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ABSTRACT. An original numerical method is introduced for the calculation of
orbits on the center manifold of an unstable periodic orbit. The method is
implemented for some unstable periodic orbits of the helium atom, and the
dynamics on the corresponding center manifold is exhibited.

1. Introduction. This paper is devoted to a numerical study of the center man-
ifold for some unstable periodic orbits, in a classical model of the helium atom.
To this end an original method is introduced for the calculation of orbits on the
manifold, which is of some interest in itself; then an implementation for the helium
atom is given. Let us recall that the study of the classical model of the helium
atom is of interest for the problem of the semiclassical limit of the corresponding
quantum problem (see for example [1] and references therein); in particular the
stable periodic orbits are used for an approximate estimate of the energy levels.
On the other hand it was recently pointed out [2] that there is also a class of un-
stable periodic orbits which has a considerable relevance, namely the orbits having
vanishing dipole moment, i.e. with the center of mass of the electrons fixed at the
position of the nucleus. Indeed, it was shown (see [2] and also [3]) that the motions
on the stable manifold of such unstable periodic orbits can provide tight emission
lines, at variance with the common belief, that classical physics can provide only
broad emission lines for atomic systems. In addition it was found that, provided
some resonance conditions are satisfied, the lines thus computed agree rather well
with some actually observed ones. In the quoted papers particular emphasis was
also given to the possible existence and relevance of resonance islands located on
the corresponding center manifold. But, due to the difficulties of a full analysis,
the investigation was limited to the case of circular periodic orbits, i.e. orbits for
which the relative distance between the two electrons remains constant while they
revolve about the nucleus in phase opposition. In such a case it was possible to
prove the existence of a center manifold and to compute analytically its dimension.
But in the general case the problem of the very existence of the center manifold
was left open, as was also the possible existence of a chaotic dynamics on it.

In the present paper a strong numerical evidence is given for the existence of the
center manifold of a generic unstable periodic orbit, and the corresponding motions
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are illustrated. Notice that the numerical study of the center manifold in such a
case is not at all a routine task. Indeed such orbits are unstable both for the forward
flow and for the backward one (due to the hamiltonian character of the system),
so that all algorithms using direct numerical integration fail. This situation is
shared by other systems, for example the motions near the Lagrangian unstable
equilibrium points in the restricted three body problem of celestial mechanics. In
the literature (see [4]) one can find semi-analytic approaches where one tries to
find an approximate analytical expression for the center manifold as the graph of a
function of the form y = f(z), y € R", x € R™ (using an algebraic manipulator for
high precision computations), and then the equations are numerically integrated
using the constraint thus found.

In this paper we follow a different approach, introducing an original algorithm
which is fully numeric, selects only the bounded orbits, and has the property that
the center manifold becomes attractive for it. The method has been developed for
dealing with the helium system, but we hope to implement it in the next future for
Lagrangians of a more general type.

The paper is organized as follows: in Section 2 the problem of periodic orbits for
the helium atom is posed, in Section 3 the algorithm is introduced and discussed,
while some results are presented in Section 4.

2. The periodic orbits. The equations of motion for the helium system with x,
X9 denoting the positions in R? of the two electrons and the nucleus being fixed at
the origin, are:

. 2 X1 5 X1 — X2
mx; = —2e
Ix1? x1 — %2/
o X2 2 X2 — X1

(1)

where e and m are the charge and the mass respectively of the electron. Introducing
as new variables twice the position of the center of mass x = x; +x» and the relative
distance r = x; — X, and choosing mass and charge units so that m =1, e? =1,
one gets the equations

. - _9 ,
mXso € |X2|3 (& ‘XQ—X1|3 5

. X+r X—r
X = - —
x4+ x -

.. X+r X—r r

= -8 8 2—= , 2
i PRI PR .

which can be deduced from the Lagrangian
x? P2 4 4 1

L=—+—+ (3)
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It is easy to check by direct inspection that (x(¢),r(t)), with x(¢) = 0, and r(¢) a
bounded solutions of the Kepler problem # = —14r/|r|?, is a periodic solution of
(2). In particular, circular motions r(t) of constant radius |r| = Ry give a periodic
solution of period T = 2m+/R3/14. All these periodic orbits are characterized by
having the electrons revolving about the nucleus in phase opposition.

