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ABSTRACT

It is shown that a Lagrangian exists for the nonrelativistic version of the
Abraham-Lorentz—Dirac equation. The method used is an easy modification
of the procedure used by Levi Civita a century ago to construct a Lagrangian
for the damped harmonic oscillator. It is then shown how a trivial adaptation
of the method allows also to give a Lagrangian for the corresponding relativistic
equation in the case of one space dimension.
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1. Introduction. As is well known, the Abraham-Lorentz-Dirac equation is usu-
ally assumed to correctly describe the motion of a point charge in interaction with the
electromagnetic field, when the radiation reaction is taken into account. Many times the
question was asked whether it be possible to deduce it from some variational principle
(see for exemple the refs. [1], [2], [3], or the more recent ref. [4]); there are inded several
motivation for this, the most important one possibly being the new insight it would give
to the problem of the elimination of the run-away solutions, which are well known to
plague microscopic electrodynamics. However, to my knowledge, no one was able to find a
Lagrangian formulation up to now. This is witnessed, for example, by the following quo-
tation from ref. [4] (page 91):“Attempts to construct the Hamiltonian or the Lagrangian
leading to Lorentz—Dirac equation have not as yet been succesful. It is possible that this
cannot be done because the classical Lorentz—Dirac equation includes the frictional reaction
of radiation, and therefore describes a non conservative system.”.

In the present paper the Lagrangian for the Abraham-Lorentz-Dirac equation in its
non-relativistic version is explicitly exhibited; furthermore, it is shown how, starting from
such a Lagrangian, the relativistic Lagrangian is easily inferred for the particular case of
motion on a straight line.

Let us recall [>6] that the Abraham-LorentzDirac equation is
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where the derivatives are intended with respect to proper time, e and m are the charge
and the renormalized mass of the point charge respectively, c is the speed of light, and the
antisymmetric tensor F),, represents an external (electromagnetic) field of force. In the
non-relativistic case, equation (1) reduces to

eX=%x—-F(x)/m, (2)

where now the derivatives are intended with respect to the observer time, x € R3, F is a
2
mechanical force field, and the parameter € = 32:;3 was introduced.

It will be shown here that the Lagrangian corresponding to equation (2) is

L= e_t/‘f(? —a-(x-0)F(x) + F(X)Q.&-F(X))

+p-(v-%)+aq-(a-v), (3
where v and a are the velocity and the acceleration of the particle, and p and q are vector
parameters whose significance will be illustrated in the next section; furthermore, the dot
- denotes the scalar product and 0x denotes the gradient operator. More precisely, the
Euler-Lagrange equation for Lagrangian (3) turns out to coincide with the nonrelativistic
Abraham-Lorentz-Dirac equation (2) if one fixes, in a way consistent with the Euler—
Lagrange equation itself, the value of the variables p and q equal to zero for all times. In
other words, the solutions of the Abraham-Lorentz—Dirac equation are a subset of the
solutions of the Euler-Lagrange equation of Lagrangian (3) for a particular choice of the
initial data. The reason for such a complication will be explained in the next section.
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In Section 2 the Lagrangian (3) for equation (2) is deduced, while in Section 3 the

Lagrangian corresponding to equation (1) in the case of motion on a straight line will be
discussed.
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2. Deduction of the Lagrangian in the nonrelativistic case. Some preliminary
remarks are in order:

i)

iii)

The Lagrangian (3) depends on time ¢ as should be expected, because the Abraham-—
Lorentz-Dirac equation is non conservative, so that energy cannot be a costant of
motion. The most familiar example of such a situation is the damped harmonic
oscillator, i.e. the linear equation

F4+ vk +wiz =0,

which, as is well known (see refs. [7],[8] [2]), can be obtained from the Lagrangian
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This example will guide us in determining the expression (3) for the Lagrangian of
the Abraham-Lorentz-Dirac equation.

