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A b s t r a c t  

We study the accuracy of the conservation of adiabatic invariants in a model of n weakly coupled rotators. Most attention is 
devoted to n = 2 and frequency w = (wl, w2), with w2/o)l quadratic irrational. We apply a heuristic approximation scheme, 
going back to Jeans and to Landau and Teller, and perform a very accurate numerical check of the result, observing a quite 
remarkable agreement. 
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I .  I n t r o d u c t i o n  

The purpose of this paper is to discuss the accuracy of  conservation of  adiabatic invariants in a system with 

more than one independent frequencies. We shall work in connection with a simple model example,  and proceed as 

follows: first, working at a heuristic level, we apply to our model  an elementary approximation scheme, which goes 

back (to our knowledge) to Jeans [ 1] and to Landau and Teller [2], and leads to a simple expression for the change A I 

in the actions of the system. We then perform an accurate numerical test of  such an approximate expression, finding 

very good agreement. The possibili ty of  understanding the behavior of  the system within Hamiltonian perturbation 

theory is also discussed. 
The model we are concerned with represents a system of  fast rotators, coupled by a t ime-dependent potential. 

The Hamiltonian has the form 

H ( I ,  ~o, t) = ~ lj2 -~n j=l ~ - ~ +  f ( t )g(~o) ,  1 = ( I 1  . . . . .  L , ) 6 R  n, q9=(~01 . . . . .  qgn)~ (1.1) 
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where A is the moment  of  inertia of  rotators, while f and g are analytic functions, respectively, of  time and of the 

angles. More precisely, f is assumed to be analytic in a strip IIm tl < r ,  and to decay to zero in an integrable way 
for t ~ -4-~, while g is assumed to be analytic in a strip IIm (pj[ < p, j = 1 . . . . .  n; to be definite, and to simplify 

our analysis, we shall make special choices of  f and g, namely 

°'2 e-(t/~r)2 Z 
f ( t )  = "c 2 -k- t 2 '  o', "t" > 0, and g(qg) ---- ~ke ik~°, 

kE~_ n 

the Fourier coefficients Gk decaying exactly exponentially: 

~k = 1Ge-Plkl,  G c ~, (1.2) 

with Ik[ = Y]~---I Ikjl. The relevance of such choices will be discussed later. 
We shall consider asymptotic data, for t --+ - o o ,  of  the form 

l ( t )  ~ io, ~o - 0 9 ( I ° ) t  ~ ~o °, (1.3) 

where of course 09(1) = I / A .  We shall assume o9(1 °) to be large, more precisely we shall take 

I ° = ,kA,f2, ~ large, 

with some fixed £2, so that 

o2(1 °) = ,k£2. (1.4) 

We shall study the overall change in the actions: 

A I  = (Al l  . . . . .  AIn),  AI j  = l j (+oo)  -- Ij ), 

looking for "exponential laws", namely (in a sense to be made precise) exponential decaying of A I  with ~.. 3 

Let us stress that a possible motivation for such a study comes from statistical physics, namely from the problem 
of understanding the rate of  the approach to equilibrium in a classical gas of  fast rotating (or slow translating) 

molecules. In the simplest situation, one can consider a planar model, and look at the two-body collisions as at the 

basic process leading eventually to equipartition of energy among all degrees of  freedom. A possible Hamiltonian 
for the two-body collision is 

2 i ff ilpll 2 
H = j ~ I ~ A - F - - ~ + . =  V(r, qgl,~02), (1.5) 

where r E R 2 is the vector joining the centers of  mass of  the molecules, # the reduced mass, and p 6 R2 is 

conjugate to r, IlPll 2 = p~ + p22. One should clearly assume V ~ 0 for Irl ~ co, and thus (for unbounded 
motions) for t ~ 4-oo. It is then clear that Hamiltonian (1.1) mimics, so to speak, Hamiltonian (1.5), namely 
the explicit dependence on time replaces there the translational degrees of  freedom. The problem gets simpler (in 
particular for numerical computations), but remains nontrivial, and the behavior of the actions is expected to be 
essentially the same. Let us recall that, if A I  is small, then the energy exchange per collision is also small, and 
correspondingly the time scale for equilibrium in the gas gets larger. As a matter of fact, this is precisely the scenario 

