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ABSTRACT. Averaging theory is used to study the dynamics of dispersive equa-
tions taking the nonlinear Klein Gordon equation on the line as a model prob-
lem: For approximatively monochromatic initial data of amplitude ¢, we show
that the corresponding solution consists of two non interacting wave packets,
each one being described by a nonlinear Schrédinger equation. Such solutions
are also proved to be stable over times of order 1/62. ‘We think that this ap-
proach puts into a new light the problem of obtaining modulations equations
for general dispersive equations. The proof of our results requires a new use
of normal forms as a tool for constructing approximate solutions.

1. Introduction. The aim of this paper is to show that the nonlinear Schrédinger equation (NLS)
appears as a resonant normal form of some dispersive non linear equations. To be definite we will
concentrate on the nonlinear Klein Gordon equation (in the appendix we will briefly discuss also
the Fermi Pasta Ulam system), namely

Utt — Uz +mu+ou =0, teR, zeR (1)

with m a positive parameter, and ¢ a real parameter. We recall that multiple time expansions
provides the standard way to derive NLS as a modulation equation for small amplitude almost
monochromatic solutions of such an equation (see e.g. [1]); indeed NLS appears as an equation
that must be satisfied in order to eliminate the so called secular terms that would cause a linear
in time growth of the solution. We also recall that rigorous justifications of such a scheme can
be found e.g. in [2, 3]. Kalyakin also gave an algorithm that allows to construct higher order
approximations to the solution of the original problem.

In the present paper we will discuss the derivation of NLS from the point of view of averaging
theory of infinite dimensional Hamiltonian systems. In particular we will show that there exists a
canonical transformation that transforms the system into a new one, which, up to a small error,
has an invariant manifold on which the dynamics is completely resonant. Then we perform a
resonant normal form, obtaining that on this manifold the dynamics is given by two decoupled
NLS, the first one controlling the modulation of wave packets traveling to the right, and the
second one controlling the modulation of wave packets traveling to the left; the two packets do
not interact. We will also give rigorous estimates on the errors (see theorem 4.1). Similar results
have been obtained (from a different point of view) in [[4, 5]]. Finally we prove that solutions
starting O(e?) close to such approximatively monochromatic solutions remain O(e?) close to them
up to times of order O(¢~2), here ¢ is the order of magnitude of the initial datum as well as the
parameter controlling the width of the wave packet; as far as we know this result is new.
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We think that our approach has several advantages with respect to the usual one. In particular
it makes clear that NLS is just the first term of a resonant normal form that in principle could be
computed up to any order. Moreover, our method provides approximate equations. In principle
this makes possible to give a complete description of the dynamics, at least for initial data in the
domain of validity of the normal form, which is a considerable improvement with respect to the
classical method that only allows to approximatively describe some solutions.

We point out that our approach might be relevant for the study of equipartition properties in
FPU type systems (see [6]). We plan to study this problem in detail in a future paper.

From the technical point of view we develop a theory of averaging for systems with perturba-
tions that contain the derivatives of the unknown function. As far as we know this is new. The
main point is that we use canonical perturbation theory to construct approximate solutions of the
original problem, and only later we prove that such approximate solutions are actually close to
exact solutions. We now illustrate briefly this point: suppose one is given a partial differential
equation of the form

i = Au+ pX(u) (2)
with A a linear operator generating a unitary group, X a nonlinear operator and u a small
parameter (that in the case of eq. (1) will be €2). Suppose one is able to find a coordinate
transformation v = 7 (v) (usually provided by more or less standard averaging methods) with the
property that the equation for the transformed variable v takes the form

b = Av+ uN(v) + 4’ R(v) , 3)

where N is a suitable normal form, and R a remainder. If R is a smooth operator then it is clear
that the solutions of the normal form equation

w = Aw + pN(w) (4)

approximate well the solutions of the complete problem (3). However, if R contains derivatives
of the unknown function, then it could happen that solutions of the equation (4), and solutions
of (3) are very different. In particular, in order to ensure that they are close to each other one
should be able to prove some a priori estimate for higher derivatives of the solution of (3) and this
is seldom possible.

