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Abstract. Everyone knows how Einstein introduced in the year 1905 the concept of
the photon, by giving some conctreteness to the discretization of energy previously
introduced by Planck at a formal level. Here we point out how, till the end of his life,
Einstein considered such a conception just a “provisional way out”, to be substituted
by a conception involving continuous variations of energy. We explain how such a con-
ception is understood by taking into account Einstein’s contribution to the first Solvay
conference. Finally we show how such a conception can be at least partially imple-
mented in classical mechanics, through results from the modern theory of dynamical
systems.

1 Introduction

The critical position of Einstein towards the standard interpretation of quantum
mechanics is very well known, and is vividly witnessed by the famous paper he
wrote with Podolsky and Rosen, which stimulated in more recent times so many
discussions and controversies. There is however another specific point where Ein-
stein manifested his uneasyness with respect to the standard interpretation of
quantum mechanics; we refer to the starting point itself of quantum mechan-
ics, namely the dilemma continuity—discontinuity (i.e. the problem of the very
existence of energy levels), which came about in connection with Planck’s law.

Apparently this fact remained unnoticed, or at least we were unable to find
any reference to it in the literature (see [1]); and this might be a sufficient reason
for discussing it in the present paper. Another element of interest is the fact that
the nonconventional Einstein’s conception of the photon we are referring to turns
out to be strictly related to some of the most recent advances in the theory of
dynamical systems. This was for the first time pointed out in [2], where it was
shown how a relevant fluctuation formula of Einstein is a statistical counterpart
of a purely dynamical formula that we like to call the Benettin—Jeans formula. So
let us pass to illustrate what we mean by Einstein’s nonconventional conception
of the photon, and how we came to interpret it in terms of concepts from the
theory of dynamical systems.
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2 Einstein’s nonconventional conception of the photon

First of all, a nonconventional Einstein’s conception of the photon indeed exists,
at least potentially, in our opinion. A hint for this can be found in a famous page
of Einstein’s scientific autobiography, which was written a few years before his
death. Indeed, he first recalls how, by inventing the photon, he had given some
concreteness to the discretization of energy, previously introduced by Planck at
a purely formal level. In his very words (see [3]): “This way of considering the
problem showed in a definitive and direct way that it is necessary to attribute a
certain immediate concreteness to Planck’s quanta and that, under the energetic
aspect, radiation possesses a sort of molecular structure”. But after a few lines
he adds: “This interpretation, that almost all contemporary physicists consider
as essentially definitive, to me appears instead as a simple provisional way out”.
These words are actually so sharp that no doubts should be left; and this is
indeed the first fact we are referring to. But the problem of understanding what
Einstein actually had in mind, as a positive concrete proposal, when referring
to a provisional way out, is a quite a different one. We try now to disclose this
point.

In our opinion the clue is given by what Einstein wrote in two papers, in
1909 and 1911 (see [4] and [5]); the second of such papers constitutes in fact his
contribution to the first Solvay conference, and is the one to which we will mostly
make reference. It such a paper Einstein points out the relevance of fluctuations,
and shows that formally Planck’s formula is equivalent to assuming that there
exists a certain functional relation between energy fluctuations and mean energy
of a system of identical oscillators, namely

oy =eU+U?/N , (1)

where U and 0% denote the mean energy and the fluctuation (precisely, the
mean square deviation, or variance) respectively of the energy E of a system
of N harmonic oscillators of the same frequency w, while € is the quantum of
energy expressed by € = hw in terms of the reduced Planck’s constant A. The
sense in which such a fluctuation formula is equivalent to Planck’s formula will
be illustrated in the next section; in the subsequent one we will instead show
how an analytical formula of Einstein’s type arises in classical mechanics.

For the moment however we just recall how Einstein interpreted his fluctu-
ation formula in connection with the dilemma continuity—discontinuity. Indeed
he makes reference to the corresponding formula for the relative fluctuations,
namely \

op _ € 1

U2 U N
Then, by considering the limit of a large number N of oscillators or small ener-
gies, in which the formula takes the simpler form
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he remarks (see [5]): “If U becomes of the order of hw (namely of €), the relative
Sfluctuation becomes of the order of unity; in other terms, the fluctuation of energy
is of the order of magnitude of energy itself, i.e. the total energy is alternatively
present or absent, and consequently behaves as if it were not indefinitely divisible.
It is not necessary to make the hypothesis that distinct energy elements of a
definite magnitude exist’.