The character of the invariant manifolds of the circular periodic orbits can be
determined analytically, using a reference frame rotating with the same frequency
of the periodic orbit. In such a frame a periodic orbit corresponds to a fixed
point which can be studied by standard methods (see for example [3]); it can be
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proved that such fixed points are unstable and possess a ten—dimensional center
manifold. Instead, for the periodic orbits corresponding to elliptic motions of the
relative distance r (elliptic periodic orbits for short), apparently nothing is known
at an analytic level. Numerical evidence suggests that all these periodic orbits are
unstable, because small perturbations of the initial data lead to self-ionization of
the atom: after a small number of turns one of the electrons escapes to infinity, and
the other one falls close to the nucleus. The most extensive computations in the
literature are those of Kaneko [1], who was also able to detect some stable periodic
orbits. But such periodic orbits are completely different from the ones studied here,
inasmuch as they are characterized by great values of x, while we concentrate to
the case x ~ 0. For what concerns the unstable elliptic period orbits, the dimension
of their unstable manifold (and of the corresponding stable one, the system being
conservative) is unknown, and is also unknown whether a center manifold exists
at all. The present paper gives a strong numerical evidence that the stable and
unstable manifolds are one-dimensional, and that there exists a ten-dimensional
center manifold.

In the next section we describe the algorithm used to find the orbits on the center
manifold.

3. Numerical Algorithm. Consider the first equation of system (2) (i.e. that for
the center of mass), and split it into a part linear in x, and a remainder of higher
order, i.e. write it in the form

¥ = A(r)x+ R(r,x) ; (4)

where the matrix A(r) is defined by A; ;(r) o %(51-7]- — 3rirj/|r?), r; being the

i~th component of r, and J; ; is the Kronecker symbol, while the expression for the
remainder R, obviously defined by R =F — Ax, has no particular relevance.

To understand the essence of the method suppose that the relative motion r(t)
and the remainder R(¢) are given as explicit functions of time. In this case equation
(4) turns out to be a linear one with time dependent coefficients.

Now, the bounded motions for a linear system can be studied by a technique
similar to that used for obtaining the Lyapunov exponents for the same type of
systems (see [5] and references therein). Indeed, it is well known (see [6]) that, given
a linear system v = B(t)v + f(¢) with suitable hypotheses on B(t) (the main one
being that B(t) should be bounded), there exists an orthogonal transformation H (t)
which brings the system into the form z = T'(t)z+h(t), where 7' is upper triangular.
In particular, the Lyapunov exponents are then given by \; = lim,_ % fOT Ty (t)dt.

Because of the Hamiltonian character of the original system, it happens that
the exponents occur in opposite pairs, i.e. one has A\y,..., A;, 0,...,0, Ay, ..., Ap,
with A; > 0 and A\p—j4; = —X;, @ = 0,...,1 for a certain [ < n/2. When the
system is put in upper triangular form, in order to find the stable motions one first
integrates the last n — [ equations in an interval [0, 7] with a suitable sufficiently
large 7 (see below); from T;; = 0 for j < 4, one obtains for ¢ > I

Z.'i:ZTij(t)Zj'f'hi(t) i=1l+1,...,n. (5)
Jjzi
Having chosen an initial value 2;(0), i =1+ 1,...,n, these equations can be inte-

grated numerically by any standard method, because the hard problem of having
to deal with systems presenting positive Liapunov exponents, such as the original



100 A. CARATI

one (4), has now been eliminated. Once the functions z;(t), ¢ > I, are determined,

to find the remaining z;, ¢ = 1,...,[, one has to integrate the system
Gi= Y Ttz + Y Tii(t)z(t) + ha(t) (6)
i<j<l 3>l

where in the r.h.s the terms containing z;(t), j > [, which are known on the in-
terval [0, 7], have been put in evidence. The solutions of this system in general
diverge exponentially as time increases, but the bounded solutions can be found
by choosing some final value z;(7) and then integrating backward in time. If the
integration interval [0, 7] is chosen sufficiently large with respect to the smallest
positive Lyapuov exponent, the resulting trajectories would lie on the center man-
ifold. We stress that the choice of the final data, as well as of the initial one on
the stable manifold, is irrelevant, because such data are “forgotten” after a short
transient. So, for example, they can be set to zero without practically affecting the
resulting motion on the center manifold.