So we proceed as follows: given a solution w(t) of (4) we construct an approximate solution
u(t) := T(w(t)) of the original system. One easily sees that the error r(t) := u(t) — a(t) with
respect to a true solution u(#), fulfills the equation

= Ar+ p{X(a+r) - X(@)} + p*dT (w(t)) R(w(t)) , ()

the main point is that the remainder is evaluated on the approzimate solution w(t), so it gives a
small contribution if the approximate solution is smooth, a property that is much easier to check
than the smoothness of exact solutions. Assume that R(w(¢)) is bounded, then in order to control
the norm of r one has just to apply Gronwall lemma to estimate the solution of (5). This is what
we will do, and this gives (for equation (2) a control of order u of the solution up to times of order
1/p. We point out that, in case one is interested in controlling the solution for a longer time scale
then one has to study in more detail the linearization of (5) (see sect. 5 for more details).

Finally we point out that our paper contains one more novelty, namely a method that we use
to extend averaging theory to the case where the fast variable is not an angle, but varies in R (see
theorem 3.3).

The paper is organized as follows: In sect. 4 we reduce the Klein Gordon equation to a form
suitable for the application of our methods, in sect. 3 we state our normal form results showing
the appearance of NLS as a resonant normal form; in sect. 4 we follow the procedure illustrated
above to use the normal form in order to approximate the solutions of the original system. In
sect. 5 we discuss some possible extensions of our approach. In sect. 6 we give the proof of the
normal form results, and in sect. 7 we add some useful technical lemmas. In the appendix we
show how to apply our approach to the FPU system.

2. Preparation. In this section we reduce the nonlinear Klein Gordon equation (1) to a form
suitable for the application of our method, such a form is given by (14). As it will be clear the
procedure of the present section applies directly also to the more general equation

ugg + Lu+ou® =0,

where £ is a positive polynomial in 79;. In the appendix we will show that it applies also to the
FPU system.
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Consider now eq. (1); introduce new independent variables £o = z, 1 = ez and consider a
new unknown function u(zo, z1,t), fulfilling the equation

d a\?
utt—(——l—e—) utmuteoud =0, 2 ER, 2ER, tER, (6)
dxo o1

so that eu(z, ex,t) fulfills equation (1); we will impose u to be periodic in z¢ with some period
that, in order to be definite, we fix equal to 27, namely we write

u(zo — m,x1,t) = u(xo + T, 21,t) , Uze(To — 7, T1,t) = gy (zo + 7, 21,1) , (7)
for this reason we will consider only zg € [—7,].
REMARK 1. System (6) is Hamiltonian with Hamiltonian function given by

H=H; + &2f (8)

m p? 1{(6 a) r m
Hy(p, = d dridt—+ > | —— +e— m ,
L(p,u) /_7r :Eo/ER z1{2+2 8w0+58w1 U +2u

flu) = fr/_:d;co/gedanuz4

p = ut s the momentum conjugated to u; the symplectic form is given by

(" uh), (p*,u?) =:/%d$1 /j dxo (p' (w0, 1)u’ (z0, 21) — p* (w0, T1)u' (70, 71)) -

where

It is useful to expand both p and u in Fourier series with respect to £g and to Fourier transform
with respect to x1:

u(zo,z1) = % Ekoez I kg, kg €PFOPOTRLE1 gy
p(zo,z1) = i EkoEZ fﬂeﬁko,kleikomo—{_iklxldwl . 9)

then gg,,x, turns out to be canonically conjugated to p_g,,—x,; it is useful to introduce also
complex variables &, 7 by

: 1 (. . Pro.k

Ehok1 = 7 (Qko,kl\/wko (k1) — Zm)
0

. 1 (. . Pro.k

Nkoky 1= 7 (Qko,kl\/wko(fkl) 'H\/ﬁ) ) (10)
0

W (k1) == 1/ (ko + €k1)2 +m ;

so that the quadratic part Hy of the Hamiltonian takes the diagonal form

Hp(én) =Y /§R"~’k0 (ek1) (fko,klﬁ—ko,—kl) dky . (11)

ko€EZ

where

REMARK 2. Real u correspond to sequences of functions é,ﬁ such that

'Séo,h = ﬁ—ko,—kl - (12)

For the Hamiltonian vector field of a Hamiltonian function H we will use the notation Xg, so
that the Hamilton equations are written in the form 2 = Xy (2), where z = (£,7) denotes a phase
point. Explicitly they are given by !