It is obvious that it is impossible to find a Lagrangian leading directly to an equation
of motion of the third order, because the highest order will always be even, at least
if one considers Lagrangians quadratic in the highest order term.’ This problem is
overcome if one considers instead the equation of fourth order which is obtained by
differentiating the Abraham-Lorentz-Dirac equation with respect to time. Obviously
one has then to add some supplementary conditions in order to obtain a solution of the
original equation (2), and this is indeed the reason for the restriction of the allowed
initial data mentioned above.

It is easy to obtain a Lagrangian for the differentiated equation, if one thinks of the
acceleration a as an indipendent variable; obviously, this will then require to add
the constraints x = v and v = a. However, these constraints are non holonomic,
and so, to save the Lagrangian formalism, one is forced to introduce the so called
“Lagrangian multipliers” (see for example the classical treatise of Whittaker [9]), which
were denoted by p and q in expression (3).

Following the above remarks, one differentiates equation (2) with respect to time obtaining

ch=a— (x-0x)F(x),

.'_

Clearly one could also look for Lagrangians linear in the highest order term, but I

prefer to restrict the attention to quadratic Lagrangians.
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where a = x. This equation, using the paradigma of the damped harmonic oscillator,
naturally leads to the Lagrangian

> 2

£ = exp (—t/e) (% —a-(x- 8X)F(x)> + Ly,

where £, is a function to be determined. In order to respect the constraints, one is
naturally led to write £; in the form

Li=p(vV—-%x)+qla-v)+ Ly,

with a still indeterminated function L. In turn, Lo is easily determined from a quick
inspection of the resulting equation of motion for the variable x, which leads to

. F(x)-F(x)
= t/E _—
,Cz € % ,

namely to the Lagrangian (3).
The corresponding Euler-Lagrange equations are

e_t/s(eé—é—l—}'c-axF(x)) —-q=0

ée—t/e(axF(x)) (5231 —a+ F(x)) -p=0 ”
q

Now, with very few calculations, one verifies that if x(¢) is a solution of (2) then p(t) = 0,
q(t) = 0, x(¢), v(t) = x(t), a(t) = x(t) is a solution of system (4). Conversely, one
immediately verifies that, given a solution of (4) with initial data pg = 0, qo = 0, vo = Xo,
ag = Xg and a9 = ag — F(xg), then the motion x(¢) is also a solution of equation (2) as
stated in Section 1.

3. The relativistic case for motions on a straight line. The problem of finding
a Lagrangian in the relativistic case with only one space dimension can be reduced, at
a formal level, to the non relativistic case by using the constancy of the modulus of the
velocity z#, namely

At —i? =%, (5)

to reduce the order of the equation of motion. Indeed, first of all condition (5) naturally
leads to introduce a new variable z, usually called “rapidity” of the motion, such that
i = c¢Sh(z) and £ = Ch(z). Then one uses the fact that the tensor field F,, in (1) is
antisymmetric, so that, in the one—dimensional case, the only independent nonvanishing
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. def . . . .
component is Fy; = —Fj9= F(x). Thus, in the one-dimensional case, in terms of  and

z equation (1) becomes

F
PRPRIC)
mc
£=cShz,
or, equivalently
) eF(z)
ea=a—
mc
a
£=cShz.

The latter system of equations shows that the relativistic equation on the line can be
obtained from the non-relativistic one (3), if one imposes the non-linear constraint & =
¢Sh z instead of the linear one # = v. If one prefers to avoid a transcendental constraint,
it is possible to use a rational parametrization of the curve i, = ¢?, by introducing the
variable v defined by & = £(v — 1/v), which leads also to { = (v 4+ 1/v). The equations
of motion then read

F
ch=a— - (z)
me
V= av (6)
. C( 1)
r=—-(v——].
2 v

It is thus clear that, in the same sense discussed in the previous section, the Lagrangian
for this system is then

L= e_t/g(? —az0, F(x) + F;i)2> —I—p(g(v —1/v) — :v) + q(av — 'i)) , (7)

which is obtained from (3) by changing the constraints in the way just explained. This
formula solves the problem of finding the Lagrangian for the relativistic motion on a line.

There remains still open the problem of finding the relativistic Lagrangian for the full
three-dimensional problem, but the result of this section strongly seems to suggest that it
might be possible to solve it.
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