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Abstract. A review is given of an attempt, made in two recent pa-
pers, to estimate the gravitational action of faraway matter on a test
particle, in connection with the velocity dispersion in clusters of galax-
ies and with the rotation curves of spiral galaxies, respectively. Under
the assumptions that faraway matter has a fractal distribution and that
the gravitational action has a correlation length of the order of some
kiloparsec, the gravitational action of faraway matter appears to be
su�cient to explain the observations relative to such two phenomena,
without invoking any local, dark matter contribution.

1. Introduction

The thesis illustrated in this paper is that the gravitational action of faraway
matter may be a substitute for the local action of invisible, transparent (usually
called dark) matter, at least in the two cases in which dark matter was �rst
introduced in order to save the phenomena, namely, the velocity dispersion in
clusters of galaxies and the rotation curves of spiral galaxies. The main idea
underlying such a thesis came to our mind quite occasionally, in connection with
one of our main themes of research, foundational features of classical electrody-
namics. Indeed, motivated by a critique (Carati & Galgani 2004) of the way
in which Planck was dealing with microscopic models of a black body,1 we were
involved in the problem of a microscopic foundation of dispersion of light in crys-
tals2. In this connection it occurred to us to understand how dispersion of light
in matter is strictly related to the so�called Wheeler�Feynman identity, which
was conjectured by such authors (Wheeler & Feynman 1945) and we were able
to prove in a simple model (Carati & Galgani 2003, Marino Carati & Galgani
2007). Now, such an identity has an evident global character, inasmuch as it

1Planck was considering the elementary model in which one oscillator is acted upon by an
external �eld, and was unable to deal with the full dynamical system of N oscillators with
mutual retarded interactions. He assumed all single oscillators to be independent from each
other. This fact plagues all of his work, from which one would deduce an emission of radiation
proportional to volume rather than to surface.

2A full microscopic treatment of the problem is lacking also in the celebrated book of Born and
Huang, because radiation reaction force is neglected. Such a force was present in the previous
studies of Planck, who actually was the scientist that discovered it. However, he did not
recognize the existence of a cancellation which plays a fundamental role and was �rst proved
by Oseen in the year 1916, and later conjectured on general grounds by Wheeler and Feynman.
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takes into consideration the retarded and the advanced potentials �created� by
all the charges present in the Universe, and states that the sum of the semidif-
ferences of the retarded and of the advanced �elds created by all charges exactly
vanishes. This introduced us into the frame of concepts of a global character
involving the Universe.
Quite naturally we were thus led, especially after conversations with G. Con-
topoulos and C. Efthymiopoulos, to consider the analogy between the roles far
�elds play in electrodynamics and in gravitation theory. Obviously, this analogy
is evident to everybody, and was particularly pointed out for example by Einstein
himself in his Princeton lectures (Einstein 1922), when he was commenting on
the fact that the perturbation to the �at metric satis�es the d'Alembert equa-
tion, so that even in general relativity one should deal with retarded potentials,
as in electrodynamics. He also commented how one might think of implementing
in such a way Mach's idea on the role of faraway matter. However, he estimated
that the inertial force due to faraway matter was too small. Now, such consid-
erations were made before Hubble's law on galaxies recession was established.
In brief, our idea just amounts to implement Einstein's estimate when Hubble's
law is assumed as a phenomenological fact.
This idea was implemented in the paper (Carati Cacciatori & Galgani 2008),
where it was shown how the gravitational e�ect of the faraway matter vanishes
if the matter is assumed to be uniformly distributed, while it does not if the
distribution is assumed to be fractal. In fact the latter hypothesis had been
previously suggested by some authors on an observational basis (Sylos Labini et
al. 1998), although there is an open debate on this point. So, taking a fractal
distribution of dimension 2, the force per unit mass on a test particle was shown
to have the typical value of 0.2cH0, which appears to agree with the observed one
(Milgrom 1983, Milgrom & Beckenstein 1987). An application to the velocity
dispersion in the Coma cluster of galaxies was also given in that paper.
Finally, in the work (Carati 2011) an estimate of the gravitational e�ect of far-
away matter on the rotation curves of spiral galaxies was given. To this end,
a new assumption was needed, namely that of the �eld due to distant matter
should be uncorrelated beyond a length l, which constitutes a free parameter of
the theory. With such an assumption is was shown that the theory �ts pretty
well the observations, with l of the order of 1 kpc. And this, not only for the
most common cases in which the rotation curves decay more slowly than ex-
pected from the Newtonian action of the local matter, but also for the few cases
in which the decay is faster, to which dark matter cannot provide a solution.
So our �theory� is of a conservative character, entirely framed within classical
general relativity, the only new idea being that of estimating the gravitational
action of matter when the latter is described as constituted of a discrete sys-
tem of point�galaxies which are assumed on empirical grounds to obey Hubble's
law. The computations then show that the relevant contribution comes from the
galaxies which are near the border of the visible Universe, which we call here the
faraway matter. Actually, their gravitational action turns out to be negligible
if matter is assumed to have a homogeneous distribution, while turns out to be
of the correct order of magnitude if the distribution is assumed to be fractal of
dimension 2. So our �theory� has little to do with other ones, such as for ex-
ample MOND (Milgrom 1983) which constitutes a kind of �e�ective� theory, or
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TeVeS (Beckenstein 2004) which is one among the theories alternative to classical
general relativity.
In the present paper a short review of the works (Carati Cacciatori & Galgani
2008) and (Carati 2011) is given. In section 2 the analogy between far �elds in
electrodynamics and in gravitation theory is recalled. In section 3 the model is
described, and the �rst signi�cant result is illustrated, namely, a deduction of
the FRW metric. Moreover, the Friedmann�Robertson�Walker (FRW) metric
is deduced as a mean metric, and an estimate is obtained for an e�ective local
density, which turns out to be �ve times the observed one. Finally, the applica-
tions to velocity dispersion in clusters of galaxies and to rotation curves in spiral
galaxies are illustrated in section 4.

