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Abstract. A review is given of the works on the FPU problem that were partic-
ularly relevant in connection with the metastability perspective, proposed in the
year 1982. The idea is that there exists a specific energy threshold above which the
time-averages of the relevant quantities quickly agree with the predictions of classi-
cal equilibrium statistical mechanics, whereas below it there exist two time scales.
First there is a quick formation of a packet of low-frequency modes which do share
the energy, and this produces a metastable state that lasts for a long time; then
the system attains the final equilibrium state. There are strong indications that the
specific energy threshold does not vanish in the limit of infinitely many particles.
The review is given for the case of a one-dimensional FPU chain.

4.1 Introduction

If one looks at the scientific literature on the FPU problem, 50 years after the
original paper (or rather report) [1], one will find a rather large amount of
papers (see, for example the recent special issue of the journal Chaos [2]). But
if one tries to extract from them any clear conclusion about the mathematical
status of the problem or the physical meaning of the results, one may remain
rather perplexed and have the impression of a certain confusion. Or, even, one
can find statements as if the problem had already been solved and there were
nothing more to be said (see [3], p. 2). In this chapter, we will try to indicate,
among the many papers on the subject, the ones which in our opinion played
a significant role with respect to the main question we have in mind, namely
that of establishing whether the FPU problem may have some relevant phys-
ical impact or not. We will try to show how the question is still completely
open, although one may be confident that it may be solved in a near future.

We now give a preliminary summary of the history we are going to trace
back in this chapter, in the above mentioned perspective. First of all, let us
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recall that the essential result of the original FPU report was the exhibition
of what we now call “the FPU paradox”. Namely, numerical solutions of the
equations of motion were performed for a model of a discretized string (or
equivalently of a one-dimensional crystal, actually, a chain of N particles with
nearest-neighbour nonlinear interactions), and it was observed that, starting
from a long-wavelength initial datum (and thus very far from statistical equi-
librium), there was quickly formed an apparently stationary state, extremely
different from the one expected according to classical equilibrium statistical
mechanics.

The FPU report had, 10 years later (1965), a great impact in mathemat-
ics, because it stimulated the well-known work [4] of Zabusky and Kruskal,
in which the FPU result was interpreted in terms of solitons. In turn, this
fact paved the way to the whole research on infinite-dimensional integrable
systems, which quickly became a fashionable and extremely interesting math-
ematical field in itself, with the result that its relation to the FPU problem
was somehow neglected. We will point out later how the relations between
the two subjects, solitons and FPU problem, were reestablished in very recent
times. In may be worth remarking that, as the soliton theory is essentially
equivalent to integrability, by some naive transitivity some people may have
been induced to associate FPU to integrability, which corresponds to even
exalting the FPU paradox.

The next essential step, which by the way also eliminated the possible
confusion just mentioned, was made one year later (1966) by Izrailev and
Chirikov in the work [5] (see also [6]), with the discovery that the paradox
disappears (i.e., a quick agreement with the predictions of classical equilib-
rium statistical mechanics is found) if initial data are taken of the FPU type
(long-wavelength), but with a sufficiently high energy. In other words, there
somehow exists a critical energy Ec, above which the paradox disappears.
However, Izrailev and Chirikov appeared even to go beyond such a result, be-
cause they also advanced the additional conjecture (supported by some kind
of analytical considerations, later adjusted by their pupil Shepelyansky in [7],
with arguments subsequently critically discussed by Ponno in [8]) that the
FPU paradox disappears at all in the thermodynamic limit (N tending to
infinity, with positive specific energy ε = E/N). On the other hand, a little
later (1971) Bocchieri et al. (in [9]) reported numerical results that appeared
to support the opposite conjecture. This fact was particularly emphasized by
Galgani and Scotti and by Cercignani (see [10], [11] and the review [12]),
who were pointing out that the FPU paradox, if it persists in the thermo-
dynamic limit, may have a deep physical impact. With such papers ends the
first phase of the history of the FPU problem, at least in our personal way of
reconstructing it. At that moment the alternative seemed to be whether the
paradox disappears in the thermodynamic limit or not, i.e., whether one has
εc → 0 for N →∞ or not, where εc = Ec/N is the specific energy threshold.

But in such an alternative the mathematical (and even the physical) setting
of the problem was a rather “naive” one, because it appeared that one had to
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decide whether, in the terminology then used, the motions are of “ordered”
or of “chaotic” type (below or above the threshold respectively), whereas
the deep question of determining the “relaxation times” for the approach to
equilibrium (which actually was the very question raised in the original FPU
report itself) was completely overlooked. The breakthrough in this direction
came from a paper of the year 1982 by Fucito et al. (see [13]), which clearly
was conceived within a scientific frame, the theory of glasses (particularly
studied by a group of people around Parisi in Roma), in which a special
attention was naturally payed to the possibility that relaxation times of quite
different orders of magnitude may show up. This actually constitutes what we
now call the metastability scenario: The time-averages of the relevant physical
quantities are expected to agree with the predictions of classical equilibrium
statistical mechanics at any energy after a sufficiently long time-scale, the
“final” one (which is the one described by the limit t→∞), and the paradox
is interpreted as corresponding to the existence of another, shorter, time-scale
(the fast scale), within which a relaxation is produced to some intermediate
state. Such an intermediate state at first sight appears as an equilibrium
one, although it is destined to subsequently relax, on a much longer time-
scale, to the “final”equilibrium state. The way in which the existence of an
energy threshold can be conceived within such a metastability scenario was
understood much later (see [14]).

In an attempt to trace back, in the present days, a kind of historical review
on the subject, one cannot but remain perplexed by remarking that the paper
of Fucito et al. did not receive at that time the attention that would appear
natural today. Indeed, apart from a bunch of papers written immediately
later, for a long time the metastability scenario was essentially forgotten.
In particular, no discussion was given of the relevant problem that was left
open within such a scenario, namely to establish whether the formation of a
metastable state is a phenomenon that persists in the thermodynamic limit
or not. The idea of the metastability perspective actually reappeared only
rather recently, under the stimulus of the work [15] by Carati and Galgani
(see also [16]), devoted to the problem of estimating the specific heats in
systems of FPU type. In such a paper, the existence of relaxation times of
different orders of magnitude was reported, and a qualitative analogy with
the problem of glasses was explicitly pointed out. Finally, a vivid numerical
illustration of the metastability phenomenon, with a particularly impressive
exhibition of two quite different relaxation times, was given by Berchialla et al.
in [14]. In particular, it was found that the phenomenon of the two separated
time-scales occurs only below a certain energy, which can thus be interpreted
as the critical energy in the sense of Bocchieri et al.

Finally, a deep analytical understanding of the metastability scenario in
the FPU problem was given in a paper by Bambusi and Ponno (see [17]),
through a result holding in the thermodynamic limit. In such a paper, by
the way, a bridge with the old Zabusky and Kruskal contribution was given.
Indeed, a general mathematical frame (the method of resonant normal forms)
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was devised in order to approximate the FPU system for not too long times,
and this actually amounts to justify the use of a pair of KdV equations for
not too long times, thus explaining the quick formation of the metastable
state, in a way that is essentially equivalent to that of Fucito et al. The
result of Bambusi and Ponno actually holds only for an extremely special
class of initial conditions, but a strong indication that significant results may
be obtained also for a much broader set of initial data, is afforded by a very
recent result of one of us (see [18]), where for the first time it was proved, in a
concrete model, that the techniques of Hamiltonian perturbation theory can
be extended to the thermodynamic limit (previous results uniform in N were
given, by Bambusi and Giorgilli in [19], but only for a finite energy E, namely
for vanishing specific energy ε = E/N in the limit N →∞).

On the basis of the successes obtained with such recent results, one may
be tempted to conclude that the FPU paradox should persist in the thermo-
dynamic limit. But a deep question still remains open, namely the “question
of the dimensions”. Indeed, all the results previously mentioned refer to the
FPU problem in its original formulation, namely in the one-dimensional case
(a chain of particles), and there remains the problem of establishing whether
the phenomenon of the quick formation of a metastable state persists (still
in the thermodynamic limit) when one passes to the case of dimension two
and especially to the “physical case” of dimension three. At the moment, a
few results in dimension larger than one are available in the literature, for
example [20, 21], but in our opinion they do not allow one to draw a definite
conclusion. So in the present review we shall not enter the question. However,
by judging from the results that were recently obtained in the one-dimensional
case, we are rather confident that the problem may find a solution in the near
future.

4.2 The First Phase, 1955–1972: From FPU to Izrailev
and Chirikov and to Bocchieri et al.; the Suggestion
of a Possible Physical Interpretation

4.2.1 The Original FPU Paper and the FPU Paradox

Fermi, Pasta and Ulam considered the simplest model of a discretized non-
linear string, which can also be interpreted as a model of a one-dimensional
crystal, namely, a chain of equal particles with nearest-neighbours nonlinear
interactions (nonlinear springs), and fixed ends. Denoting by xj the displace-
ments of the particles from their equilibrium positions and by pj the corre-
sponding momenta, j = 0, . . . , N + 1, with the boundary conditions

x0 = 0 , xN+1 = 0 ,

the Hamiltonian of the system is then
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H(x1, · · · , xN , p1, · · · , pN ) =
1
2

N∑

j=1

p2
j +

N+1∑

j=1

V (xj+1 − xj) (4.1)

where the potential V actually chosen was

V (x) =
1
2
x2 +

α

2
x3 +

β

3
x4 .