3 Such a problem is clearly equivalent, via a trivial rescaling, to a problem of weakly interacting rotators, with Hamiltonian H = 
y ] j ( L 2 / 2 A )  + ~.-2 f (t/~.)g(cp), and asymptotic data I (t) ~ j o ,  ~o(t) - £2t ~ ~po. 
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proposed by Boltzmann [3] and Jeans [1 ] to explain classically, as a nonequilibrium phenomenon, the nowadays 

called "'quantum freezing" of fast degrees of  freedom (see, for a discussion of the problem [4,5 [). 

As a result of  the above-mentioned heuristic approximation, that we shall call the Jeans-Landau-Teller (JLT) 

approximation - actually a simple "computation along an unperturbed orbit" - one gets A l in the form of a Fourier 
series in the asymptotic phases <po, say 

AI  = Z IkeikW"" (1.6) 
k E Z  '~ 

with separate exponential laws for the different Fourier components: namely, for the above choices of f and g, 

iZ-k -~ const, ke ).rlk.S?l plkl. (1.7) 

Similar exponential laws appeared, in the very recent literature, in connection with different problems, both at 

rigorous [6-9] and at heuristic [10] level. 4 Analyzing (1.6) and (1.7), and in particular understanding the behavior 

of  A I  for large i., is not easy, and crucially depends on n and on the arithmetic properties of £2. We will not perform 

a general analysis of them, and will restrict ourselves to the easier (but nontrivial) case n = 2 and £2 = (1,0),  with 

0 quadratic irrational; to be definite we shall take 0 = ,,/2. In such a case we shall deduce (heuristically) from (1.7) 

a more transparent expression for the change in the actions, specifically for the quantity 

A I  = max IlAl(~0°)ll, t l .8) 
~ " E  [2 

II. II denoting the Euclidean norm. According to such an expression, log A I  turns out to be practically a convex 

piecewise linear monotonically decreasing function of K, with slopes determined by the arithmetic properties of O, 

whose asymptotic behavior (in a sense to be made precise) is ~ ,,/~. Such a result is confronted with very precise 

numerical computations of  AI ,  for A I  in a rather wide range (more than 20 orders of magnitudel, and a quite 

remarkable agreement is found. 

The deduction of  the exponential law ( 1.7), as well as its analysis Ibrn and S2 as above, are performed in Section 2. 

Section 3 is instead devoted to numerical results. Section 4 contains some concluding comments, including a 

discussion on the possibility of  recovering the behavior of the system by the usual methods of classical Hamiltonian 

perturbation theory. Finally, Appendix A is devoted to the asymptotic expression of A I. This paper can be considered 

to be a (nontrivial) generalization of the heuristic and numeric results reported in [111, concerning the case of a 

single frequency. 

2. JLT  approximation 

2.1. Computat ion along unper turbed orbits 

Let us consider Hamiltonian (1.1) with f and g as described above; to simplify the notation, we use the (totally 

irrelevant) constants c~ and G, respectively, as units of  time and energy, that is, from now on we set cT = G = 1. 

For large ,~, the coupling f ( t )g (~o)  plays the role of a perturbation of  the kinetic part, or unperturbed Hamiltonian, 

~ j  !2/ (2A).  The unperturbed motion corresponding to the asymptotic conditions (1.3) is then 

]'(t) = 1 °, ~ ( t )  = ~o ° + Ll'2t, 

4 In particular, the very recent preprints [8,9], that we received during the preparation of our manuscript, have some significant super- 
position with our work, more precisely with the theoretical analysis performed in Section 2.2. 
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and the naive first-order approximat ion that we propose here, is defined by 5 

Oo 

,=--f(t)~-~g(I°,~O°-t - ).U2t), AI  = -  S f(t)8-~g (l°'4°°-t-Jcl2t)dt. 
- -OG 

For the above choice of  g, one then immedia te ly  gets the Fourier  series (1.6) with 

o o  

• f 
Zk = - - 1  ke -n lk l2k  5t-k = f ( t ) e  ixks2t dt. (2.1) 

2 
--OO 

Note that .T'_k = 5rk (as follows from the parity of  f ) ,  and correspondingly  

"/-1< = -:Z-k.  