OH d . OH
— Nk k1 = — .
o ag—ko,—’n

d é .
ol -G
dt R T Y gn T T dt

We expand the Hamiltonian in series of € up to order €?; concerning the linear part one has

H:HO,L+€H1,L+€2H2,L+63RL (13)

Lfor functionals H that do not depend on the derivatives of 4 and £,
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where
Hop(n) = > / wko €k ke T kg,—kl) dk1 ,
ko€Z
Hyén) = ) / Vkg k1§k0 k1 —ko, 7k1) dk1 ,
ko€Z
Hyr(éh) = ) / ﬁko ki €ko iy ko,—kl) dk1 ,
ko€Z
and Ry, is the remainder of the expansion; we have introduced, for kg > 0, the following objects
Wiky = Who(€k1)|r =0
v . awko (6/61)
k =
o O(ek1) (eryy=o
1 62wk0(6k1)
Rtgq P .
2 O(ek1) (ck1)=0

In order to write in a simple way also the expansion of the nonlinear part, it is useful to go back
to the variables z1, i.e. to define the functions

1 ~ .
kiz
x1 = — 11 dq
fkg( ) m\/ﬁé‘ko,kl
1 R ;
nko(wl) = m/;enko,kle“clwldkl )

so that one has

Hor(&m) = > U-’ko/ (&g (1)1 (71)) dz1

ko€Z
Hipn(&m) = i) vk / (fko ( 1)) dzy
ko€Z
Ok 37I—k
Hyrn(&m) = Y hig / ( 8 (w1) ——2 (1) ) da1
611 o1
ko€EZ
and the Hamiltonian of the system takes the form
H:HO,L+6H1,L+62H2,L+62f0+63R0 (14)

where

fol&m) = / dmo/dzl Z /— (&ko (1) + Mig (1)) €00

ko€EZ

™ ko-+jo+lo+io=0 16+/@ko @io Wio Wi
X /§).Q (gko + "}ko) (gjo + 77jo) (glo + 7710) (&0 +7h'0) dz1

while Rp is the remainder of the expansion; In what follows we will denote with a prime the

differentiation with respect to z1 (i.e. ' = z2-).

We ensure now that Ry is small in a suitable sense. To this end we have to introduce a topology
in the phase space. So, consider the Banach space S* of the functions g(k1) such that

lollse == | 1aka)| (1+ la )y < oo
Then the phase space P, is the space of the sequences éko,kv Nko,ky 10 S such that

| =D @+ kot®) ([[éxo | 5. + 100150 ) < o0
ko

endowed by the natural norm. We will denote by by Bqa(p) the ball in S of radius p centered at
Zero.
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REMARK 3. The C® norm of the functions
§($0,$1) = i EkgEZ fg} éko,kl eik0$0+ikw1d$1
n(zo,r1) = i Ekoez fye ﬁko,kleikom(’“klzldml
are controlled by the Po norm ofé and 1) respectively.

REMARK 4. The Hamiltonian and the symplectic form are defined only in a dense subset of P,.
Nevertheless in [7] a formalism suitable to deal with such a situation was developed. In particular
it was ensured that coordinate transformations leaving invariant the domain of the symplectic form
and the symplectic form itself have standard properties of canonical transformations. Finally the
Hamiltonian flow is canonical provided it is generated by a bounded vector field.
Having fixed a positive p we will denote by
IXally 5 == sup [IXu(2)llg
llzllo <
the sup norm of the Hamiltonian vector field of a function H, when considered as a function from
Pa to Pg.
From now on we will use the notation
a=b
to mean “there exists a constant C independent of € such that a < Cb”.

PROPOSITION 2.1. For any positive p, one has

||XRO||Z+3,O¢ 1.

The proof is an immediate consequence of lemmas 7.1, 7.2 of sect. 7 and is left to the reader.

3. Normal form results. To start up consider the dynamics of the unperturbed Hamiltonian
(i.e. of Hy 1) whose Hamilton equations are

€ro = Wrobky » My = —iWhoMkg » (15)
whose solutions is obviously given by
gko(wlyt) = eiwkotgko(wlyo) s Tkg (wht) = eiiwkotnko(zlzo) 3 (16)

namely the variables with index +kg rotate with frequency wy, .