Here, the mass of the particles and the harmonic constant of the springs have
been set equal to 1, while α and β are positive parameters. It is well known that
the corresponding linearized system (α = β = 0) can be transformed, through
a linear change of variables, to a system of uncoupled linear oscillators (normal
modes) with a corresponding Hamiltonian H2 which, in terms of action-angle
variables Ik, ϕk, takes the form

H2 =
N∑

k=1

Ek ,

where
Ek = ωkIk

are the normal-mode energies, having angular frequencies ωk given by

ωk = 2 sin
kπ

2(N + 1)
.

According to classical equilibrium statistical mechanics, the statistical
properties of an isolated system (such as the FPU one) at equilibrium at
a given total energy E should be described by the microcanonical measure
(the one naturally induced on the “energy surface” H = E by the Lebesgue
measure in the whole phase space) or equivalently (at least for sufficiently
large N) by the “canonical” or Gibbs measure in the whole phase space with
a suitable temperature T = T (E). The fundamental result of classical equilib-
rium statistical mechanics is then the “equipartition theorem”, according to
which, in the harmonic limit (α = β = 0), the expected values of the harmonic
energies Ek at a given total energy E, which we denote by < Ek >E , are all
equal, independent of k,

< Ek >E= E/N ≡ ε , k = 1, . . . , N , (4.2)

where ε = E/N is the specific energy, and for the common value ε one has
the interpretation ε = kBT , where kB is the Boltzmann constant and T the
absolute temperature. The result does not change qualitatively for a slightly
anharmonic system (α and β small) and for a small temperature T (i.e., a
small specific energy ε = E/N), because the anharmonic corrections to the
relations (4.2) do vanish in the limit α, β → 0 or T → 0 (i.e., ε→ 0).
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Let us now come to the dynamics. In the harmonic case the system is
“integrable”, namely it has N integrals of motion (the harmonic actions Ik
or equivalently the harmonic energies Ek = ωkIk) which are independent
and in involution (their mutual Poisson brackets vanish). Instead, the system
is expected to be ergodic, i.e., to have no (measurable) integral of motion
apart from the total Hamiltonian H itself, when the perturbation is present
(for α �= 0 or β �= 0), no matter how small the perturbation be. This was
suggested by a famous theorem of Poincaré (see [22]), to which Fermi himself
had contributed in one of the first works of his youth (see [23] and also [24]),
and this was probably the main reason for him to come back again to such a
problem near the end of his life.

Thus one meets with the problem of how is it possible to reconcile such
a dichotomy (N integrals of motion in the harmonic case α = β = 0, no
integral of motion independent of the Hamiltonian in the perturbed case, no
matter how small the perturbation be) with the continuity of the solutions
of the equations of motion with respect to the parameters. A possible way of
recovering continuity is by making reference to the notion of relaxation time.
In order to make this point clear, let us recall what the ergodicity property is in
our particular case of a Hamiltonian system with a phase space M coinciding
with the energy surface ΓE defined by H = E. As above, by < f >E we
denote the corresponding microcanonical expectation of a dynamical variable
f : M → IR. Denoting by {gt}t∈ IR, gt : M → M , the flow induced by the
equations of motion, and by x a point in phase space, then the ergodicity of
the microcanonical distribution amounts to the property

f(t, x) → < f >E as t→∞

for all measurable dynamical variables f and for almost all initial data x ∈M ,
where f(t, x) is the “time-average” of the function f up to time t with initial
datum x:

f(t, x) =
1
t

∫ t

0

f(gsx) ds .

Now, as particularly pointed out by von Neumann (see [25]), for every sig-
nificant dynamical variable f there should exist a typical relaxation time τ ,
defined as the first time such that the time-average essentially coincides with
the “phase average” < f >E for all times larger than it.

Obviously, the elimination of the just mentioned dichotomy should cor-
respond to the fact that the relaxation time τ does actually depend on the
parameters (α, β and E), and should tend to infinity as they tend to zero.
i.e., as the linear system is approached. So FPU had in mind to determine,
through numerical solutions of the equations of motion, the relaxation times
for the time-averages Ek(t, x) of the energies Ek, for initial data very far from
equilibrium. As the equilibrium expectations of such energies are all equal
(equipartition), the most significant initial datum corresponding to a situ-
ation out of equilibrium is the one in which the energy is given to just one
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mode, for example the “first one” (i.e., the one with lowest frequency), namely
the initial datum with E1 = E, Ek = 0 for k = 2, · · · , N , and for example all
particles in their equilibrium positions, xj = 0, j = 1, . . . , N .

The essence of their numerical computations is well summarized by the
first and the last figures of their paper (corresponding to Figs. 4.1 and 4.2
here). They considered the case N = 32 with the first mode initially excited
(in the way just mentioned) for a certain value of the total energy E and
certain values of α and β. They were expecting that the energy would soon
spread over all other modes k = 2, · · · , N . Instead, they found that the values
of the instantaneous mode energies Ek versus time t were as in Fig. 4.1. One
sees that the energy, initially given to mode 1, passes to the modes 2, 3, 4 and
5 (each of such modes entering the sharing of energy at a proper characteristic
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Fig. 4.1. The time evolution of the harmonic energies. The figure is a reproduction
of the first one of the original FPU report. Here, N = 32 (with α = 1/4, β = 0),
and the energy was given initially just to the lowest frequency mode. One sees that
the energy, instead of flowing to all the 32 modes, remains confined within a packet
of low-frequency modes, namely modes 1 up to 5
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Fig. 4.2. Time-averaged harmonic energies Ek versus time. The figure is a repro-
duction of the last one of the original FPU report

time—this is a point to which we will come back later), and then flows back
almost completely to the first mode (this is called the recurrence property). In
any case, the energy does not appear to flow to the high-frequency modes at all
(or almost at all). The most striking feature was however exhibited by the last
figure of their paper (Fig. 4.2), where the time-averagesEk(t, x) of the energies
Ek up to time t were plotted versus time. Indeed such a figure clearly shows not
only that the final state predicted by classical equilibrium statistical mechanics
was not attained, but also that a relaxation had indeed been attained to some
other kind of (apparently stationary) state (after a certain time, the time-
averages do not appear to change any more), which is completely different
from the final expected one (equipartition). The stabilization of the averages
is much more evident in Fig. 4.3, where the calculation has been pushed to a
much longer time with respect to Fermi’s one.

This is what we like to call the FPU paradox : Instead of a slow relaxation
to the final equilibrium state, there is exhibited a rather quick relaxation to
some kind of “nonstandard” state, in which the energy turns out to be shared
only within a packet of low-frequency modes, having a certain well defined
width, i.e., extending up to some characteristic frequency. One somehow has
a kind of “partial thermalization” involving just such a packet, with the high-
frequency modes essentially excluded, as if the system were composed only
of an effective number of degrees of freedom, substantially smaller than N .
This fact is well exhibited in Fig. 4.4, where we report the corresponding
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Fig. 4.3. The FPU phenomenon: exhibition of the apparent stabilization. Time-
averaged harmonic energies Ek versus time in log–log scale, for a time interval much
longer than in the original FPU report. The curves are drawn only for the first eight
modes. Notice that the “final” value of Ek is a decreasing function of the wave-
number k (which is not indicated on the corresponding curve in the figure), actually
of exponential type (at least for k > 3). Here, N = 32 and E = 0.05 (and thus
specific energy ε = E/N � 0.0015). Taken from [26]
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Fig. 4.4. The spectrum (namely the time-averaged energies Ek versus k/N), for the
same orbit of Fig. 4.3, at the final time of the calculation. Notice the logarithmic
scale for the energies. This exhibits how the modes involved in the energy shar-
ing constitute a low-frequency packet with a tail presenting an exponential decay
towards the high frequencies
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“spectrum”, namely the values of the time-averages Ek(t, x) versus the mode-
number k (actually, versus k/N) at the final time of the calculation. Notice the
exponential tail, on which we will come back later. The reaction of Fermi (who
had passed away before the paper was written down) is reported by Ulam, in
the preface to the reproduction of the paper in Fermi’s Collected Papers, in
the following terms: “The results of the calculations . . .were interesting and
quite surprising to Fermi. He expressed to me the opinion that they really
constituted a little discovery in providing intimations that the prevalent beliefs
in the universality of mixing and thermalization in nonlinear systems may not
be always justified”.