For the above choice of f the integral in (2.1) can be explicit ly computed,  and one finds 6 

T 2 

.T'k = sre" [e_Zrk.s2(1 _ 40(r - i )<k-S2) )  + e;Crk42(1 -- 40(r + ½)~k. 12))], 
2 r  

where 40 is the probabil i ty  integral 

x 

2 /" _~z 
40(x) = - -  e d~. ,/-sJ 

0 

The funct ion 40 converges to 4-1 very rapidly for x --~ 4-oc [one has indeed 40 (x) - 1 = O(e -x2) for large positive 

x], so for fixed r ,  and ~.lk - ~1 large, one gets 

• ~"k "~ Ce -;~rlk's21, C = 7rer2/r .  

In conclusion,  one deduces (1.7), more  precisely 

Ik  ~- i ½ i k C e  -~rlk's21-plkl. (2.2) 

This  is what  we call the JLT approximation,  or first-order approximation,  for the problem at hand. 

2.2. Interpreting the JLT approximation 

Now we restrict ourselves to n = 2 and S'2 = (1 ,0 ) ,  0 = r ~ ;  in fact, we shall profit of  the very simple cont inued 

fraction expansion r ~  = [ 1; 2, 2, 2 . . . .  ], but  a little reflection shows that everything extends easily, with minor  

5 For the physically more realistic Hamiltonian (1.5), the corresponding approximation would be as follows: one preliminarily re, places the 
coupling V(r, 40i, 402) with its average on the angles, denoted v(r); if~(t) is the motion corresponding to the Hamiltonian Zj Ipf [/(2/z) + 

v(r), then one writes Al  = - f_c~o~ av ^ 400 -~ (r(t), + £I2t) dt. This is, in essence, what Jeans and Landau, and Teller proposed (although 
in connection with a problem with a single frequency; see [ 11 ] for comments). 

6 See for example, I.S. Gradshteyn and I.M. Ryzhik. Table of Integrals, Series, and Products (Academic Press, New York, 1980) p. 497 
no. 3.954-2. 
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Fig. 1. The amplitudes II lk II vs. Z, for k in the resonant sequence, according to the JLT approximation. 

modification, to any 0 with periodic continued fraction. Moreover, we profit of the symmetry Z-k  = --Zk to 
write 

A l  --~ Z ~ r k  sin(k,  rp°), ~k = 2i-2-k =kCe-X lk '~ l r -p l k j ,  
k~/C 

the sum now extending on "one half" of  772 , namely on the set 

/C = {(kj, k2) 6 772: kl > 0 o r k l  = 0 andk2 > 0}. 

It is quite evident from (2.2) that, for large X, only those harmonics with nearly resonant k (the "small denomi- 
nators") do significantly contribute to the Fourier series. From the theory of continued fractions, one immediately 

obtains, for the above choice 0 = ~¢"2, the following "resonant sequence": 

k = (1, 0), (1, - 1 ) ,  (3, - 2 ) ,  (7, - 5 ) ,  (17, - 1 2 ) ,  (41, - 2 9 ) ,  (99, - 7 0 )  . . . .  

(the rule is that (kl, k2) is followed by (kl - 2k2, - k l  + k2)); a little reflection shows that one can confidently 
restrict the attention to k in such a sequence (this is also confirmed numerically, see later). However, and this is 
crucial, even inside the resonant sequence the amplitudes of  the different harmonics, say their Euclidean norms 
112"k II = [IklJCe -xlk't21r-plkl, turn out to be quite different, and generically, for a given (large) X, one single har- 

monic dominates the Fourier series (exceptionally, two of them give comparable contributions). It can be useful, to 

understand this point, to plot II-~k II vs. X in log scale. One clearly gets straight lines, 

log I['-Tkll = --~k)~ --/~k, c~k = r l k .  S21, /Sk = plkl - log I[kll - logC,  (2.3) 

and for larger k in the resonant sequence the slope uk gets smaller, while the constant/Sk gets larger (see Appendix A 
for quantitative estimates on otk and/Sk). The result is reported in Fig. 1. As is evident, apart from narrow intervals 

around the intersections of  nearby lines, one Fourier component  is much larger than the others. 
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Fig. 2. A numerical plot of (2.5). 