In our case the transformation H which puts the system into upper triangular

form can be defined as follows. First, defining v o (x,%), f = (0,R) and B(r) as

the matrix ) 0 1
50=( 4ty o) ™

we put system (4) in the standard first order form v = Bv +f. Then, the matrix
H is chosen as the solution of the non-linear differential equation
h—ip, (8)
where we have defined (denoting by HT the transpose of H )
A (HTBH);; if i>j
Py = 0 if i=j (9)
—Pj; it i>7,
and we take the identity matrix as initial data, i.e. take Hy = 1. It is apparent,
from the very definition, that P is skew—symmetric, so that it follows that H will
be orthogonal if orthogonal initial data are taken. Now, defining z through the
relation v = Hz, system (4) turns out to be equivalent to
z = Tz+H'f
b o— [P, (10)
with 7 < ATBH - P. But, from the definition of P, it follows that 7" is upper
triangular, and so we have performed the required transformatiom.
In our case there are two difficulties: first, the motion r(¢), on which the matrix
A in (4) depends, is not known in advance, but depends on x itself, so that it is

impossible to perform this kind of two—steps integration. In addition, the remainder
too depends on both r and x. To overcome the problem we introduce an iterative

procedure defining the functions r,, x,, n = 0,1, ..., as solution of the system
.I.'n - G(Xn—l 5 rn)
X, = A(rp)xn+ R&n-1,10), (11)

where the function G %' %—f is the r.h.s of the second equation of (2), while R =

g—ﬁ — A(r)x is the remainder in (4). It is clear that if the sequences x,,, r,, converge
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(in C? norm for example) to some limits x, r, the latter functions will be solutions
of equation (2).

In this way the first equation of (11) decouples from the second one and they
can be both solved independently. One starts with ro = 0, xg = 0 and numerically
computes first r1(¢), which in any case coincides with a pure Kepler motion, because
one has G(0,r) = 7r/|r|>. Once ri(t) is known as a function of time, the second
equation of (11) reduces to a non-homogeneus linear equation; this, in turn, using
the method described above, can be integrated to produce a solution x;(t) which
remains bounded over a large interval of time. Now the second approximation
ra(t) can be computed from the first equation of (11); here G(x1(t),r) is a known
function depending on both ¢ and r. In addition, if one chooses small enough initial
data for x;, then G(x;(t),r) differs only slightly from 7r/|r|> because it depends
quadratically on x;, so one will have that ro(¢) will differ slightly from rq(¢) (if one
integrates over a finite interval of time, choosing the same initial conditions). The
method can be iterated producing a sequence x,, r, of bounded functions. The
problem now consists in showing that the sequence r,,, x,, converges; in any case,
working at a numerical level, one can stop the iterations as usual, i.e. when the
difference between two iterates is smaller than a preassigned accuracy.

We add here a further comment: when studying periodic orbits, one is often
accustomed to compute the eigenvalues of the corresponding monodromy matrix,
and one might like to understand the relation with the present method. In this
connection we remark first of all that in our case the involved variational equation
splits up into two disjoint equations, for the relative motion r(¢) and for the variable
x(t) respectively. Now the first equation is trivial, being the standard one for the
Kepler problem. Thus only the second one is of interest, and is nothing but the
linear part of the second equation of system (11), namely the one which we are
actually studying. So, the computation of the eigenvalues of the monodromy matrix
for a given periodic orbit, would just be obtained by performing the calculation
described above for the corresponding particular initial data.

4. Numerical results. Let us first give some technical details. From the numeri-
cal point of view, the choice of the numerical integrator is irrelevant. The problem
is rather that at every step the whole set of values of the functions x,,, r, have
to be stored, so that memory can become a critical factor if one wants to find the
orbit over a long interval of time. So it is convenient to choose methods which give
good accuracy with large integration steps. To perform the integrations we used
the standard Adams fourth order method, choosing the integration step of order
of 107* to insure good conservation of total energy and angular momentum. We
integrated orbits with initial data in the domain 1 < |r| < 1.5 and 1 < |¢| < 2
for the relative distance, while the center of mass data were chosen in the domain
0 < |x| € 0.01 and 0 < |%| < 0.05. Computations were performed both in double
precision and in quadruple precision (always with the same integration step), and
we checked that the method produces sequences which (appear to) converge if the
integration interval [0, 7] is chosen not too large.