4.2.2 The Paper of Zabusky and Kruskal, and the KdV Equation

With the paper [4] of Zabusky and Kruskal (1965), the Korteweg–de Vries
(KdV) equation

ut + uux + uxxx = 0

entered the game. Here one thinks of a function u = u(x, t) which gives, at
time t, the profile of a continuous nonlinear string interpolating the FPU
chain of particles. The fact that the interpolation of the FPU chain is rather
well described by the KdV equation in certain situations is since then a well-
known fact, and is proved in some standard way by multi-scale methods which
are familiar in several fields of applied mathematics (see, for example the
application given later in [27]).

From the way in which the KdV equation was associated by Kruskal and
Zabusky to the FPU model, it is completely clear that the solutions of the
KdV equation should provide a good approximation to those of the FPU model
only for initial data corresponding to an excitation of low-frequency modes
(i.e., for long-wavelength initial data). A relevant further point is however that
the agreement should be expected to hold only for not too long times, as was
particularly emphasized in the later “deduction” of the KdV equation that was
given quite recently by Bambusi and Ponno, through a technique extending
to Hamiltonian partial differential equations certain methods of perturbation
theory (Birkhoff normal forms) well known in the case of a finite number N
of degrees of freedom.

We give here a particular emphasis to the latter fact, because no explicit
mention of it is made in the original Zabusky–Kruskal paper. Rather, just
at the beginning of the paper, it is said that the KdV equation “can be
used to describe the one-dimensional, long time, behavior of small, but finite
amplitude, . . . long waves in the anharmonic crystal.” Here, we are pointing
out that this should be understood as meaning “long time” within the time-
scale up to which the KdV equation provides a good approximation to the
solutions of the FPU equations themselves. We will come back to this point
later.

In any case, Zabusky and Kruskal studied the KdV equation, and were able
to exhibit the existence of three time-scales (or time intervals, as they say),
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namely, in their words: “(I) Initially, the first two terms (of the KdV equation)
dominate and the classical overtaking phenomenon occurs; that is, u steepens
in regions where it has a negative slope. (II) Second, after u has steepened
sufficiently, the third term becomes important and serves to prevent the for-
mation of a discontinuity. Instead, oscillations of small wavelength . . .develop
on the left of the front. The amplitudes of the oscillations grow and finally
each oscillation achieves an almost steady amplitude . . .and has a shape al-
most identical to that of an individual solitary-wave solution (of the KdV
equation). (III) Finally, each such ‘solitary-wave pulse’ or ‘soliton’ begins to
move uniformly . . .”. For a recent numerical illustration of this description,
see [28] by Lorenzoni and Paleari.1

So the theory of solitons had come to its modern life, and started to be
pursued in itself, giving rise to the whole theory of infinite-dimensional inte-
grable systems, while its relation to the FPU problem was somehow neglected.
To such a connection we will come back later.

4.2.3 The Izrailev–Chirikov Contribution

a) The discovery of a stochasticity threshold.

The next fundamental contribution was the discovery, by Izrailev and
Chirikov, of the so-called stochasticity threshold (see [5, 6]). That is, the
FPU paradox disappears if the initial energy is sufficiently large, i.e., there
exists a critical energy Ec = Ec(N) such that one has a quick equiparti-
tion for E > Ec. This is illustrated in Fig. 4.5, where the time evolution of
the harmonic energies is calculates for a much larger energy than in Fig. 4.3
(E = 1).

Actually, Izrailev and Chirikov considered initial data of a certain broader
class than FPU, in that they gave the energy to a packet of modes of nearby
frequencies, considering the characteristic frequency of the packet as a param-
eter. The analog of the FPU paradox was found to occur for any frequency of
the excited packet, and in all cases the paradox disappeared above a critical
energy Ec depending on the frequency of the excited packet, and on N .

Concerning the theoretical motivation behind such a discovery of the en-
ergy threshold, a reading of the Izrailev–Chirikov paper clearly indicates that
they had in mind the results on Hamiltonian perturbation theory (KAM the-
orem) that had just been obtained in Russia by the school of Kolmogorov (see
[29]). If one considers a Hamiltonian perturbation of an integrable system, for
small perturbations the system resembles very much the integrable one: there
exist invariant tori, near the unperturbed ones, and the relative measure of
the set of such perturbed invariant tori tends to 1 as the perturbation tends
1 This paper should be compared with [27], where the first time-scale of Zabusky

and Kruskal (namely, the characteristic one for the formation of the packet) was
interpreted as the time-scale for equipartition.
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Fig. 4.5. The Izrailev–Chirikov discovery: equipartition of energy is quickly at-
tained if energy is large enough. Time-averaged harmonic energies Ek versus time
in log–log scale, still for N = 32 but now for E = 1 (i.e., ε � 0.9). Compare with
Fig. 4.3, which refers to E = 0.05 (i.e., ε � 0.0015). Taken from [26]

to 0. Continuity is thus obtained in such a measure-theoretic sense. But the
relative measure of the invariant tori is expected in general to decrease as the
perturbation is increased so that, at a large enough perturbation, the resem-
blance of the system to the unperturbed one is essentially completely lost, and
the motions are in general expected to present “chaotic” features. This is the
reason why in the FPU problem one might expect that, for sufficiently large
energies E, chaotic motions should dominate, and this actually led Izrailev
and Chirikov to the conception of the existence of a stochasticity threshold Ec.

b) The conjecture of the disappearing of the FPU paradox in the thermody-
namic limit.

The Izrailev–Chirikov discovery previously recalled, certainly constituted
an extremely relevant contribution. The authors however added something
more, by indicating a way in which the FPU paradox might be removed alto-
gether, for the purposes of statistical mechanics.

Indeed, for the aims of statistical mechanics one has to consider the case
of extremely large numbers N , i.e., formally, the limit N → ∞. So they
pointed out that one should estimate the value of the specific critical energy
εc(N) = Ec(N)/N in the limit N → ∞. Indeed, the FPU paradox would be
completely removed if one could prove that εc(N) → 0 for N →∞. In such a
way one would be guaranteed that the FPU phenomenon does not occur for
large systems at any positive specific energy ε > 0 (i.e., at any finite positive
temperature T > 0).

The authors even indicated some kind of mathematical mechanism which
should govern the vanishing of the limit-specific energy threshold. In this
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connection, a relevant role should be played by resonances (i.e., relations of
the type mω + nω̄ = 0 for two frequencies ω, ω̄, with m, n integers), because
the authors had in mind that resonances would lead to stochasticity, as was
familiar to them through the so-called Chirikov criterion of the overlapping or
resonances. On the other hand, they pointed out that, in the limit N → ∞,
the FPU system presents infinitely many resonances. So they worked out some
estimates based on this idea, for the case of initial data with an excitation
of a few high-frequency modes, and they interpreted their considerations as
suggesting that εc(N)→ 0 in that case. An analogous conclusion could not be
drawn for the case of initial data with excitations of low-frequency modes (the
case considered in the FPU work). Quite recently, their pupil Shepelyansky,
elaborating on their methods, maintained to have extended such a result to
that case too (see [7]).

Serious doubts on the significance of the criterion of the overlapping of
resonances may actually be raised (see [8]). In any case, however, one can say
that a physical conjecture had emerged, namely, that the FPU paradox may
disappear entirely in the thermodynamic limit.

4.2.4 The Result of Bocchieri et al.

Five years later (1971), in [9] Bocchieri et al. gave numerical indications in
the opposite direction: The FPU paradox should persist in the limit N →∞.
They actually performed computations for a slight modification of the FPU
model, inasmuch as they introduced a “realistic” potential of Lennard-Jones
type, namely,

V (r) = 4V0

[
(σ/r)12 − (σ/r)6

]

involving two parameters, the depth V0 of the potential well and the typical
distance σ, at which the potential passes from positive to negative values.
They considered several types of initial data with a few nearby modes ex-
cited, of low, or of high, or of intermediate frequency, and found that in a
short time equilibrium is attained (equipartition of the time-averages of the
mode-energies was obtained), if the initial energy is sufficiently large, i.e.,
for E > Ec(N) for some critical energy Ec(N), in agreement with the dis-
covery of Izrailev and Chirikov. For what concerns the dependence of the
specific stochasticity threshold εc(N) = Ec(N)/N on N , they found a large
dependence for small N , say for 2 < N < 10, whereas εc(N) was found to
be essentially constant for “large” N (concretely, in their computations, for
10 ≤ N ≤ 100). They actually found for εc(N) the “limit” value 
 (3/100)V0.
In their words: “When the energy of vibration per particle is equal or larger
than 2 or 3 percent of the potential well and the number of particles is suf-
ficiently large, one has, in time average, equipartition of energy among the
normal modes”.2 Namely,

εc 
 0.03V0 .
2 It must however be added that the authors were completely aware of the possible

relevance of the actual times of observation, because they also added: “We may
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4.2.5 The Suggestion of a Possible Physical Interpretation

At this point the situation was as follows. Izrailev and Chirikov had with an
extreme clarity indicated how one might eliminate the FPU paradox entirely,
for systems of interest to statistical mechanics: One should prove that the
specific energy threshold εc(N) = Ec(N)/N vanishes in the limit N → ∞.
Moreover, they believed to have shown that this is the case at least in the
case of high-frequency excitations. On the other hand, Bocchieri et al. had
given indications in the opposite direction. Thus, there was the problem of
which could be a physical interpretation for the apparently stationary state
exhibited by FPU, in case the indications of Bocchieri et al. were confirmed.