This is actually what we mean by Einstein’s nonconventional conception of
the photon: one can conceive of the harmonic oscillator in a classical sense, as
possessing at each time a well defined energy, ranging in the familiar domain
E > 0, and if one finds a mechanics that produces Einstein’s fluctuation formula
for the energy, then the “level” e turns out to be just that particular value of
energy having the property that, correspondingly, “the fluctuation of energy is
of the order of magnitude of the energy itself’, i.e. that “energy is alternatively
present or absent”. In another passage of [5] Einstein even reinforces such an
argument by saying that, in virtue of such a formula, “the statistical properties
of the phenomenon are the same as if energy were transferred through integer
numbers of quanta hw”. With this we presume we have given sufficient support
to our claim that a nonconventional Einstein’s conception of the photon indeed
exists: it describes the energy of the oscillator in classical continuous terms, and
the apparent quantum discontinuity just corresponds to a concise description of
classical processes obeying a certain fluctuation law for energy, namely (1), giving
a suitable functional relation between variance and mean. In our opinion, this is
exactly what Einstein had in mind when he wrote the passage from his scientific
autobiography quoted in the introduction. So apparently we are concerned here
with a conception that he nurtured from at least the year 1909 till his death.

3 Einstein’s interpretation of Planck’s formula in terms
of fluctuations

We now illustrate how Einstein came to conceive of his fluctuation formula (1).
What he did was to provide a physical substantiation for the original deduction
Planck had given of his law on October 19, 1900 (see [6]). To this end, let
us recall preliminarly that it was only in later communications (starting from
that of december 1900) that Planck gave his familiar deduction involving the
standard statistical arguments with a discretization of energy, while in his first
communication he was instead proceeding at a phenomenological level, without
invoking any discretization at all.

Planck was concerned with the problem of finding a formula for the mean
energy U of a system of N oscillators of the same frequency w in equilibrium with
a heat reservoir at absolute temperature T, or inverse temperature 8 = 1/kT,
where k is Boltzmann’s constant, and made the following remark (we are using
here a contamination of the notations of Planck and of Einstein). He knew that
Wien’s law

U = Cexp(—pe) ,
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with e proportional to w and a suitable constant C, fits well the experimental
data for large frequencies, while the most recent experimental data available
to him, which were referring to lower frequencies, turned out to rather fit the
equipartition law

U= N/B=NkT .

On the other hand, Wien’s law is obviously obtained as a solution of the differ-
ential equation

dU
= U
B -
while the equipartition law obvioulsy satisfies the differential equation
w__ v
d8 N’

with a suitable choice of the integration constant. Just by virtue of imagination,
through an interpolation he was then led to conceive of the differential equation

dU U?
=+, 2)

N
which by integration, and a suitable choice of the integration constant, indeed
gives Planck’s formula, namely

U(w,T):N(eﬁ%l). (3)

Planck’s constant % was then introduced by fit with the experimental data
through the relation € = hw, because it was already known, by a general ar-
gument of Wien, that € had to be taken proportional to frequency.

So much for what concerns Planck’s first communication. The contribution
of Einstein was the following one. Already in the year 1903 (see [7]) he had
remarked that in the canonical ensemble the fluctuations of energy, described
by the corresponding variance o, is expressed in terms of the mean energy U
through a relation having a kind of universal thermodynamic character, namely

% = —o%. Thus Einstein was led to split Planck’s differential equation (2) into
two relations, namely
dU
B —o% 4)
and
0% =eU +U?/N; (5)

the former was conceived to be just a kind of general thermodynamic relation,
while the latter should rather have a dynamical character, and might in principle
be deducible from a microscopic dynamics. In his very words (see [5]): these
two relations “exhaust the thermodynamic content of Planck’s” formula; and:
“a mechanics compatible with the energy fluctuation 0% = €U + U?/N must
then necessasily lead to Planck’s” formula. It was pointed out in [2] that the
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second of the above equations has indeed a mechanical character, coinciding
essentially with what we call the Benettin-Jeans formula with a suitable € (this
is a delicate point in our result). So we might say that the “mechanics” conceived
by Einstein as leading to Planck’s formula perhaps is nothing but the dear old
classical mechanics of Newton.

In this connection, however, we address preliminarly an important question
of a general character, namely how can one obtain in classical mechanics some-
thing quantitatively comparable with quantum mechanics, as the latter involves
a quantity, i.e. Planck’s constant A, which is completely extraneous to classical
mechanics. A first answer, to which we limit oureselves in the present paper, is
that Planck’s constant can be introduced in classical mechanics simply through
the molecular parameters. Indeed, consider for example a system of equal parti-
cles of the same mass m interacting through a typical interatomic potential, such
as the familiar one of Lennard-Jones. Now, this potential contains two parame-
ters, say Vp and o, with the dimensions of an energy and a length respectively,
and from them and the mass m one constructs an action, namely ov/mVj, which
a priori can take any value. But if one takes for the parameters m, Vy, o enter-
ing the model just the ones corresponding to actual atoms, as reported in the
standard textbooks, one finds that the relation o/mVy ~ 2Zh holds, where Z is
the atomic number of the considered atoms. This is one way in which Planck’s
constant can be made to enter classical physics at the level of pure mechanics
(see [8]). A more fundamental way would require considering the role of the elec-
tromagnetic field, but this interesting point will not be discussed here (see for
example [9]).