There appears to exist an upper time 7 such that, if one tries to integrate the
equation for a longer time, the iterations do not converge anymore. If one increases
the precision of computation, i.e one decreases the round—off error moving from
double to quad precision for example, then this upper time 7 increases. As can be
seen from table 1, it seems that this relation is of exponential type: to a doubling
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FIGURE 1. Orbit on the Center Manifold

of the precision there corresponds a doubling of the upper limit 7. The data in the
table are given for an orbit with energy F = 3 and angular momentum L = 2. The
times in the table are given in integration steps and correspond to some tenths of
revolutions.

Type Time
Double | 4.10°
Quad | 7.10°

TABLE 1. Maxmimum integration time

To obtain orbits for larger times one can proceed as follows: after computing
the orbits on the interval [0, 7] (with 7 < 7) one stores the values for x, r at some
time ¢, say t = 27/3, in such a way that one might be confident that the orbit
stays on the center manifold. Then one uses these values as the initial ones for
the computation of a new orbit. One can check (numerically) that the new orbit
agrees with the older one in the common domain of definition so that the new orbit
gives a real prolongation of the older one. Iterating this method, one can produce
solutions stable on times of the order of hundreds of revolutions, and this has to be
compared with the usual self-ionization times which correspond to few revolutions.
In Figure 1 we report a plot of an orbit thus obtained, which corresponds to F = 3.,
L = 2., having x¢ = (0.1,0) and %o = (0.1,0) as the center of mass initial data.

E L /\1 )\2 )\3 >\4
-3.00 | 2.0 | 1.861 | 0.003 | -0.008 | -1.856
-4.75 | 1.5 | 4.00 |0.003 |-0.02 |-3.98

TABLE 2. Lyapunov Exponent




STABLE MANIFOLD OF HELIUM PERIODIC ORBITS 103

In Table 2 the Lyapunov exponents for the system (4) concerning the variable x,
for some orbits corresponding to different values of total energy E and total angular
momentum L, are reported ; notice that the initial data correspond to generic
periodic orbits, not to strictly circular ones. In the Table only four Lyapunov
exponents are given, because the initial data for the positions and velocity of both
electrons where chosen lying in a plane, so that the resulting motion is planar, and
there are only four exponents. The reason for the choice of restricting the attention
to planar motions is that in such a case the orbits of the complete system can
be easily visualized through a suitable Poincaré map, as will be explained below.
In any case, only one positive Lyapunov exponent is found, and this give strong
evidence that, in the planar case, for every periodic orbit the center manifold is
six-dimensional (as is analytically proven to be the case for the circular ones);
indeed, in the planar case the phase space has dimension eight, and one remains
with six dimensions when those related to the positive Liapunov exponent and to
the corresponding negative one are dispensed with. The reason for the orbits on
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FIGURE 2. Poincaré Map

the center manifold actually lying on a three-dimensional manifold is as follows.
For motions in a plane, the original phase space has dimension eight, which reduces
to six due to conservation of angular momentum. Thus its intersection with the
six-dimensional center manifold has dimension four (a greater dimension can only
occur if the intersection is not transversal, which is not the case), and this reduces
to three due to energy conservation. By a Poincaré section one is finally reduced to
to a two-dimensional, easily visualizable, surface. In Figure 2 the Poincaré section
is reported for some orbits which stay on the center manifold of the periodic orbit
corresponding to £ = —3 and L = 2. This figure seems to suggest that the orbits
lie on smooth invariant curves.

If this were true, then the helium system would be integrable. One has however
to remember that we are considering motions on the center manifold, and that
the restriction of the system on this manifold has an elliptic periodic orbit. Now,
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near such orbits Nekhoroshev theorem insures that chaos can be detected only
on exponentially long times scale, and on the other hand our integration scheme,
being non symplectic, is not suited for integrations over so long times (relative
energy conservation is of order 10~° after five hundred revolutions). So the problem
remains open.

In conclusion, the numerical method presented here allowed us to obtain an
interesting result for the dynamics of the helium atom, by producing evidence that
a center manifold for some elliptic periodic unstable orbits might exist. Moreover
the method allows also in principle to study the dynamics restricted to such center
manifold, of which an example was given above.
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