The idea that the relations between classical mechanics and quantum me-
chanics may be much subtler than usually believed was very much discussed
within the group of theoretical physicists in Milano, particularly under the
stimulus of Caldirola and Loinger. Thus, as one of the strongest and deep-
est manifestations of quantum mechanics in a statistical mechanics frame,
actually the one that gave rise to quantum mechanics itself, is the lack of en-
ergy equipartition at low temperatures, the systems behaving as if the high-
frequency modes were excluded from the energy sharing, quite naturally there
arose the idea that the “nonstandard” apparently stationary FPU states may
be a sort of classical analogs of quantum states. These are characterized by
the Planck spectrum EP

k given by

EP
k =

�ωk
exp(β�ωk)− 1

where � is Planck’s constant and β = 1/(kBT ) the “inverse temperature”.
In such a way, after many discussions with Bocchieri and Loinger, Galgani

and Scotti started out an investigation in which the FPU spectrum below
threshold was fitted to a Planck-like distribution EPlike

k , namely,

EPlike
k =

Aωk
exp(βAωk)− 1

,

with two free parameters A and β, having the dimensions of an action and
of an inverse temperature, respectively. The fits were made to data obtained
with the same computer program used by Bocchieri et al., in which the molec-
ular parameters m (mass of the particles), V0 and σ (the ones entering the

conclude by saying that, in the case of very low total energies, the relaxation
mechanism towards the standard Boltzmann distribution of the normal modes
may act so slowly that the coupling of the system with a thermal bath could
be very important in determining the approach of the model towards such a
distribution.” This remark, by the way, actually opens another relevant problem,
because it may happen that also the mechanisms of transfer of energy between a
FPU system and a heat reservoir are slowed down when temperature is lowered.
In fact, this actually seems to be the case.
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Lennard-Jones potential) actually considered were those of Argon, as taken
from standard available handbooks.

The result found was a rather striking one. Indeed, not only the qualitative
fit to the Planck-like law was found to be rather good, with β behaving as
expected (namely, as an inverse temperature depending only on the specific
energy ε = E/N), but it was also found that the parameter A on the one
hand was pretty constant, i.e. independent of the specific energy, and on the
other hand happened to have a value quite near to the Planck constant �.

It took some time to understand how this could have happened. The simple
reason is that A, being an action, has to be proportional to the natural action
obtained from the dimensional parameters m, V0, σ introduced in the model,
which is

√
mV0 σ. So one necessarily has

A = α
√
mV0 σ ,

where α is a pure number. On the other hand, it is well known that the
molecular parameters actually met in nature do indeed contain �, and in
particular one has, for example for the noble gases,

√
mV0 σ 
 2Z� ,

where Z is the atomic number. In conclusion, Planck’s constant had been
introduced somehow by hands in the model through the molecular parameters.
This is the way in which Galgani and Scotti came to venture the suggestion
(see [10, 11]) that, if one can prove that the FPU paradox persists in the
thermodynamic limit, then the apparently stationary FPU states may provide
a sort of classical analog to the quantum degeneration described by Planck’s
law. This idea continued to be pursued up to the present days (see [30, 31]).

By the way, it may be noted that the good fit of the FPU spectrum to
Planck’s law (suggested by the analogy with quantum mechanics) amounts to
be perhaps the first clear exhibition of the fact that, for large wavenumbers
k, the energies Ek decay exponentially fast with k, i.e., with the frequency
ωk. This fact is indeed a quite general one, the nature of which was clearly
understood analytically ten years later with the paper of Fucito et al., who,
through the intermediary of the paper of Frisch and Morf, transported to the
FPU problem general ideas of turbulence theory.

This ends the first phase of the history of the FPU problem in our personal
way of reconstructing it.

4.3 A Voice in the Desert: The Paper of Fucito et al.
(1982) and the Proposal of a Metastability Scenario.
The Work of Parisi and the Analogy with Glasses.
Relations with Turbulence Theory

In the first phase of the history we traced back in the previous section, due to
the need of concentrating our attention on the papers that are most relevant
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for our reconstruction, we already had to neglect a considerable amount of
papers, among which stay for example several ones of the late J. Ford, the
memory of whom is particularly dear to the oldest of the present authors, who
exchanged with him tenths of letters on the subject. In the same way, we are
going to neglect in the present section many other papers, including several
ones worked out by the present authors.

The next relevant step was made with the paper [13] of Fucito et al., where
both a new point of view and a new technique were introduced.

The new point of view concerns metastability and was certainly borrowed
from the frame of the theory of glasses and of disordered systems, in which
distinguished contributions had been given in Roma by Parisi. The idea is
that the FPU state is just an apparently (rather than a true) stationary one.
This is somehow at variance with the attitude of Izrailev and Chirikov, who
were apparently thinking in terms of truly stationary states; indeed they were
explicitly making reference to KAM theorem, which is expressed in terms
of invariant surfaces (that is, surfaces on which the orbits lie for all times).
Instead, in the paper of Fucito et al. reference is made to the quick formation
of a state which remains essentially undisturbed for extremely long times,
until it eventually precipitates through a “catastrophic mechanism” to the
true “final” equilibrium state.

The new technique is simply that of relating the decay of the tail of the
spectrum to the singularities of the analytic continuation of a field interpo-
lating the positions of the FPU model. This idea was borrowed from a very
interesting paper of Frisch and Morf (see [32]), the aim of which was to under-
stand certain features of turbulence theory (see [33]) as manifestations of quite
general relations between the high-frequency tail of the Fourier transform (in
complex time) of a temporal signal and the singularities of the analytical
continuation of the signal itself. By the way, it can be noted that the ex-
istence of a deep analogy between the problem of a dynamical justification
of the Boltzmann–Gibbs equipartition principle, and the general problem of
turbulence, had been clearly pointed out by von Neumann (see [34]), in the
year 1949.3

In fact, Fucito et al. were not actually studying the FPU model itself, but
rather a variant of it, namely, the so-called ϕ4-model (to be presently recalled),

3 Such an analogy between turbulence and ordinary statistical mechanics permeates
the whole paper of von Neumann. See, for example p. 445, where it is said: “The
k−5/3 law calls for an interpretation akin to (although not identical with) the
ultraviolet catastrophe of black-body radiation theory”, and reference to “non-
ergodic conservation laws” is made. See also p. 447 and finally p. 468, where it is
said: “From the point of view of statistical physics, turbulence is the first clear-cut
instance calling for a new form of statistical mechanics. . . . The existing theories.
. . . suffice to show that those laws will differ essentially from those of classical
(Maxwell–Boltzmann–Gibbsian) statistical mechanics. Thus it is certain that the
law of equipartition of energy between all degrees of freedom, which is valid in
the latter, is replaced by something altogether different in the former.”
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which was a very familiar one in field theory (and had also been studied a
little before in the spirit of the FPU problem in [35]). In fact, it turns out
that the techniques used by Fucito et al. to investigate the ϕ4-model cannot be
immediately transported to the FPU model itself (a subsequent attempt will
be mentioned later), but the transport of the global scenario proved instead to
be possible (actually in terms of the work of Zabusky and Kruskal), as shown
later by Bambusi and Ponno.

Perhaps, as a preliminary introduction to the description of the paper of
Fucito et al., it may be useful to illustrate the main phenomena understood
by them, through the Figs. 4.6 and 4.7, which refer the FPU model (with
N=127 and specific energies ε=10−4 and ε=5× 10−3 respectively). In each
figure, the spectrum (namely, the plot of the time-averaged energies Ek versus
k/N) is reported at successive times tj (with tj+1 =10 tj). From Fig. 4.6 one
clearly sees that, at any observation time, the spectrum consists of both a
packet of low-frequency modes (having a tail which decreases exponentially
fast with k/N) which essentially contains the whole available energy, and
of a complementary packet of high-frequency modes displaying an essential
equipartition of energy at a much smaller energy. One also observes that the
slope of the main low-frequency packet decreases as time increases, until it
appears to have come to a stop, remaining essentially constant (this is the
phenomenon of the apparent stationarity) during a rather long-time interval
(covering at least four orders of magnitude in the case of the figure). This oc-
curs for ε = 10−4. But if one considers a larger specific energy (ε = 5×10−3 in
the case of Fig. 4.7), then the same phenomenology is speeded up, and within
the same final observation time (t = 108), a further phenomenon is exhibited.
This is the final attainment of global equipartition, which occurs through a
quite different mechanism. Indeed, one might have imagined that the final
global equipartition be attained through a successive decreasing of the slope
of the tail. Instead, the approach occurs in the following way. The complemen-
tary packet of high-frequency modes continues to essentially display partial
equipartition at an energy smaller than that of the main low-frequency packet,
and what occurs is that the level of the energy of the complementary packet
rises as time increases,4 until global equipartition is attained. Note that, in
both figures, the scale of the ordinates is not the same at the various times.
In conclusion, one observes the existence of two different mechanisms: first,
the quick formation of a packet of low-frequency modes with an exponential
tail having an apparently stabilized slope (formation of the metastable state),
and, secondly, the final approach to global equipartition through the rising of
the equipartition level of the complementary packet.