2. Far �elds in electrodynamics and in gravitation theory

The relevance of faraway matter can be illustrated through the example of the
electromagnetic �eld. As is well known, the electromagnetic �eld due to a charge
e can be split, according to Maxwell's equations, as the sum of two terms:

• The Coulomb �eld (or near �eld) E ' e
r2

• The far �eld E ' ea
c2r

, where a is the charge acceleration and c the speed
of light.

Clearly, the electromagnetic interaction between distant bodies just reduces to
the far �eld, which decreases with the distance much more slowly than the
Coulomb one, and manifests itself as a radiation emitted by the source. If one
tries to take into account the radiation emitted by all charges present in the
Universe, one meets with paradoxes as that of Olbers, which is just due to the
radiation emitted by the faraway objects. It is true that modern cosmological
theories allow one to escape such a paradox, but at any rate the far away sources
still play a role in producing some background �eld, the 3 0K cosmic background
radiation. In a similar way we will try to take into account the background grav-
itational �eld due to distant galaxies, estimating its magnitude, and discussing
its possible e�ects.
First of all one has to recall that, in the electromagnetic case, the far �eld comes
into play because the 4�potential Aµ due to a point charge, of position vector q,
is a solution of the d'Alembert equation

�Aµ = 4πeq̇µ δ(x− q)

(δ() being the Dirac delta function), i.e., is a relativistic e�ect. So, in order
to compute the gravitational e�ects of far away matter, one has to go beyond
Newton's theory, and make use of general relativity.
This cannot be done in full generality, as the full problem is intractable. In fact,
in computing the �eld produced by distant sources, one is faced with a non linear
coupled problem, namely,

• The gravitational �eld is a solution of the Einstein equations having as
source the energy�momentum tensor corresponding to the galaxies, dealt
with as �particles�;
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• the motion of the particles (and thus the corresponding energy�momentum
tensor) is determined by the force �eld, that they themselves create as
sources

3. The model. First result: the e�ective FRW metric and the e�ec-
tive matter density

The problem is too complicated, and no one is able to say anything de�nite about
it. One can simplify it, as we will do, by making the following assumptions:

1. the motion of the galaxies is assigned, according to the observation (this
corresponds in electrodynamics to the antenna problem, in which the cur-
rents are assigned)

2. the Einstein �eld equation is linearized.

The motion of the galaxies (of position vectors qj) is assigned according to
Hubble's Law q̇j = H0 qj , where, for the sake of simplicity, Hubble's constant
H0 is taken time�independent. So, if one thinks of the galaxies as point sources,
for the energy�momentum tensor one gets the expression