To be precise, we can make reference to the quantity A 1 defined in ( 1.8) (taking the maximum avoids the spurious 

fact that for special values of~p ° the dominating harmonic could vanish; moreover, AI  turns out to be a nice quantity 

to be compared with numerical results)• The above considerations can be summarized by saying that 

A I  "~ e ~kz #k in the interval where k dominates, (2.4) 

and also 

A1 "~ Z e  c~kz-#~ in the union of  the above intervals, (2.5) 
k 

the sum extending over the resonant sequence (or also over/C, with negligible difference). In essence: since, in each 

interval, a single term in the Fourier series dominates, the maximum of II/X I II on ~0 ° can be replaced by the sum 

of the maxima of  the single harmonics with negligible error. Near the crossover points (i.e., the intersection points 

of  two nearby lines) expression (2.5) could fail: indeed, around such points A I  is (approximately) the sum of two 

dominant contributions, which are nearly equal, and could partially cancel. But this is in a sense exceptional, and 

typically one should expect that (2.5) is valid there too, although being possibly less accurate (in any case, of  course, 

the RHS of (2.5) is there an upper bound to the LHS). As is remarkable, (2.5) provides a single simple analytic 

expression, valid for all (large) ~. 
Expression (2.5) for A I  is plotted in Fig. 2 with two different choices of  the scale of  k; the curve refers to 

r = p = 1, and the sum is restricted to k in the resonant sequence, up to k = (577, -408) .  For comparison, in the 
left part of  Fig. 2 the resonant straight lines are also drawn (dashed lines). By the way, one can numerically check 

that the restriction to k in the resonant sequence is definitely reliable; for example, including in the sum all k 6 /C 
up to Ikl ---- 1000 gives an absolutely negligible difference: for k larger than, say, 10, the difference is fairly covered 

by the width of  the lines in Fig. 2. 
As is remarkable, the curve, although analytic, closely resembles a broken line, in particular for large ~.. A simple 

analysis, reported in Appendix A and close to Refs. [9,10], shows that, asymptotically for large ,~, A I  behaves like 
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with 

e r -  
A - -  (1 + O ( ; ~ - 1 / 2 ) ) ~ e  -~:-p~r 

p r  
(2.6) 

A = ~v'33rr ( v ~ -  1). c = 2 + V ~ .  

More precisely (see Appendix A) the logarithm of (2.6) is a convex curve, which provides an upper bound to A 1 

and is tangent to the broken line once in each interval. 
Before passing to the numerical results, we also remark that, besides the norm IIAIll, the JLT approximation 

also determines the direction of A1, which according to (2.1) should be parallel to the dominating k: so, denoting 

7 = A I I / A I 2 ,  one expects 

k] 
y _~ - -  in the interval where k dominates. (2.7) 

k2 

3. Numerical  results 

We now test numerically the two formulas (2.5) and (2.7). Computations are performed in quadruple precision 

(approximately 33 significant digits) using a symplectic algorithm, the common "leap-frog". As shown in [ 1 2l (see 
also [ 1 1,1 3]), the use o fa  symplectic algorithm, although elementary, in a scattering problem, allows one to measure 

reliably quite small quantities. 

O 

d 

"~s~17,-12) 

I I i I I I i I J I I I I I I I = I ~ 

0.0 200. 400. 600. 8 ~ .  1000 
l a m b d m  

Fig. 3. AT vs. k ~ r  r = 1 and p = l ; crosses represent the ex~r imen ta l  data, while the continuous line is the JLT approximation, more 

precisely the nearly broken line (2.5). 
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Fig. 4. The same as Fig. 3 ~r  z = 0.5 and p = 1. 