After this introduction, let us finally come to an illustration of the paper
of Fucito et al. They consider the one-dimensional nonlinear Klein–Gordon
equation

ϕtt = ϕxx −m2ϕ− gϕ3 ,

4 Moreover, the complementary packet extends its size towards the left.
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Fig. 4.6. The spectrum at several times (10, 102, . . . , 108). First phase: formation
of the metastable state (note the change in the vertical scale of the figures). Here,
FPU model with initial data of FPU type, N = 127, ε = 1 × 10−4)

where the real, one-component, field ϕ(x, t) is defined in the interval −L/2 ≤
x ≤ L/2 with periodic boundary conditions, and m and g are positive pa-
rameters. From this partial differential equation, a discretization leading to
an analog of the FPU model is immediately obtained. The name ϕ4-model is



4 The Fermi–Pasta–Ulam Problem and the Metastability Perspective 169

10
–4

10
–2

10
0

10
–4

10
–2

10
0

T = 1 × 107 T = 1 × 108

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

10
–8

10
–4

10
0

10
–6

10
–3

10
0

T = 1 × 105 T = 1 × 106

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

10
–3

0
10

–2
0

10
–1

0

10
–1

0

10
0

10
0

T = 1 × 103 T = 1 × 104

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

0.010
–3

0
10

–2
0

10
–1

0
10

0

0.2 0.4 0.6 0.8

T = 1 × 101 T = 1 × 102

1.0 0.010
–3

0
10

–2
0

10
–1

0
10

0

0.2 0.4 0.6 0.8 1.0

Fig. 4.7. The spectrum at several times (10, 102, . . . , 108). Illustration of the final
phase following the first one, with the attainment of global equipartition (note the
change in the vertical scale of the figures). Same as Fig. 4.6, but now with ε =
5 × 10−3. The time-scale of observation is the same in both cases
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due to the fact that the only nonlinearity in the model comes from a term ϕ4

in the potential energy.
The quantity they are interested in is the analog of the spectrum previously

discussed for the FPU model, i.e., the distribution of energy (in time-average)
among the modes, as a function of time. To this end, they introduce the space
Fourier transform of the field ϕ by

ϕ̂(k, t) = (2π)−1/2

∫ L/2

−L/2
dx e−ikxϕ(x, t)

and define the power spectrum5 W (k, t) by

W (k, t) = |ϕ̂(k, t)|2 .

Notice that the continuum analog of the spectrum previously defined for the
FPU model would rather be twice the quantity k2W (k, t).

Anyway, they are interested in investigating the form of the spectrum
W =W (k) as a function of time t for large values of k. To this end they
make reference to well-known analyticity properties of Fourier transforms, and
notice: “We expect the field ϕ to reach asymptotically a thermal equilibrium
distribution, given by a Boltzmann factor e−βH for some value of the inverse
temperature β determined by the initial conditions. In this case, at values
of the wavenumber k so large that the mass and nonlinear terms of H are
negligible, one would have

W (k, t) 
 const.× k−2 . (4.3)

This behavior of W corresponds to functions ϕ(x, t) which are not differen-
tiable with respect to x. Now it is known that, since ϕ(x, 0) is analytical as a
function of x, the solution ϕ(x, t) will remain analytical at any finite time t.
Equation (4.3) can only be valid for infinite time. This means that, as time
goes on, singularities of ϕ(x, t) appear in the complex x plane which creep
towards the real axis and accumulate onto it at infinite times. We show below
that these singularities are simple poles.”

Indeed, it is well known that one may relate such singularities to the large
k behavior of W by means of the theorem of residues. Therefore one “obtains
the following asymptotic behavior of W (k, t) at large k:

W (k, t) 
 const. e−2kyS(t) ,

where yS(t) is the imaginary part of the location of the pole which lies nearest
to the real axis.”

In conclusion, “the strategy is then to evaluate the most likely value of
yS(t) by extending the approach of Frisch and Morf to a deterministic partial
differential equation.”
5 They actually call it just the spectrum.
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So, one remains with the problem of evaluating the most likely value of
yS(t). To this end, the idea was to exploit a particular feature of the ϕ4-model
in connection with initial data of FPU type, namely with small k and thus
large wavelengths. Indeed, this means that initially, and actually up to times
until which energy did not yet flow to high k modes, the profile of the field
does not present large curvatures, and thus the term ϕxx in the equation of
motion can be neglected, with the consequence that the equation of motion
reduces to an ordinary one depending parametrically on the space coordinate
x. So, up to not too large times, for any x one has an unknown ϕ = ϕ(t)
obeying the ordinary differential equation

ϕ̈ = −m2ϕ− gϕ3 . (4.4)

An analytical study of such an equation is easily performed, and this leads
to the result that, for initial data of the form

ϕ(x, 0) = A cos(k0x) , ϕt(x, 0) = 0

with k0 small, the imaginary part of the nearest pole starts descending from
infinity towards the real axis, approaching a point with imaginary part (1/k0)
ln (ma/g1/2). This is illustrated in a very beautiful way in a subsequent paper
by Bassetti et al. (see [36]), where the relevant poles for the ϕ4-model were
computed numerically by the technique of the Padé approximants.

So, there exists a first temporal phase of the dynamics, in which the spec-
trum presents an exponential decay towards the high wave-numbers k, with
a slope decreasing as

|yS(t)| = − ln (tAg1/2)/k0 .

This corresponds, for the low frequency modes, to an increase of energy as
a power of t (formation of the packet). This stage, by the way, is the analog
of the one in which, in the terminology of Zabusky and Kruskal, the third-
derivative term uxxx can be neglected, i.e.: “Initially, the first two terms (of
the KdV equation) dominate and the classical overtaking phenomenon occurs;
that is, u steepens in regions where it has a negative slope.”

One might thus expect that equipartition will eventually occur, with the
slope tending to zero (i.e., with the pole approaching the real axis). But this
is not the case. As mentioned previously, the poles do not collapse onto the
real axis, because the imaginary part tends to a finite positive value and so
the slope stops decreasing (see [36]). At this point, according to Fucito et al.
the contribution of the Laplacian starts becoming relevant, and this fact can
be looked upon as the addition of a noise to the r.h.s. of (4.4). This further
stage of the process is described at p. 710 of the paper by Fucito et al. in
terms of a probabilistic analysis performed on the harmonic chain (g = 0) in
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the limit of infinite length (L →∞), in which use is made of the known fact
that the one-point probability distribution function of a classical harmonic
field in dimension one is Gaussian. This leads to an extremely slow decrease
of the slope.

The authors then turn to a qualitative discussion of the final stage of the
process of approach to equipartition. The analysis is made in terms of the
variance σ2 of the Gaussian probability distribution function previously men-
tioned. They say: “The main effect of the nonlinear terms in this regime will
be to change the value of σ2. If σ2 were time independent,” the previous anal-
ysis “would be essentially correct. Let us distinguish between the role of short
and long wavelength modes. At the times we are interested in, most of the
energy is contained in the long wavelength modes, which may be assumed to
be in a kind of thermal equilibrium among themselves. Their contribution to
σ2 may then be considered as essentially constant in time. The short wave-
length modes will however also contribute to σ2. As long as W (k, t) is small in
the large k region, their contribution is negligible. As time goes on, however,
W (k, t) will start increasing, what will increase the value of σ2 and fasten
therefore the transfer of energy to short wavelength modes. This triggers a
catastrophic process which our analytical tools are unable to handle. We can-
not therefore draw conclusions about the behavior at very long times before
thermal equilibrium is reached.”

In conclusion, here for the first time one finds explicitly expressed the
conjecture that, for all values of the perturbation, at sufficiently long times one
will attain the standard equilibrium state, and the FPU paradox is interpreted
as corresponding to a preliminary stage of the process in which the energy,
initially given to extremely low-frequency modes, quickly flows to a larger
packet of low-frequency modes (with an exponential decay towards the high
frequencies) and remains frozen there up to an extremely long time. This is
what we informally call the metastability scenario. For what concerns the law
describing the dynamical evolution towards equipartition, in the subsequent
work [39] by Parisi numerical indications were given that the corresponding
time scale could be a stretched exponential in terms of the inverse of the
specific energy, rather than a simple exponential.

As previously pointed out, the paper of Fucito et al., with its interpretation
of the FPU paradox as a metastability phenomenon, did not produce a great
impact, and even was essentially forgotten for a long time. For example, if
one looks at the 21 papers published quite recently on the FPU problem in
a special issue that a journal devoted to it on the occasion of the 50 years
from the original work, one will find out that not one of them even mentions
that paper, apart from the papers [37, 38], where it is amply discussed (see
also [26]).