Then we will take into account the corrections to the dynamics due to the presence of the higher
order terms. From standard perturbation theory one can expect that the resonant oscillators
interact strongly due to the nonlinearity, while nonresonant oscillators are expected to behave
independently. So we could try to separate the dynamics of oscillators corresponding to different
values of |ko|. However, due to the presence of infinitely many values of ko this is a too hard
task. So, to start with, we tackle a simpler problem: namely to understand whether there exists
an invariant manifold continuing to the nonlinear case the manifold

Mazxy = {(€,n) : &y =Mk, =0 Vko # £1} (17)
(which is invariant for the linearized flow) or whether there is at least some approximatively
invariant manifold close to M41. Since the unperturbed dynamics is almost periodic there is a
quite standard technique for doing that, namely to look for a canonical transformation eliminating

from the nonlinear part all terms which are linear in the variables £ (x1) and ng,(z1) with
ko # £1.

THEOREM 3.1. Fiz p > 0 and a > 0; then there exists a positive ex = ex(a, po) such that, if || < e«
there exists a canonical analytical transformation To : Bo(2p0/3) — Ba(po) with analytic inverse
defined on Bu(po/3) which transforms the Hamiltonian (14) into the system

HoTo=HWM + 3Ry (18)

where
1) The Hamiltonian system

HD := Hy o+ €Hp 1 + €Hp o + 2 fM (19)

has the invariant manifold M4+1 and

FO N myy (Ex1,m21) = folmy, (Ex1,m21) = /%dwl(& +m)2 (-1 +1-1)?

4
8wi2m
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2) €3R1 is a small remainder, namely one has

1Xm 12005 <1

3) the transformation is close to identity

sup [z = To(2)lly <€ .
lI2lla<2p0/3

Now we fix attention on the normalized Hamiltonian H(1) (cf. (19)), and we study its dynamics
on the invariant manifold M41.
In M4 the unperturbed Hamiltonian Hy r,, reduces to

wl/ﬁ(ﬁln—l +&-1m)dz (20)

which consists of infinitely many resonant oscillators labelled by z1 € R, so it is natural to
construct a resonant normal form, i.e. to average with respect to the unperturbed flow, and this
will give rise to the nonlinear Schrédinger equation.

THEOREM 3.2. Fiz p1 > 0 with 2po/3 > p1 and a > 0, then, provided € is small enough, there
ezists an analytic canonical transformation T1 : Ba(2p1/3) — Ba(p1), which transforms 7
into the system

HD o771 = H® 1 3Ry

where T leaves invariant Mx1 and acts as the identity on the variables (§xg, Mkg Jkgz+1, 0nd
1) The Hamiltonian system

H® .= Hyp +eHy 1+ € Hy + 2Ny (21)

has the invariant manifold M41 and the restriction of N1 to M41 is given by

130

N1|Mi1(§:|:1a7):|:1) = (€2n% 1 +4&im—16—1m + €21n?) dz1

3807 Jn
2) 3Ry is a small remainder, namely one has

IXrall200 <1

3) Th is close to identity, namely one has

sup [z = Ti(2)l, <€
210 <201/3

We now study the dynamics of H(®) on M.
REMARK 5. On M i1 one has
{HO,Lle}:O ) (22)
and
{Ho,u,H1,0} = {Ho,L,H2,.} =0 . (23)

Due to these properties Hp 1 is a constant of motion for the dynamics of H®) in M4y, Tt
means that in order to study the dynamics of H(?) on M. one can limit oneself to study the
reduced system Hp defined on the intersection of M1 with the level surfaces of Hy 1, by

HR = Hl,L+6H2,L+6N1 . (24)

Then, given a solution zg(t) € M+ of the Hamilton equations of (24), a solution of the equations
of motion of (21) is given by

2t = @ (2r(et))
where <I>f) is the flow generated by Hop ; and described by 16.