4 A dynamical implementation of Einstein’s fluctuation
formula

The road that led us to provide a partial implementation of Einstein’s fluctuation
formula (1) in classical terms is a long one. It started from a serious attention
given, since the early years 70’s, to the paradoxical result obtained in the year
1954 by Fermi Pasta and Ulam (FPU; see [10]). Such authors had shown, by
numerical computations of the equations of motion of a one—dimensional model
of a crystal, that at low energies classical dynamics seems to give results in
contradiction with the law of equipartition, predicted by the Maxwell-Boltzmann
distribution of classical equilibrium statistical mechanics. The first scientists that
took up the problem, namely Izrailev and Chirikov (see [11]), put forward the
very natural conjecture that the FPU paradox should disappear in the limit
in which the number N of oscillators tends to infinity. Instead, in the paper
[12] it was suggested that the lack of equipartition could persist in the limit
of infinitely many oscillators, and in the paper [8] it was even found (still by
numerical integration of the FPU model) that in classical mechanics Planck-like
distributions seemed to occur. In fact, in the latter paper it was also realized,
for the first time in a foundational context, that Planck’s constant does in fact
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show up in classical mechanics through the molecular parameters in the way
mentioned above.

There was then an intricate road passing through an appreciation of the
many new possibilities offered by the modern results in the theory of dynamical
systems (especially the stability results provided by KAM theorem and Nekhoro-
shev’s theorem, see [13]). But it was finally realized (see [14]) that the simplest
model describing the essence of the problem is that of a system of equal diatomic
molecules on a line, where there are “internal” degrees of freedom (the oscilla-
tions of each of the molecules about its center of mass) and “external” ones (the
center of mass of each molecule). The two subsystems (internal and external
degrees of freedom, respectively) were found to go very rapidly to separate equi-
libria, and the problem remained of how would they go to a mutual equilibrium.
It was then found numerically that the relaxation time to mutual equilibrium
between the two subsystems increases as a stretched exponential with the fre-
quency, and an analytical proof was provided in [15]. Eventually, the problem
was then reduced to its very core, namely: the exchange of energy between a
single spring (of frequency w) and a colliding particle, the system moving on
a line and the interaction being given by a potential between the particle and
one extreme of the spring. This, by the way, is essentially equivalent to a model
first discussed by Kelvin and Poincaré (see [16]) just in connection with the
dynamical foundations of classical statistical mechanics.

So let us consider the problem of the exchange of energy de of a spring on
a single collision of one of its extremes with a point particle. An elementary
calculation of a few lines made on a simplified version of the model gives the
result (see [2])

de = 1” + 2ny/eg cos po (6)

where eg is the initial energy of the spring, ¢¢ its initial phase, while 7 is a
quantity which tends to zero as a stretched exponential when the frequency w
of the spring increases and the velocity v of the particles decreases. We like to
call formula (6) the Benettin—Jeans formula (see [17]). Now, one expects that
the formula (6) should be correct if the frequency of the spring is sufficiently
large and its energy sufficiently small, and this was proven in [18] by a quite
delicate mathematical analysis, similar to the ones used in order to prove the
exponentially small splitting of the separatrices in Melnikov’s theorem.

Let us look now at the Benettin—Jeans formula (6), thinking of the imping-
ing particle as mimicking a heat reservoir at a given temperature 7', and of the
spring as mimicking a crystal at a much lower temperature. Due to the expo-
nential smallness of 7, the formula implies that the echange of energy which
should lead to equipartition with the reservoir is exponentially small with the
characteristic internal frequency w, so that the number of collisions required to
go to equilibrium (i.e. the time required for it) is highly nonuniform in the fre-
quency, being exponentially large with w. Examples can be given in which there
exists a frequency @ that relaxes in 1 second, while the frequency @/2 relaxes
in 1078 seconds and the frequency 2@ in 10° years. This fact is very important,
because it explains the most relevant feature of Planck’s formula, namely the
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circumstance that the high frequencies have a very small energy with respect to
that of the reservoir: in dynamical terms, this is due to the fact that the high
frequencies require an exponentially long time in order to go to equilibrium if
they start from a negligible initial energy.