Numerical experiments are performed in the most obvious way: one fixes the parameters r and p, and truncates 

the Fourier series for g to Ikl _< K, with sufficiently large K;  since the computer time is proportional to the number 
of  Fourier components, most computations were performed using only integer vectors k in the resonant sequence, 
up to K = 70 (the first six harmonics of  the sequence), but occasionally, as a control, 18 nonresonant harmonics 

were added, with absolutely negligible difference. Concerning time, we took of course a finite integration interval 

- T  < t < T; it turns out that T = 8 is enough in order for f(T)Gk to be negligible also for small k. For each 

choice of  the parameters r and p, we varied X from small values to values as large as possible, compatibly with 
computer time (unfortunately, the time step needs to be taken inversely proportional to 3.). For each value of L, in 
order to obtain the maximum A I  on the phases, we considered 50 different initial data with different values of ~0~, 
tp~, namely l0 values of  ~o~ equally spaced in (0, 2rr), and for each of them five values of  ~o~ equally spaced in 

(0, Jr). The time step was, typically, 0 . 0 8 / L  
The results for A1 are reported in Figs. 3-6  for different choices of  r and p. The crosses there represent the 

numerical data, while the continuous line is the theoretical expectation, namely the nearly broken line (2.5) already 
reported in Fig. 2. As one can see, the agreement is quite good in all situations. In fact, a very careful inspection 
shows that in some cases (Fig. 6, around w = 1000), immediately after the crossover, the numerical data are slightly 
above the theoretical curve, and flatten on it only later, let us say with some delay. We did not further investigate 
this point. 

A more quantitative comparison between the JLT approximation and the numerical results is performed by 
computing numerically, by a least-squares fit, the values otk and #k (in the interval where k dominates), to be 
compared with the theoretical values given by (2.3). The computed values of  7 (which are practically constant 
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Fig. 5. The same as Fig. 3 for r = 1 and p = 0.5. 

for )~ in the middle of  each dominating interval) are also compared with the theoretical values given by (2.7). The 

results are summarized in Table 1; a , / 3  and Y there represent the theoretical values, while a ' , / 3 '  and y '  denote the 

corresponding numerical quantities. The relative errors are typically less than 1%, and in some cases, in particular 

for y ,  they are much smaller. The worst results are obtained for/3: the relative error arrives, in two cases, to 2-3%. 

4. Concluding remarks 

4.1 

First of all, let us discuss here how far one can generalize the heuristic results we obtained in connection with 

our model (1.1). Concerning the choice of  f ,  its special form was certainly useful to compute everything explicitly, 

but the only really important features, to get (1.7), are that f has a finite analyticity strip of  size r ,  and decays in an 

integrable way for I Re t l ~ o~. If  f is an entire function, then the first-order approximation (2.1) is still expected 

to work, but (1.7) and (2.5), as well as the asymptotic behavior (2.6), are expected to change, namely the decay 

of A 1 with ~, will be faster. Let us remark however that, as far as Hamiltonian (1.1) is a mathematical model for 

a collision problem, and the explicit  t ime dependence of  the perturbation is intended to mimic the motion of  the 

center of  mass in a Hamiltonian problem like (1.5), singularities typically occur. 7 

7 Even in one dimension, if the potential is an integer function like e - r  , the solution r(t) has poles at finite distance from the real axis, 
see for example [14,15]• 
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Fig. 6. The same as Fig. 3 for r = 1 and p = 0.25. 

Table 1 

r # k ~ ~' # fl' y y '  

1.0 1.00 ( 7 , -  5) 0.07110 0.07090 7.700 7.760 1.4000000 1.4000030 
(17,-12) 0.02942 0.02943 23.820 23.830 1.4166660 1.4166660 

0.5 1.00 ( 7 , -  5) 0.03554 0.03551 7.760 7.780 1.4000000 1.4000100 
(17 , -  12) 0.01472 0.01473 23.870 23.880 1.4166666 1.4166666 

1.0 0.50 (17 , -  12) 0.02944 0.02945 9.320 9.325 1.4166660 1.4166660 
(41,-29) 0.01220 0.01240 28.900 28.400 1.4193793 1.4193793 

1.0 0.25 (17, -12) 0.02940 0.02960 2.070 2.100 1.4166000 1.4165000 
(41,-29) 0.01220 0.01220 11.400 11.100 1 . 4 1 3 7 9 3 1  1.4137931 

Let us then consider  the relevance of  our  choice of  g. In principle,  the JLT approach works for any g (even if not 

analytic),  and (1.7) trivially general izes into 

Zk --~ const, k ~ k e  -~rlk's2P . 