We study now the dynamics of Hgr. Remark that the manifolds
My={&1=m=0}, M_1:={&L=9-1=0},
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are invariant for this dynamics2. Let’s concentrate on M; and begin to study the dynamics here.
To this end remark that here one has {H 1,L, H R} = 0, as it is easily seen by remarking that here
the dynamics generated by Hy,r is given by

&= v} N &i(z1,t) = &(z1 + v1t)
fno1= wvinly n-1(z1,t) = 0% (z1 +v1t),

where (£9,7° ) are the initial data, and it is now clear that v; is the group velocity.
So, it is again possible to pass to the reduced system with Hamiltonian which on M coincides
with e(Hy 2 + N1), whose equations of motion (on M;) are given by

by =de (—hagl +vn1&7) , 01 = —ie(—hn”; +vén,) (25)

with v := 30/3271'0.1%. It is immediate to see that for initial data fulfilling £ = n—1, which
correspond to real (p,u), the equation (25) is the nonlinear Schrédinger equation. So we have the
following

PROPOSITION 3.1. Let A(z1,t) be a solution of the nonlinear Schrédinger equation

A= —im A" +ivA|A?, (26)

then
€1(z1,t) := Az + evit, 2)e™1t | p_q(w1,t) == & (z1,t)" (27)
Mg = kg =0, Vko : |ko| # £1 (28)

is a solution of the Hamilton equations of (21). Conversely, if &4 = &i(z1,t),n—1(z1,t) =
&i(z1,8)*, 621 = m = 0, with also (28) fulfilled, is a solution of the Hamilton equations of
(21), then there exist a solution A of the nonlinear Schrédinger such that (27) holds.

REMARK 6. The same is true, mutatis mutandis, and in particular substituting vi with —vi, for
solutions in M_1.

It is also possible to study the dynamics corresponding to general initial data, which is expected
to consist of a wave traveling to the right and a wave traveling to the left that interact when they
meet. The result of the interaction process is in principle difficult to be predicted a priori. However,
remarking that Hr appears as a perturbation of a linear Hamiltonian one can try to use again
canonical perturbation theory to study the dynamics. This can be done in a space of functions
that enjoy suitable integrability properties. This is given by the standard Sobolev space W*! of
the functions admitting s weak derivatives which are L!(®). In particular remark that by Sobolev
embedding theorem one has C* D W*'! provided s > 1 + k; moreover for s > 1 the space W*-!
is an algebra and one has S® D W#'! with a continuous embedding provided s > a + 1.

The canonical transformation of our forthcoming normal form theorem (as well as the canonical
transformation defined in theorem 3.2) acts non trivially only on the variables with index ko = £1,
so it is useful to introduce a new phase space Fs,q as the subspace of Py, such that the functions
€+1,m+1 € W1, We endow such a space by the norm

1€l = Z (1 + |ko|*) (HékOHSa + Hﬁkonsa) + Z (||£ko||ws,1 + [k ||W3!1)
ko#+1 ko==%1

Clearly one has Fg o C Po with a continuous embedding. Moreover we will denote by Bs(p) the

ball of radius p in F; q.

THEOREM 3.3. Fiz a positive 2p1/3 > p2; then, provided € is small enough there exists an analytic
canonical coordinate transformation Tz : Bs(2p2/3) — Bs(p2) which acts as the identity on the
variables (kg Mkg ) ko#+1, and such that

HpoTo=H) + Ry , (29)
where
H) = Hy | + €Hy 1 +€¢No (30)
has the invariant manifold M+1, and the restriction of Na to My1 is given by
_o31 2,2 2 2
N2|Mi1(§:tlyﬂj:1) = ;g;% " (§1W_1 + §_1W1) dxy

2this is due to the fact that N1 does not contain terms which are linear in either the variables
(€1,m—1) or the variables (é—1,m1)
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and Hy 1, o T2 = Hy,1,; moreover the following inequalities hold

sup | Xre()|y X1, sup [lz=Ta(2)lls, <€
l2ll 5, , o <202/3 N2, <2p2/3

REMARK 7. For the normalized system with Hamiltonian Hl(%l)
integral of motion, so one can pass again to the reduced system

H2,L + N2, (31)
whose equations of motion (on M+1) are simply two decoupled NLS. It follows that the dynamics
of (30) consists of two non—interacting modulated wave packets, one traveling to the right, and

the other traveling to the left; the shape of each one of the packets is modulated by a nonlinear
Schridinger equation.

, the function Hy 1, is clearly an

4. Use of the normal form. We use now the above normal form results and in particular
theorem 3.3 in order to construct some approximate solutions of the original equations of motion.