Tµν =
N∑
j=1

1
√
g

Mj

γj
δ(x− qj)q̇

µ
j q̇

ν
j

where N is the number of galaxies, of mass Mj , and γj is the usual Lorentz
factor, while g is the modulus of the determinant of the metric. All derivatives
are meant with respect to proper time. In this expression one has to think of the
positions qj of the galaxies as distributed at �random�, i.e., the vectors qj are
random variables, distributed according to some de�nite law. The galaxy masses
Mj too could in principle be thought of as distributed at random, but we will
instead take them all equal, just in order to simplify the discussion.
The second step is the linearization of Einstein's equation for the metric gµν =
ηµν + hµν about an unperturbed solution ηµν . For ηµν we take the vacuum
solution, i.e., the Minkowsky metric, so that the perturbing metric hµν has to
satisfy the equation (with G the gravitational constant)

�
[
hµν −

1

2
ηµνh

]
= −16πG

c4
Tµν ,

i.e., essentially the d'Alembert equation, with the energy�momentum tensor Tµν
as source. Then the gravitational force will contain a far �eld term as in the
electromagnetic case.
However, before addressing this problem in the next section, we will preliminarily
look here at the expression for the metric. As solution of the Einstein equations
we consider here (as commonly made in electromagnetism) the retarded one.
This is given by

hµν =
−2G
c4

N∑
j=1

Mj

γj

2q̇
(j)
µ q̇

(j)
ν − c2ηµν
|x− qj |

∣∣∣∣∣
t=tret

, (1)
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where the time is the retarded one, i.e., tret = t− |qj − x|/c, which is a function
of the position x. We note in passing that this is not the unique solution,
because for example one could consider the semisum of the retarded and the
advanced potentials, as was recently done by Romero and Pérez (Romero & Pérez
2011). Now, with the retarded solution one deals with the observed positions of
galaxies at time t, while the advanced solution requires to know their positions
in the remote future, which are unknowable. Thus the estimate of the advanced
potentials is quite di�cult, and we choose the retarded ones.
Now the metric hµν is a random variable, because such were assumed to be the
positions of the source�galaxies. Then, on averaging, one can get the �mean
metric�, which should give the properties of the metric in the large: the actual
value of the metric will ��uctuate� about the mean value, and such a �uctuation
turns out to produce the peculiar e�ects we will describe later.
If one assumes the distribution of galaxies to be isotropic, for the mean metric
one gets the expression

〈 gµν 〉 dxµdxν = (1− α− 3β) c2dt2 − (1 + α+ β)dl2 ,

where dl2 = dx2 + dy2 + dz2, and

α =
2G

c2
〈
∑
j

Mj

|qj |
〉 , β <∼

4GH2
0

3c4
〈
∑
j

Mj |qj | 〉 . (2)

So the mean metric turns out to be a Friedmann�Robertson�Walker one.
We meet here with a consistency problem, because in a Friedmann�Robertson�
Walker metric the Hubble constant is related to the coe�cients α and β by the
relation

H0 =
1

2

d

dt
log

1 + α+ β

1− α− 3β
.

So the value of the r.h.s. has to coincide with the value of H0 we have assumed
phenomenologically for the motion of the galaxies.
On the other hand, one also meets with a big di�erence with respect to the usual
treatment in which matter is dealt with as a continuum. Indeed, in our case α
and β depend heavily on the distribution of faraway matter (as the expression
(2) explicitly shows), while in the continuum approximation they depend only
on the local density. In fact the sums in (2) diverge, as one sees for example
in the case of a uniform distribution of galaxies, so that the larger contribution
comes from the faraway galaxies.
Introduce an e�ective density of matter ρeff , de�ned by requiring that one has

〈
∑ Mj

|qj |
〉 ' 4πρeff

R0
2

2
, 〈

∑
Mj |qj | 〉 ' 4πρeff

R0
4

4

where R0 is the �radius of the universe� (or better of our chart of it).
Then one �nds that, between e�ective density and Hubble's constant, one has
the relation

ρeff '
1

4

3H2
0

8πG
.
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Thus, using the accepted value for H0, one �nds

ρeff ' 5ρ0 ,

where ρ0 is the (estimated) present density of visible matter. So, our model can �t
the observations if the contribution of the distant galaxies (in principle divergent,
as remarked above) is four times the contribution of local visible matter. This
is the �rst e�ect in which the contribution of distant objects might replace the
contribution of local dark matter.

4. Application to the velocity dispersion in clusters of galaxies, and
to the rotation curves in spiral galaxies

To describe the e�ect faraway matter has on the velocity dispersion in clusters
of galaxies and on the rotation curves of spiral galaxies, we have to compute the
�gravitational force� due to the distant galaxies.
We recall that the gravitational �eld a�ects the motion of a test particle inasmuch
as the motion satis�es Lagrange equations with a Lagrangian that involves the
metric tensor, namely,

L = gµν
dxµ
dτ

dxν
dτ

.