How could this have happened? In our opinion, the main reason is that at
those times the key point under discussion was the choice between the two al-
ternatives previously mentioned about the energy threshold, namely, whether
the specific energy threshold εc(N) vanishes or not in the limit N →∞; on the
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other hand, no mention of a threshold at all was made in the paper of Fucito
et al. According to them, equipartition should be attained at all energies.
This statement, that no threshold should exist, was particularly emphasized
by Parisi in [39]. So, actually, there was some misunderstanding about the
sense to be attributed to the word “threshold”. Indeed, Parisi was stressing
that energy equipartition should be attained (after a sufficiently long time) at
any specific energy, and such a conjecture is obviously opposed to the concep-
tion of a threshold, if the latter is meant as the specific energy below which
equipartition is never attained. On the other hand, there is no opposition,
if the threshold is understood in a softer way, namely, in the sense that for
smaller energies one meets with a state which is only apparently stationary,
and will later evolve, on a much longer time scale, to equipartition, i.e., to the
final “true” equilibrium state.6 However, the relation with the threshold in the
sense of Bocchieri et al. was not discussed in an explicit way. In our opinion,
this is the fact that generated some confusion. The situation was finally clari-
fied in the paper of Berchialla et al. (described in a subsequent section), where
a clear exhibition was given of the fact that two well distinct time-scales of
relaxation exist, but only below a certain critical specific energy, which could
thus be interpreted as the threshold previously discussed by Izrailev–Chirikov
and by Bocchieri et al.

We mention now the very few papers in which the work of Fucito et al.
was discussed.

The previously mentioned paper [36] somehow constitutes an appendix
to the paper of Fucito et al., because it reported numerical computations of
the relevant poles in the ϕ4-model, showing a very good agreement with the
theoretical predictions and some further details. Something analogous can be
said of the paper [40], still devoted to numerical investigations on the ϕ4

model. Here, following Frisch and Morf, the analysis concerns the statistical
aspects of the field ϕ, which is shown to present typical non-Gaussian features.
By the way, it may be worth mentioning that analogous indications of non-
Gaussian behaviors were also reported much later for the process of energy
exchanges of the internal degrees of freedom of diatomic molecules produced
by atomic collisions (see [41]).

The suggestion that a description analogous to that of Fucito et al. for
the ϕ4-model could be given also for the FPU model was first advanced and

6 In the words of Fucito et al.: “One of our main results is that the system reaches
equilibrium with a logarithmic dependence on t, so that the nonequilibrium spec-
trum may persist for extremely long times, and may be mistaken for a stationary
state if the observation time is not sufficiently long”. By the way, one also finds
here the words: “It is amusing to remark that the quasi-equilibrium distribution is
similar to Wien’s law for black body radiation with a slowly varying Planck’s con-
stant, a statement which is clearly inspired by the possible physical interpretation
proposed in the work [10].
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discussed in [42],7 (see also [43])8 in which numerical computations were per-
formed on the FPU model itself (actually on the so called β-model, i.e., the
one with α = 0). The previously mentioned “slope” of the straight line de-
scribing, for large k, the exponential decay of Ek versus k in semi-log scale was
investigated and was shown to stop decreasing, but the further evolution was
not investigated. The accent was rather put on the fact that a quick approach
to equilibrium occurs only for high enough energy, and the authors even added
the comment (p. 3550): “The numerical results that we have described in the
present section yield to the interesting conclusion that a threshold value exists,
below which the equipartition of energy is never reached.”

The same problem was rediscussed two years later (see [44]), still for the
FPU β-model. The accent was still put on the existence of an energy thresh-
old, trying to make a decision between the conjecture of Izrailev–Chirikov and
that of Bocchieri et al. (that was there called the Galgani conjecture), and
the authors said: “For the N dependence our results seem to be unquestion-
able and in contrast with the existing theoretical predictions” (of Izrailev and
Chirikov). The point of view of Fucito et al. was mentioned in the conclu-
sions, where they added the comment: “But as far as the time dependence
is concerned we cannot conclude that the threshold does not vanish as t ap-
proaches ∞ . . . The situation can be likened to the very slow relaxation be-
havior in disordered systems, where the evolution towards ‘equilibrium’ takes
place through metastable states, approached at different time scales.” Analo-
gous conclusions were reached for the FPU α-model in [45].

4.4 Other Pathways

The metastability perspective, initiated with the work of Fucito et al., was
finally recovered 20 years later, with the paper of Berchialla et al. that will
be illustrated in the next section. Many more works were written down in
the meantime by several authors (for example Kantz et al. entered the game),
with an attention to several interesting problems. We cannot follow them here
in detail, but it seems to us that, apparently, no reference to the metastability

7 From the technical point of view, difficulties were met in trying to describe the
motion of the poles through a direct transport of the method used by Fucito
et al., which was a very special one devised for the ϕ4-model. In fact the authors
proposed somehow a partial differential equation which, as we now understand,
can give a good agreement only for extremely short times, the ones corresponding
to the first stage described by Zabusky and Kruskal, because it does not even
prevent the formation of a discontinuity (in the terminology of Fucito et al., it
does not prevent the falling of the poles on the real axis), and so does not lead
to a blocking of the decay of the slope in the spectrum (stage II of KZ).

8 Here, the idea is suggested that in the α–β model the β-term dominates over the
α one, also at very low energies.
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perspective can be found there. In the present section, we limit ourselves with
a short survey of some other problems that were dealt with.

4.4.1 The Idea of Long Relaxation Times, Boltzmann and Jeans,
Nekhoroshev and Landau-Teller

In the meantime, people had started becoming familiar with the fact that the
relaxation times to equilibrium can actually be extremely long (see [46]). This
in fact had been much discussed by Boltzmann himself and by Jeans, who had
conceived of explaining by such a mechanism the observed lack of equipartition
in nature (see the quotations in [47]). The same fact was later understood in
terms of perturbation theory through the work of Nekhoroshev (see [48]),
and through a reconsideration of the work of Landau and Teller of the years
30s on the exchanges of energy of the internal degrees of freedom in atomic
collisions (see [49]). Problems of this kind actually became very popular and
were much investigated, and would deserve a long discussion. Here we only
remark that, while on the one hand the existence of long relaxation times was
well understood, on the other hand there was no completely clear awareness
of the fact that in a very short time some kind of equilibrium (or apparent
equilibrium, or metaequilibrium) is attained (see however the works [50, 51]).
Such a quick approach to a metaequilibrium state corresponds to what we
now call the quick formation of a packet (presenting a partial thermalization),
which is the one accounted for by the first two stages of Zabusky and Kruskal,
and of Fucito et al.

4.4.2 The Works around Pettini

The existence of long relaxation times for the FPU problem (and also for the
ϕ4-model) in the spirit of Nekhoroshev’s theorem was first discussed and ex-
hibited by Pettini and Landolfi (see [52]). Indeed, already in the abstract of
their paper, they make the following quite clear statement: “Below a critical
value εc . . . of the energy density ε, the relaxation time τR is found to follow
a ‘Nekhoroshev-like’ law, i.e., τR = τ0 exp(ε0/ε)γ”, and also add: “A remark-
able difference with respect to Nekhoroshev’s theorem (where the exponent γ
scales as 1/N2) is the N independence of numerical experiments results. An
important consequence of this fact is the existence of nonequilibrium states of
arbitrary lifetimes also at large N values. On the other hand, at high-energy
densities (ε > εc), τR is almost independent of ε”. Such a scenario of Pettini
and Landolfi seems to perfectly agree, actually anticipating it, with the one
described in the next section along the lines of the work of Berchialla et al.
However, from some subsequent works (see, for example the review paper
[53]) one may have the impression that the authors rather started adhering
to the scenario of Izrailev and Chirikov. We hope to come back to this point
on another occasion.
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In some subsequent papers (see [54]) a very ingenious method, based on
certain considerations on the geometry of phase space, was devised which
allowed Pettini and his collaborators to provide a semianalytical estimate of
the maximal Lyapunov Characteristic Exponent as a function of the specific
energy εc in the thermodynamic limit. This result, although not yet completely
cleaned up from an analytic point of view, constitutes in our opinion one of
the most relevant contributions to the subject. The curve of the maximal LCE
versus the specific energy ε had been numerically investigated by Casartelli
et al. in the paper9 [56] for the FPU model with Lennard-Jones potential.
Later, in their paper [52], Pettini and Landolfi found the interesting result
that such a curve presents a well-marked knee at a certain value of ε. In fact,
an analogous remark had been made three years before in a paper of Butera
and Caravati (see [55]) for a plane model of rotators (the so-called O(2) planar
Heisenberg model), in which the position of the knee had been associated to
the presesnce of a certain phase transition (of Kosterlitz and Thouless). For
previous works on the model of rotators see [57] and [58].