But in the absence of  nice assumptions  on Gk, this expression is essential ly meaningless .  If g is analytic in a strip of 

finite size p, even if the decay of the Fourier  components  with Ikl is not exactly exponential  as in (1.4), we expect 

that our analysis  is nevertheless correct, namely  that A I  exhibits the broken line behavior, and that an asymptotic 

expression like (2.6) holds, provided, in some sense, the Fourier  series is not too empty. Of  course, the segments of  

the broken line will in general  be shifted (but in a predictable way), and occasional ly  one of  them, with Gk vanishing 
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or part icularly small,  can be absent. A different  interest ing case is that of  g integer, so that the Fourier  components  

Gk decay more rapidly than exponential ly.  In such a case the asymptot ic  behavior  is expected to change:  clearly, at 

least asymptot ica l ly  the segments  are shifted downward ,  and the asymptot ic  decay of  A I  with X gets faster, s 

Another  point, in fact a del icate one, is the role of  the choice  a"2 = (1 ,0 )  with 0 quadratic irrational, in the analysis 

o f ( I . 7 ) - ( 2 . 2 ) .  Al though we did not work out all details, we have no doubt that everything remains essential ly 

unchanged if 0 is irrational, and its cont inued fraction, al though being not periodic,  has nevertheless  bounded 

entries. This  covers  a nondenumerab le  set of  initial data, a l though a zero measure  set. Another  case which is easily 

handled is the case of  0 rational: clearly, in such a case there will be a vector  k, precisely the smallest  integer vector  

for which k - a'2 exact ly vanishes,  which dominates  for all sufficiently large X; correspondingly,  for large X, A l  gets 

constant  (the last segment  of  the broken line is a horizontal  line). 9 The most  interesting case would  be that of  0 

diophantine,  since this covers  a set of  initial data o f  full measure.  But here the quest ion is more delicate,  and while  

it is easy to get upper bounds to zXl, we do not see at the momen t  how to produce a good asymptot ic  expression.  

The case with three or more independent  f requencies  is, of  course,  even less clear. 

4.2 

A second quest ion we would  like to discuss is the possibi l i ty o f  understanding the behavior  of  our system, in 

particular the dependence  of  A I  on X, by the usual methods  of  Hamil tonian  perturbation theory. In fact, Hamil-  

ton ian (  1.1 ) is a typical Hamil tonian which can be successful ly studied within such a theory, 2, I being the small 

parameter.  Moreover ,  thanks to the fact that f ( t )  tends to zero in an integrable way for Itl --+ cx~, a trivial a priori 

es t imate shows that the action I (t) cannot  move  too far from the initial value I °, so a " loca l"  study, namely  a study 

for 1 in some ne ighborhood of  the asymptot ic  value 1 ° = I ( - o o ) ,  turns out to be sufficient, and most  compl ica-  

tions of  geomet r ic  nature, which are typical of  Nekhoroshev  theorem and come  from the necessi ty of  taking care 

s imul taneously  of  the whole  action space, here are avoided.  

By proceeding in a very standard way, it is easy to obtain an e lementary  result like the fol lowing:  

Cons ider  the Hamil tonian  ( 1.1 ) with f and g as descr ibed in Sect ion 1; let co(l  °) = LY2 with ~ diophant ine and 

large, and denote 

e litl r) 2 

f ( t ) - -  r2 q_12 . 

Then there exists a ( t ime-dependent)  canonical  t ransformation 

( I , ~ o ) = ( l ' , ~ o ' ) + X  I f ( t ) W ( l ' , ~ o ' , t ; X ) ,  

14; being real analytic and bounded for t E N and for (1 ' ,  ~ ' )  E D(I  °) x ~ " ,  where D(I  °) is a ne ighborhood of  I ° 

independent  of  X, such that the new Hamil tonian  H '  takes the form 

A special case is that of g with finite Fourier expansion. The first-order analysis is trivial: indeed, from a certain moment on, the 
dominating k no more changes, and the asymptotic behavior is e -"x. But (as is obvious, and also confirmed by numerical experiments) 
first order is, in these conditions, no more significant: combinations of the integer vectors entering the Fourier expansion are expected to 
appear, and give rise to a broken line behavior in this case, too. 