So, the equations of motion of a test particle, with position vector x = (x1, x2, x3)
have, for small velocities, the form

ẍk = −∂kh00 −
1

2c
∂th0k + smaller terms

def
= fk .

One can check that

• ∂kh00 corresponds to the Newtonian force ' 1/r2

• 1
2c∂th0k corresponds to the far �eld ' a/r, a being again the acceleration
of the source.

The analogy with electromagnetic theory is thus complete.
From (1), it is possible to estimate the force per unit mass, f , acting on a test
particle. The most important term is that given by the far �eld. Notice that the
acceleration of a galaxy can be obtained by di�erentiating Hubble's law, so that
not only velocities, but also accelerations increase linearly with the distance. In
such a way one �nally gets

f =
4GH2

0

c2

N∑
j=1

Mj
qj
|qj |

. (3)

Notice that, again, f is a random vector because such are the position vectors qj .
So, for what concerns the mean, assuming an isotropic probability distribution
of the galaxies one has

〈 f 〉 = 0 ,
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as expected. Now, although having a vanishing mean, f is not a vanishing
quantity at all. In fact, for a random variable X with vanishing mean, one
knows that its typical value is given by its standard deviation σX , in our case
σf . At this point, in order to compute the variance σ2

f of f , a crucial role is played
by the probability distribution of the galaxies. Two cases may be considered.

1. The positions of the galaxies can be assumed to be independent and iden-
tically distributed (as for gases). Then f is the sum of N independent
identically distributed random variables, so that its variance σ2

f is simply
the sum of the variance of each term. In this way one gets

σf ' cH0/
√
N ' 0 ,

i.e., the force due to the faraway matter is negligible.

2. Some authors (Sylos Labini et al. 1998) have proposed that the distribu-
tion of the galaxies is a fractal, with dimension D ' 2. This means that
the galaxy positions are correlated, so that the computation of σ2

f is no

more immediate. In any case, σ2
f can be estimated numerically by gener-

ating samples from a distribution of points with fractal dimension 2. We
generated such a distribution using the recursive relation

qj+1 = qj + z

where z is a random vector with a Gaussian distribution. A numerical
estimate of the standard deviation σf gives

σf ' 0.2 cH0 ,

Thus, in the fractal case the contribution of faraway matter is no more
negligible. In fact, it is even of the order of magnitude of that ascribed to
dark matter (Milgrom 1983, Milgrom & Beckenstein 1987), both in clusters
of galaxies and in connection with the rotation curves of spiral galaxies, as
will be discussed below.

So we have estimated the size of the force (per unit mass) due to distant matter,
under the fractal assumption. However, one has to recall that the relevant force
which e�ectively acts on an object within a system is the tidal one, namely, f−f∗,
where f is the force acting on the object, and f∗ that acting at the center of mass
of the considered system. Indeed, in the presence of a locally constant force
�eld, according to the equivalence principle (think of Einstein's lift example),
the locally constant �eld can be eliminated by a suitable change of coordinates.
Now, the relevant force f − f∗ turns out to be completely di�erent in the two
cases, smooth or nonsmooth.
Indeed, let us estimate the variance σ2 of f − f∗ in the two cases. In the smooth
case one can estimate f − f∗ by Taylor expansion, getting

σ2 ' H2
0L

2

where L is the linear dimension of the system (the cluster of galaxies, or the
galaxy). This contribution is found to be totally negligible for the case of the
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�Coma� cluster, and also for the galaxies we studied. On the other hand, for the
variance of f − f∗ in general one has

σ2 = 2 σ2
f − 2C(f , f∗) ,

where
C(f , f∗) = 〈f · f∗〉

is the correlation of the two considered quantities� 〈〉 denoting mean value. Thus,
under the nonsmoothness assumption, which means that the correlation of the
tow forces f and f∗ is negligible, the size of the tidal force is just equal to