4.4.3 Metastability and Specific Heats

A very interesting discussion had also been started concerning estimates for
the fluctuations of energy in subsystems of the FPU model. The aim was to
understand whether the FPU model may be of interest in connection with
the problem of the specific heats. In order to obtain some estimates through
numerical studies on isolated systems, without having to make recourse to an
interaction with a heat reservoir, the attention was addressed to the energy
fluctuations of a subsystem of the FPU system of interest: the aim was to
compare the fluctuations computed as time-averages with those expected at
equilibrium, since the relation of the latter ones with the specific heat is well
known. Two apparently opposite results had been obtained in the papers
[59, 60] (by Livi et al. and by Perronace and Tenenbaum, respectively). The
difference could be explained as due to the fact that two completely different
kinds of subsystems had been considered in such papers: a spatial piece of
the FPU string in [59], where the time-averages were found to agree with the
equilibrium expectations, and a packet of modes of nearby frequencies in [60],
where an analog of the FPU paradox was observed, because the time-averages
were apparently found to tend to zero as temperature decreases.

So, there naturally arose the idea of eliminating all the problem of the
good choice of the subsystem, by estimating the specific heat directly through
the energy actually exchanged between the whole FPU system and a heat
reservoir (see [15] by Carati and Galgani). Obviously this in turn opens the
new problem which might be considered to be a good model for the energy
exchanges with the reservoir, a problem we shall not discuss here. We just

9 This, by the way, is the paper where the now familiar technique of computing the
maximal LCE was first introduced.
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limit ourselves to mention that in such a way some analogies between the
FPU system and the glasses were pointed out, and this fact was instrumental
to rediscover and recover the metastability perspective introduced by Fucito
et al. Moreover, another interesting fact was observed. Namely, something
analogous to the formation of a low-frequency packet (which is a standard re-
sult for long-wavelength initial data) occurs even if one starts up with initial
data extracted from a Boltzmann–Gibbs distribution at a certain temperature
(and so essentially with equipartition of energy among the modes). Indeed it
was found (see [16]) that, if the FPU system (with initial data of the just
mentioned type) is put in contact with a heat reservoir having a slightly dif-
ferent temperature, then only a small packet of low-frequency modes does
manifest a quick reaction to the reservoir, attaining equipartition at the tem-
perature of the latter, whereas the high-frequency modes do not manifest any
reaction at all. Presumably, they too will much later attain global equiparti-
tion, in analogy with what occurs for an isolated system with long-wavelength
initial data.

This fact naturally leads to expect (see [31, 60]) that metastability phe-
nomena may show up in actual measurements of the specific heats (for example
of crystals) at low temperatures, more or less in the spirit of the rationale of
the time-dependent specific heats, as discussed for example by Birge and Nagel
(see [61]). On this very interesting problem we plan to come back elsewhere.

4.4.4 Towards the Natural Packet through Resonance: the FPU
Model with Alternating Masses

It will be shown later that, in order to understand the quick formation of an
apparently stationary state, a key point is played by some relevant resonances.
Such a role, already pointed out for the FPU problem in the pioneering work
of Ford of the year 1961 (see [62]), became particularly evident when a mod-
ification of the original FPU model was studied (see [63]). We refer to the
so-called FPU model with alternating masses which is very familiar in solid
state physics, namely, the one in which the successive material points of the
FPU chain have masses m,M,m,M, . . . with m < M . The main qualitative
consequence of such a modification is that the “dispersion relation”, namely,
the function ω = ω(k), presents now two branches: the “acoustical” one (em-
anating from near the origin) and the “optical” one, characterized by larger
frequencies. The separation between the two branches becomes larger and
larger (with the optical one tending to become a horizontal curve, i.e., with
all frequencies equal) as the ratio M/m of the two masses is increased. So
one meets here (for M/m large) with two clearly distinct subsystems, each of
which can be essentially considered as completely resonant, being character-
ized by essentially just one frequency. Resonant systems had been previously
studied in the frame of Nekhoroshev theorem (see [64]), and it had been well
understood that chaotic motions in general occur within each single resonant
subsystem, whereas the exchange of energy between the two subsystems is
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in general extremely slow. Furthermore, the strong dependence of the results
on the number of elements constituting a subsystem was almost completely
eliminated. Notice that the dependence of the estimates on N in the general
case is instead quite heavy, and this fact was often interpreted as indicating
that “chaos should prevail” in the thermodynamic limit.

4.5 The Resurgence of the Metastability Perspective,
and Its Compatibility with the Existence of a Specific
Energy Threshold: The Natural Packet and the Two
Relaxation Times

A very clear numerical illustration of the phenomenon of metastability, ex-
hibiting on the one hand the existence, at low energies, of two well separated
time-scales (i.e., the quick formation of a “natural packet” which persists up to
very long times, when the final relaxation to equipartition occurs), and on the
other hand the existence of a stochasticity threshold in the sense of Bocchieri
et al., was given in [14] by Berchialla et al. The main underlying idea was to
measure the width of the packet that is quickly formed by the dynamics it-
self when the energy is initially given to the mode of lowest frequency. While
in the modified FPU model with alternating masses one was meeting with
two “fixed” packets, here the packets are naturally formed by the dynamics
itself (think of the first figure of the original FPU work), and their width is
expected to depend on the initial energy. By the way, here too one meets
with a resonance phenomenon, because the low frequencies are given in a first
approximation by ω(k) 
 kπ/(N + 1), which is just the familiar resonance
relation of the continuous linear string. The idea of taking into account such
a typical resonance of the low frequency modes, already indicated by Ford,
was later reconsidered by Shepelyansky and by Ponno (see [7, 8]).

The first relevant result of the paper of Berchialla et al. is illustrated in
Fig. 4.8 (which we familiarly refer to as “the shower”). In abscissas one has the
time and in ordinates the energy. Here the results refer to a FPU system with
N = 15, with the energy given initially to the lowest frequency mode. Having
fixed the initial energy (and thus a line parallel to the axis of the abscissas), the
various different symbols give an estimate of the time at which the various
other modes start sharing energy with the first mode. The correspondence
between the symbols and the mode numbers is not explicitly indicated in the
figure, but in general it turns out that the times at which the various modes
“enter the packet” are increasing with the mode number k. So one clearly sees
that, for a sufficiently low energy, in a rather short time a packet of modes is
formed which share the energy among themselves, then follows a rather large
interval of time in which “nothing happens”, until eventually the subsequent
modes start entering the packet, and such an energy cascade is not interrupted
until all modes did enter the packet. This is the time at which equipartition
is attained.
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Fig. 4.8. The “shower”. Here N = 15, and the energy was given initially just
to the first mode. Having fixed an initial energy (and thus moving on a horizontal
line), the various symbols give the times at which the other modes start sharing a
(suitably defined) significant amount of the available energy. Such a time is found
to be an increasing function of the mode number k, so that in the figure the mode
number should be thought as increasing in going from left to right. The existence of
two time-scales below a certain critical energy is clealy exhibited. Above the critical
energy, instead, only one time-scale exists, which leads directly to equipartition.
Taken from [14]

The relevant point is that such a separation of two time scales occurs only
below a certain energy (namely, the one where the two inferior branches of the
shower join); this just corresponds to the critical energy Ec of Bocchieri et al.,
because for higher energies the packet which is quickly formed covers all the
available frequencies, i.e., there occurs a quick attainment of equipartition.
Notice that the time needed for the quick formation of the low-frequency
packet just below the critical energy is smaller than the time required for
getting equipartition at larger energies.

Two more phenomena were also exhibited. The first one is that the width
of the packet is a function of the specific energy, and is independent of N . The
subtle point here is that such an independence with respect to N is exhibited if
the width of the packet is plotted versus a quantity which is itself independent
of N , and such a quantity is the frequency ω∗ of the maximal mode included
in the packet (or equivalently the corresponding value k∗/N). This is shown in
Fig. 4.9, where the frequency ω∗ defining the width of the packet (estimated
in a suitable way) is plotted versus the specific energy ε. One very well sees
that the data correspond to a curve ω∗(ε) = c ε1/4 (with a certain constant
c), which by the way is just the law obtained later analytically. Notice that
the data refer to N ranging from 8 to 1023. Notice also that the value of ε for
which one has ω∗ = 2 (the maximal available frequency) provides a definition
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Fig. 4.9. Width of the “packet” (in frequency) versus specific energy, for N ranging
from 8 to 1023. From [26] (adapted from [14])

for the critical specific energy in the sense of Bocchieri et al., and that this
quantity too is independent of N (i.e., pertains to the thermodynamic limit).

The second phenomenon concerns the way in which the time of formation
of the packet depends on the initial conditions. One meets here with a problem
that had been raised by Livi et al. (see [65]), who had pointed out that some
relevant relaxation times were proportional to N if the energy was initially
given to just one mode, whereas the behavior was quite different for other
kinds of initial conditions. This fact is confirmed by Fig. 4.10, where the time
of formation of the packet is plotted versus N for several kinds of initial
conditions. Here one sees that such a time is proportional to N if the energy
is given initially to the first mode. However, one also sees that the time is
essentially independent of N if the energy is given initially to a packet of
modes proportional to N , i.e., to a small packet extending to a maximal
frequency Ω.