9 However, it may be worthwhile observing that in this case there is a special combination of actions, precisely the "fast action" 
Is2 = Y2 - /, such that, as one immediately deduces by the presence of the factor k in (1.7), the resonant harmonics do not contribute at 
all to its change. Moreover, if0 is rational and k is nonresonant, then the "'small denominator" k. 6"2 is bounded away from zero (one has 
indeed Ik - -"21 >_ 1 ), and one immediately deduces that asymptotically AIs2 ~ e -"x. In this case too several numerical computations, not 
reported here, confirm such a first-order analysis. 
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H ' ( I ' ,  ~o', t) = - ~  + f ( t ) A / ' ( I ' ,  t; )~) + e -(az)~ f ( t ) 7 ~ ( I ' ,  ~o', t; )~), 
j= l  

(4.1) 

where a and v are positive constants, while A/" and R are bounded and real analytic for ( I  t, ~0') 6 D ( I  °) x T n and 

t r R .  

The exponent v depends only on the arithmetic properties of  I-2, and for the special case n --  2 and I2 such that 
1 Ik. ~21 > const. Ikl - l  for all k E 772 (in particular $2 = (1, 0) with 0 quadratic irrational), one has v = ~. 

The proof  is completely standard and not reported. 

From the normal form (4.1), using the fact that the rp-dependent term goes to zero (in an integrable way) for 

It[ --~ c~, while in the same limit the "deformation" 14; also vanishes, one immediately deduces an exponential 

estimate for the variation of  the actions. In particular, for n --  2 and 0 quadratic irrational one gets 

A I  < const.e -'/-h2. (4.2) 

Such an expression clearly retains something of  the asymptotic behavior (2.6), but the result is poor: indeed, (4.2) 

provides only an upper bound to A I ,  and moreover the constant a,  as constructed in the proof, is much smaller than 

the (presumably) optimal value a = crp ,  taken from (2.6). In addition, the characteristic "broken line behavior", 

obtained heuristically and numerically, gets completely lost. 

We are convinced that a more careful inspection of  the problem, based in an essential way on a strict control of 

the propagation of  small divisors along perturbative series (see for example [ 16-18]), could significantly improve 

the results, and possibly recover 10 the "broken line behavior" of  log S)- .  But the main limitation, namely the fact 

that such methods lead only to upper estimates (and to bad constants), in our opinion cannot be overcome. 

4.3 

As a final comment,  let us mention the possibil i ty of  making rigorous the JLT approximation, by a perturbative 

approach different from Nekhoroshev theory. The basic idea is clearly to look for a series expansion of  A I  such that 

(2.2) is the first order. The task is not trivial since, for the first order to dominate, one needs the presence of  the same 

exponential factor e-ZJk'121r-plkl (or a faster decreasing one) at all orders, and moreover the series should converge. 

A result in this direction can be found in [7], where one studies an isochronous problem with Hamiltonian of  the 

form 

) ~ . I + l p 2 + U ( x ) + e V ( p , x , l , ~ o ) , ( p , x )  E R 2, I E R  n, ~oEq]-n. 

In fact, an expression similar to (1.7) is r igorously found in [7], but unfortunately, a strong disappointing assumption 

of  the form e < ~-m,  with sufficiently large m, is apparently necessary. In spite of  this difficulty, we believe that 

the perturbative scheme exploited in [7] could lead to interesting results in the present case too. 11 

10 In this task there is a relatively easy part, namely finding a sequence ~,1,  ~-2 . . . . .  such that for ~-k < ~- < ~-k+l one has log A~ < 
Ak)~ + Bk, the ratio of the Ak being the correct one, i.e., Ak = const.cek. The difficult part, where we have not been successful, is 
controlling the Bk in such a way so as to recover (as an upper estimate) a continuous piecewise linear function, that is the broken line. 
The sequence Ak corresponds to the sequence of "approximate convergence radii" of [ 16,17]. 
11 Ref. [7] is in fact one of the numerous papers which, after the work by Eliasson [19,20], exploit the Lindstedt method (expanding 
solutions in series of a small parameter) in place of the Von Zeipel method (working on the Hamiltonian by canonical transformations), and 
make essential use of cancellations among the huge amount of terms which are produced at each perturbative order. See for example [6]. 
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Appendix A 