But the fact remains that the coefficients entering the exponentially small
quantity n of the Benettin—Jeans formula (6) turn out to depend on the molecular
parameters characterizing the particular interatomic potential considered. So one
is lackng a formula possessing a sort of thermodynamic character. This fact was,
for the whole group of people involved in the research described here, a great
conceptual difficulty.

The clue was found by taking into consideration the second term appear-
ing in the Benettin—Jeans formula (6), which produces a fluctuation of energy
(depending on the phase o) much larger than the drift term 2. The relation
between the Benettin—Jeans formula (6) and Einstein’s fluctuation formula (1)
was found in the following way (see [2]). Consider a sequence of k collisions
and take the average over the phases (which as usual are assumed to be uni-
formly distributed). Denoting by uj, and o7 the mean energy and variance of
energy respectively after k collisions, a completely elementary calculation gives
the formulae

up = e +kn* , o} =2eokn’ + (kn?)*

which depend on time (i.e. on the number k of collisions). But one immediately
sees that the “time” k can be eliminated, so that a functiomal relation exists
between variance and mean, namely

0% = 2eo(ur — eo) + (ug, —eg)? .

A similar relation also holds if one considers a system of N identical inde-
pendent oscillators of frequency w. Indeed, the quantities of interest are now the
total energy By = Y, eS) (where e,(;) denotes the energy of the i-th oscillator
after k collisions) and the corresponding exchanged energy Ej, = Ej — Ey, where
E is the initial energy. By the central limit theorem, Ej, is normally distributed
with a mean U and a variance which are obtained by adding up the corre-
sponding quantities for each oscillator, So, denoting by U and a% expectation
and variance of the exchanged energy at any “time” k, one gets between a% and

U a functional relation which is independent of “time” k, namely
a%:2a0w(7+(72/N, (7

where ag denotes the initial action per oscillator, agp := Eo/(wN). Notice that
the quantity n, which contains the molecular parameters characterizing the par-
ticular system considered, has now completely disappeared, and formula (7) has
some kind of thermodynamic universality.

In order to have something comparable to Einstein’s fluctuation formula (1),
we have however to get rid of the parameter still appearing in formula (7),
namely the the quantity 2ag, twice the initial action per oscillator, which takes
the place of Planck’s constant A. This is a delicate point that should deserve a
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deep investigation At the moment we are unable to say anything rigorous, and
only present here some heuristic considerations. The point is that, as was recalled
above, the Benettin—Jeans dynamical formula was established for small initial
energies of the oscillators. So formula (7) should hold only for low enough energy
or action per oscillator, say for ag < a., with a certain critical or threshold
action a,. This naturally leads to think of a situation with the N oscillators
having random initial actions all smaller than a., so that, on averaging over
the initial actions, uniformly distributed over the interval (0,a.), one would
get a formula as (7) with 2a,/2, namely a,. in place of Planck’s constant. The
actual mean energy would correspondingly be given by Planck’s formula with the
addition of an analog of the zero—point energy, namely a.w/2, playing here the
role of the initial energy. Notice that in such a fluctuation formula the molecular
parameters enter only through the critical action a. and so Planck’s constant &
finally appears in the way described above (see [8] and [19] [20]).

5 Conclusions

So we hope we were able to show that a nonconventional Einstein’s conception
of the photon, involving continuous variations of energy, indeed exists, and how
it might be implemented in classical mechanics. We are well aware of the fact
that we are still faced with many deep problems, but we like nevertheless to
sketch here, in a few words, a perspective that seems now to be opened, in
which Planck’s law appears just as a first order approximation.

Namely, the law of equipartition can be considered just as a zeroth order
approximation, in which the high nonuniformity of the relaxation times with
respect to frequency is altogether neglected. Planck’s law instead appears as a
first order approximation, describing a kind of metaequilibrium state, similar to
those occuring in glasses (an analogy first pointed out in [21]). Quantum me-
chanics would, in this sense, just be a first order approximation within classical
mechanics. If our point of view is correct, deviations from Planck’s law should
show up, especially in the region of low frequencies, where equipartition would
actually be present, with an “equipartition front” advancing with time, at an
extremely slow pace. Such an effect was indeed predicted already by Jeans (a
quotation can be found in [22]). For a review of the experimental data on lab-
oratory black body up to some years ago, see the second part of the work [23],
and also [24].

Finally, one also has a critical historical problem. Indeed, the point of view
of metastability described above was advocated by Jeans at the beginning of the
last century, but such an author then made a retractation (vividly documented
in [25] and [26]), after Poincaré had proven (see [27]) that Planck’s law seems
to imply quantization, namely the existence of energy levels. So the problem is
whether Poincaré’s argument is really compulsory, but up to now we were unable
to settle the question.
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