It should be mentioned that very interesting numerical informations on
the formation of the packet had also been obtained by Biello et al. (see [66]),
who were able to give quantitative estimates both of its width ω∗ (namely,
ω∗ 
 ε1/4) and of its time of formation tf (namely, tf 
 ε−3/4).

We now briefly mention the results of three subsequent papers that are
strictly related to the work of Berchialla et al., namely, the papers [67], [68] and
[69]. In [67], the attention is addressed to the second time-scale τeq, namely the
final time-scale to equipartition, which is shown to be of stretched exponential
type, precisely, of the form τeq 
 exp(ε−1/4), at variance with the power law
τeq 
 ε−3 that had been suggested in [70]. Moreover, this result appears to be
independent of N (for N large enough). This is clearly exhibited in Fig. 4.11,
which reports the time of relaxation to the final global equipartition as a func-
tion of N , for two values of the specific energy ε. An analogous result was later
obtained in [68], where the law τeq 
 exp(ε−1/5) was found for initial data
with excitations of the high-frequency modes. By the way, in the latter paper
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Fig. 4.10. Time of formation (relaxation time) of the packet versus N (with
N = 15, 31, 63, 127, . . . , 32 767 ) for three types of initial conditions. Dots: all the
energy initially on the lowest frequency mode. Triangles and circles: energy initially
distributed in two different ways among the first (N + 1)/16 modes (with zero en-
ergy to the higher frequencies). Triangles: energy linearly decreasing from the first
mode to the last excited one. Circles: energy equally distributed among the initially
excited modes. In all cases the specific energy is ε = 0.01. From [14]
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an astute way was devised for exhibiting the analog of the shower when one
deals with initial data of any type (and not just with excitations of the low-
frequency modes). Finally, in the paper The figure showd that the relaxation
time tends to a constant (depending on ε) as N increases, thus supporting te
conjecture that the exponential law remains valid in the thermodynamic limit
[69]. a vivid illustration (through projections of surfaces of section) is given of
the way in which the final global equilibrium is attained. In fact, the system
appears to be successively trapped into well different metastable regions, in-
stead of finally merging, from some “ordered” region, to some “chaotic” one,
as had been sometimes suggested.

4.6 New Analytical Contributions

We finally come to a brief illustration of some analytical developments that
were obtained quite recently.

(a) Solitons recovered : The first relevant point is that soliton theory itself
started to be reconsidered as a useful tool for analytical studies on the
FPU problem. Indeed, in [71] it was shown that the form of the Fourier
spectrum of the packet of the metastable state of the FPU system is
explained in terms of KdV solitons. In particular, quantitative estimates
both of its width (as ε1/4) and of its time of formation (as ε−3/4) were
given. Soliton theory within the FPU problem had in fact been previously
reconsidered in [72].

(b) Shepelyansky and Ponno: As first pointed out by Ford in his pioneering
work (see [62]) of the year 1961, in order to explain the short-time dy-
namics of the modes (in particular, the quick formation of the packet, as
we now say) one has to take into account the fact that the low-frequency
modes are almost completely resonant. This idea was reconsidered by She-
pelyansky (see [7]), who tried to deduce from it that the specific energy
threshold tends to zero for N → ∞, for initial long-wavelength excita-
tions.10 In [8], it was shown instead that the resonant normal form actually
explains the formation of the metastable packet, and moreover that both
its width and its time of formation are functions of the specific energy, ex-
actly in the forms previously obtained (as ε1/4, and as ε−3/4, respectively)
in [71] through soliton theory and in [66].

10 In the Introduction of the paper, the result of Izrailev and Chirikov is mentioned:
“According to Izrailev and Chirikov, in the case of low-mode excitation (nonlinear
sound waves) the critical energy increases with the number of oscillators in the
chain (or the energy per oscillator is constant)”. It is then discussed how such
authors had neglexted to take into account certain resonances in their semiana-
lytical estimates, with the conclusion: “Such resonances not being considered by
Izrailev and Chirikov give a sharp decrease of the chaos border in energy which
goes to zero with the increase of the number of particles in the lattice. In this
sense the long-wave chaos can exist for arbitrarily small nonlinearity”.
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(c) Bambusi and Ponno, and the KdV equation as the resonant normal form
for the FPU α-model : In [17, 38, 73, 74] the attention was given to the
resonant normal form of the FPU model for long-wavelength initial data.
In [7] and [8], such a normal form had been expressed in terms of the mode
coordinates, whereas in the new papers it was pointed out that, if such a
normal form is read in terms of the particle coordinates in the continuum
interpolation and in the thermodynamic limit, then the normal form is
nothing but the KdV equation itself (actually, a pair of such equations, in
agreement with the time reversal symmetry of the FPU system). In such a
way, the privileged role of the KdV equation for the FPU system with long-
wave initial data was recovered, with moreover an understanding of the
time-scale of its validity. This happened after a previous understanding, by
Bambusi et al., that the nonlinear Schroedinger (NLS) equation plays an
analogous role of normal form in the FPU problem with short-wavelength
initial data (see [75]).

(d) Perturbation theory in the thermodynamic limit : The analytical results of
Bambusi and Ponno in [17] could be obtained only for an extremely special
class of initial conditions, in which exactly one low-frequency mode was
excited, at an energyE proportional to N , and so at a given specific energy
ε = E/N . Only in this sense does the result hold in the thermodynamic
limit. It may be conjectured that such a limitation is only a technical one,
to be hopefully removed in the future.

This fact rises the general problem of whether it is possible to extend
the methods of classical perturbation theory of nearly integrable Hamiltonian
systems to the thermodynamic limit (N → ∞ with a nonvanishing specific
energy ε). The presently available techniques do not allow it, as they apply
only to finite N (or to any N , but with a bounded energy E, i.e., with a
vanishing specific energy ε = E/N in the limit N → ∞; see [19]). It was
proved quite recently by one of the present authors (see [18]) that a rather
simple modification of the known techniques actually allows one to do so. This
is obtained at the cost of weakening the results, by renouncing to control all
the orbits in phase space (a control which usually is obtained by making use,
in the estimates, of the sup norm), and looking instead for results holding
only in the mean. This is analogous to the way in which the von Neumann
ergodic theorem can be considered as a weaker version of the Birkhoff ergodic
theorem, although it still keeps all the relevant physical significance of the
result (as particularly pointed out in [25]).

4.7 Conclusions

In the present review, we have illustrated the relevance of a metastability sce-
nario for the interpretation of a large part of the results on the one-dimensional
FPU model, in the thermodynamic limit. Such a scenario involves two well
separated time-scales for the approach to equilibrium, below a critical specific
energy.
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It was also mentioned that too little information is presently available for
the case of dimension two and especially for the physically significant case
of dimension three. Two “simple ” possibilities can be conceived. The first
one is that the metastability scenario will be proved to be incorrect in the
“physical case” of dimension three, in the sense that at any finite specific
energy (or temperature) the time-averages of the relevant quantities present a
quick relaxation to their equilibrium values. In such a case the “FPU paradox”
will turn out to have been removed completely in the thermodynamic limit.
This would provide a proof of the conjecture advanced long ago by Izrailev and
Chirikov, at least in the way many people understand it, namely as claiming
that no “FPU physical phenomenon” essentially exists.

The second “simple” possibility is that the metastability scenario as de-
scribed above (with two well separated time-scales) will be proved to be cor-
rect. In such a case, in a sense the FPU paradox will still turn out to have
been removed, because at any temperature the equilibrium state is finally at-
tained. But some paradox will still remain. Indeed it will turn out that, below
a certain critical specific energy (i.e., below a certain critical temperature), the
FPU model predicts the existence of some metastable state which, for quite
long times, may be practically indistinguishable from a true equilibrium state,
although providing a statistics quite different from the standard equilibrium
one (in this connection see [76, 77, 78]). So one would remain with the prob-
lem of ascertaining whether such a physical prediction is in agreement with
the observations or not. We are particularly thinking of possible metastability
phenomena in the measurements of specific heats at low temperatures, in the
spirit of the rationale of the time-dependent specific heats (see [61]).

Naturally, other more complicated scenarios can be conceived. For exam-
ple, there could exist a “cascade” of growing-time scales of different orders of
magnitude as N → ∞, and this, in a larger scale, could look like a continu-
ous growth (we thank a referee for kindly pointing this out to us). To what
physical phenomena would such a situation possibly correspond, is not clear
to us.
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ergodischer Systeme, Phys. Zeits. 25, 166–167 (1924), in Note e Memorie (Col-
lected Papers), Vol. I, No. 11: 79–87 Accademia Nazionale dei Lincei, Roma,
and The University of Chicago Press, Chicago, 1965.

24. G. Benettin, G. Ferrari, L. Galgani and A. Giorgilli, An extension of the
Poincaré-Fermi theorem on the nonexistence of invariant manifolds in nearly
integrable Hamiltonian systems, Nuovo Cim. B 72, 137–148 (1982); G. Benet-
tin, L. Galgani and A. Giorgilli, Poincaré’s non-existence theorem and classical
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