We deduce here the asymptotic behavior (2.6); our analysis here is essentially equivalent to [101. To this purpose, 
we start from (2.4), and compute the asymptotic behavior of 

i 

- log AI  = otk,k + ilk, (A.I) 

k --- k()~) being the dominant harmonic, precisely the (nearly resonant) integer vector which for a given ,~ minimizes 
the RHS of (A. 1 ). Let k ¢°), k/J ), k (2) . . . .  denote the sequence of nearly resonant vectors; from the continued fraction 
expansion v'~ = [I; 2, 2 . . . .  ], one immediately finds 

o~kI~:. -= "cO s, 0 = V~ - 1. 

On the other hand, as remarked in Section 2, one has 

kl, s , )  {k l  s - ' ) )  ( 1 - 2 )  and k , ) , _ ( ' 0 )  
k~) ----- Z ~k~S_t~ with A ---- - 1  1 

So, denoting by/,~ the eigenvalue larger than one of A, and writing k (°) ----- k + + k - ,  the vectors k + and k -  belonging, 
respectively, to the expanding and contracting eigenspaces of A, asymptotically for large s one has 

Ik~.'l I = ~tSlk+ I + O(/~-s), IIk<S)ll =/zSllk+ll + O(# - s ) ,  

One immediately computes 

1 k t : 0  k+ - 1 

and thus 

Ik~S)l = c" 17 -~ + O(0S), Ilk (s) II = c ' 0 - "  + O(0 s) 

with 

2 + v / 2  q'~ 
( t - -  ~ c t l  

4 =2--~"  

It follows that 

[3k¢~) = c'po -s - log 0 -s -- log Cc" + O(oS), 

so, denoting x = 0 s, the RHS of (A. 1) can be written 

) ~ x  +c 'px  -1 + l o g x  - l o g  Cc ' ,  f = r(1 + O(~.-I)). (A.2) 
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Fig. 7. A comparison between the curve (A.3), dashed line, and the broken line (2.5), solid line, for r = p = 1. 

Now, in order  to find the dominant  harmonic,  we treat x as a cont inuous  variable,  and min imize  (A.2). The 

m i n i m u m  Y solves the equat ion )~fx 2 + x - c ' p  = 0, and is given by 

4V#4c/'p,~f - 1 _ c / - ~  1 
2,k~ V ~,r 2,kr -}- O()~-3/2); 

cor respondingly  one gets 
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,~" Y q- C'p'y -1 = 2v/-U-pXr + O(K -1/2)  

(the next dominan t  terms cancel) ,  and finally 

e r2 
AT -- A - - ( 1  + O ( X - I / 2 ) ) ~ e - ' / c p ~ ' r  

p r  

with 

267 

(A.3) 

A = ~x/-37r ( v ~  - I ), c : 4c '  ---- 2 + v/2.  

This deduct ion o f  the asymptot ic  behavior  (A.3) f rom (2.4) is apparently ques t ionable  when we treat x as a 

cont inuous  variable;  but a little ref lect ion shows that: 

(i) In any case, the min imiza t ion  procedure  assures that (A.3) is an upper  bound to (2.4). 

(ii) Once  in each interval, Y must  co inc ide  with ~/s, and at that m o m e n t  (A.3) is exact  [asymptotically,  that is 

disregarding the term O(k-1 /2 ) ] .  

As a matter  of  fact (and this is r igorous) in the log scale (A.3) appears as a convex curve, which is asymptot ica l ly  

tangent  to the broken line defined by (2.4) in each o f  its segments .  The  same of  course is true if  one takes for A I  

the definit ion (2.5), as far as, for  large ;% the two definit ions coincide.  Fig. 7 shows (A.3) compared  to the broken 

line (2.5). 
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