—dissipation theorem, the specific heat is estimated in terms of the
energy fluctuations through the formula Cy(t) = (1/2)5% < [E(t) — E(0)]* >4,
where < - >3 denotes average with respect to the initial data, extracted
according to the given Gibb’s measure. In the numerical computations it is
found, first of all, that the quantity Cjs(t) does indeed relax (within a relax-
ation time 7 which increases as temperature decreases) to some final value,
which thus provides the estimated value of the specific heat “after the mea-
surement has terminated”. For large temperatures the estimated value turns
out to agree very well with the one predicted by classical equilibrium statisti-
cal mechanics, while for lower temperatures the “final” value is sensibly lower.
Apparently, this should be a manifestation of the fact that a metastable state
shows up in the specific heat problem too, because a subsequent appoach to
the “really final” equilibrium value is expected. On the other hand, it is clesr
that an experimenter measuring the specific heat would interpret the appar-
ent stabilization of the quantity C(¢) after the first relaxation time as if it
corresponded to a true equilibrium. In such a way it may be said that a phe-
nomenon analogous to that of the standard FPU paradox has been observed
also in connection with the specific heat problem. Analogous computations for
dimension d = 2 or d = 3 are still lacking.

7 Conclusions

Wec hope we have convinced the reader that the FPU problem, in both of it
senses, the strict one (rate of approach to equilibrium for initial data very far
from equilibrium) and the wide, physically more relevant, one (specific heat
as a function of temperature), is still open.

It should be made clear however that, today, apparently no one doubts that
the dynamics should agree with the predictions of classical equilibrium statis-
tical mechanics in the limit ¢ — oo. Indeed it was illustrated above how, with
respect to the years 60’s, the perspective has now changed, reference being
made not to KAM theory but rather to the metastability scenario, somehow
analogous to that of the phenomenology of glasses. At sufficiently low tem-
peratures, there would exist at least two relaxation times: a first relaxation
process would quickly lead to a metaequilibrium (“frozen”) state, whereas the
subsequent approach to the final equilibrium would take an extremely longer

14



time. Only the latter state, which is usually described in a loose way as occur-
ring in the limit ¢ — oo, would correspond to a standard Gibb’s equilibrium,
whereas the statistics dynamically consistent with the metaequilibrium state
might be a different one. Thus one would be confronted with the hard question
of principle of finding a generalization of statistical thermodynamics suited to
metaequilibrium states. For a recent progress see [33].

In the future it should be decided whether such a metastability scenario is
correct or not, particularly in the physically relevant case of dimension d = 3,
about which very little is known at present (see however the quite interesting
results [34] obtained in these days by Benettin for d = 2). If such a scenario
proved to be correct, the main consequence would be that at low temperatures
the methods of classical equilibrium statistical mechanics would not be jus-
tified on a dynamical basis, for finite extremely long times. For example, the
specific heat corresponding to the metaequilibrium state might to all practical
purposes be qualitatively similar to that predicted by quantum equlibrium
statistical mechanics. In such a case it is obvious that at least the minimal-
istic consequence should be accepted that the relations between classical and
quantum mechanics should be reconsidered in a completely new perspective.
Some hints in this direction, inspired by old papers of Einstein and Nernst,
have been advanced (see [35]).
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