√
2

the size of the force itself.
Having determined the size of the tidal force under the decorrelation assumption,
there remains now the problem of its global e�ect on the system considered. The
most signi�cant cases are those in which the force �eld acts as a pressure or as
a tension, i.e., the cases in which the force �eld is locally predominantly cen-
tripetal or centrifugal, respectively. Actually one expects that, in the Universe,
local structures be formed where the far �eld conspires to produce pressure.
Obviously this remark raises a consistency problem for a possible future more
complete theory, in which one abandons the simplifying assumption considered
in the present �theory�, in which the motions of the sources were taken to be as-
signed (according to the phenomenological Hubble law). At the present level of
approximation, we just consider the choice of the direction (pressure or tension)
as a free element of the theory, to be determined form observations. Obviously,
one expects that in the large majority of cases, a pressure will be found.
We can now come to a description of the results for the clusters of galaxies and
for the rotation curves of spiral galaxies.
In order to estimate the contribution to the virial of a cluster of n galaxies
(Carati Cacciatori & Galgani 2008), one starts from the virial theorem, and for
the variance σ2

v of the velocity on gets

nσ2
v

def
=
∑
i

v2
i =

∑
i

(fi − f∗) · xi ,

where fi is the force (per unit mass) due to the faraway matter acting on the
i�th galaxy of the cluster located at xi, while f

∗ is the value of the force �eld at
the center of mass of the cluster.
Assuming that the forces acting on the di�erent galaxies of the cluster be un-
correlated, and moreover that the force �eld acts as a pressure, which helps
stabilizing the cluster3, one gets

σ2
v ' 0.07 cH0L . (4)

For the Coma cluster (L of the order of 1 Mpc) this formula gives σv = 900 km
s−1 against an observed value of 700 km s−1. So the contribution of faraway
matter can explain the measured value of the variance σ2

v , without any need of
dark matter.

3One should recall that the gravitational force due the visible matter of the cluster is utterly
unable to keep the cluster together.
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Figure 1. The rotation curves for the galaxy NGC 3198 (left) and
NGC 2403 (right). Solid line is the theoretical curve with the contri-
bution of faraway matter taken into account, dashed line refers to the
contribution of the local matter.

Figure 2. The rotation curves for the galaxy NGC 4725 (left) and
UGC 2885 (right). Solid line is the theoretical curve with the contri-
bution of faraway matter taken into account, dashed line refers to the
contribution of the local matter.
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Figure 3. The rotation curves for the galaxy NGC 864 (left) and AGC
400848 (right). Solid line is the theoretical curve with the contribution
of faraway matter taken into account. The decrease of the rotation
curve is faster then keplerian.

Table 1. Value of the correlation l, for four galaxies.

Galaxy Mass Mass/Luminosity Correlation length

NGC 3198 4.0 1010 M� 4.6 M�/L� 0.6 kpc
NGC 2403 3.5 1010 M� 4.4 M�/L� 0.8 kpc
UGC 2885 1.0 1012 M� 2.1 M�/L� 1.7 kpc
NGC 4725 1.1 1011 M� 2.1 M�/L� 3.1 kpc

For what concerns the rotation curves in spiral galaxies (Carati 2011), at variance
with the case of the clusters of galaxies one cannot forget the contribution of the
local visible matter, which is the larger one. This force can be taken in the
nonrelativistic approximation, i.e., expressed in terms of a potential V loc, which
depends on the distribution of the local matter.
In order to describe the e�ects of the force due to the faraway matter in this
case, the treatment requires to assume a decorrelation property, i.e., that the
correlation decreases exponentially on a certain scale l, which plays the role of a
free parameter to be determined by �ts with the observations.
In this case, one gets for the speed v of rotation the expression

3

2

v2

r
= −∂rV loc(r)− ∂rV eff , (5)

where ∂rV
eff comes from the contribution of the faraway galaxies. This term

has to be understood not as a derivative of a potential, but as a random term
with vanishing mean, the standard deviation of which can be estimated. One
�nds

∂rV
eff ' ±0.2H0c

√
l

r
. (6)
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We still have a free choice for the sign of this term, which entails either a pressure,
which helps keeping the galaxy together, or a tension, which tends to break it
apart. One can conjecture that the positive sign has to appear more often.
Actually, in the literature there are reported observations for a small percentage
of galaxies, in which the rotation curves decrease faster than expected from the
Newtonian action of the local visible matter, which means either that the galaxy
is expanding, or that there is a force acting on the system as a tension.
One can obtain the order of magnitude of the parameter l, by �tting the obser-
vation with our formula. We report in Table 1 the value of l obtained by �tting
the rotation curves of very di�erent galaxies. One can check that the order of
magnitude is always the same, l ' 1 kpc.

5. Conclusions

So we have shown how the the gravitational action of faraway matter may explain
the two classical phenomena for which local dark matter was �rst introduced.
Other phenomena exist which are explained in terms of dark matter, and we hope
to tackle them in the future. Obviously, the present �theory� introduces some
hypotheses, such as fractal structure of the Universe or decorrelation properties
of the gravitational �eld, as usual with scienti�c theories.
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