In order to explain the idea let us consider a smooth solution ¢ (¢) of the equations of motion
of (31), or more precisely of the Hamilton equations of

H® :=Hy 1 +eHy 4+ Hap + €Ny (32)

and construct the function B

2(t) == (To o T1 0 T2)(C(1)) 5 (33)
we claim this is the wanted approximative solution of the original system. To show this we write
down the equation it fulfills.

PROPOSITION 4.1. Fiz a > 0, and let {(t), t € [T /€%, T/€?], with a suitable T > 0, be a solution
of the Hamilton equations of H®) belonging to CO([~T/e, T/e?], Fs,o) with s > a +4; then z(t)
defined by (33) belongs to

CO([fT/gv T/52]7 P0¢+3) n 02([7T/€27 T/€2]7 730¢+1) ’
fulfills the equation B
L) = xnw) - Sa0)

with A(t) a suitable function. Moreover the following inequalities are fulfilled

sup [2)) — )| <e,  swp JA@l, 1.
[6|<T/e2 a+3 |t| <T/e2
Proof. Denote by
—1 -1
(Tox X)(2) = dTo(Ty ~(2))X(Ty " (2)) (34)
the standard push forward of the vector field X by 7p, and similarly for 71, and 73.. One has
dz
E = [76*71*7‘2*XH(3)] (Z) . (35)
On the other hand, by theorems 3.3, 3.2 and 3.1 one has
XH(Z) = 7—2*XH(3) +€37~2*XR3
XH(l) = 7-1*XH(2) +637-1*XR2

Xg =T« Xga) +ET0«XR,
from which one immediately gets
Tos Tis T2x X gy(3) = X — € [TouTis Tez X Ry + Tos+T1x X Ry + Tos Xr,
Denoting
A(t) == [ToTiaTea X ry ] (2(1)) + [ToxTix X, ] (2(t)) + [T04 X, | (2())
we have the thesis. ]

In order to look for a solution of the original equations of motion close to zZ we write z = Z + 1
and remark that r fulfills the equation

= Xpg(2(t) +7) - Xg(2() + A1)
So we should estimate the solution of this equation. This can be done directly, however it is

easier to go back to the original nonlinear Klein—Gordon equation and to estimate the error in the
original equation.
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We will consider
1)the solution u(z,t) of eq.(1) with initial data

a(ex)e’® + a*(ex)e @ b(ex)e!® + b*(ex)e ™
uo(x) =€ y T)=¢€ s 36
o(z) ors po(T) Nor (36)
2)the solution A(z1,t) of the NLS equation (c.f. (26)) with initial datum
1 ,b(l‘l)>
A 70 = = I Jap— 3
(21,0) 7z (a(ml)\/wl i N
3) the solution B(z1,t) of NLS with initial datum
1 b(z‘l))
B(z1,0) = — Van
(21,0) V2 ( (@) e Vot
4)the approzimate solution uq defined by
i(ztwit) g 2 i(z—w1t) B _ 2
ta(z,1) = e (e(z + v1t),€e%t) + e (e(z — v1t), €%t) tee (37)

2w
where c.c. means complex conjugated term.

THEOREM 4.1. Fiz o > 1/2, assume a,b € W5 with s > a+4, then there exists T > 0 such that
one has

sup |lewa(-,t) — u(st)lgasrsz <€, sup |leda(t) = (. )]l ga=1/2 X €
#]<T/e2 |t <T/e2

Proof. First remark that, by standard theory of semilinear equations (see for example [8]) one
has that the Cauchy problem for NLS is locally well posed in W#*:1 (which is an algebra), and
therefore there exists a positive T" such that the solutions A and B exist up to this time. Use A
and B to construct a solutions

() = (E0(8), 7 (), €-1(8), 1-1(1))
of the Hamilton equations of H®) (cf. eq.(32)), namely
Gi(z1,t) = A(mi+evit, e f1(z1,t) = & (21, 8)”
g_l(wl,t) =  B(z1 — evrt, ezt)ei“’lt ,  (zi,t) = é_l(ml,t)*

Define { = (gkO;kl s Tko k1) i= (TooTio 7’2)(5), using ¢ construct the approximate solution for the
original system by

a(z,t) = L / §k0,k1 + 77"’Oa""l(t) zk0m+1klemdk
2 k ez V/2wi, (k1)
1 ] t) — t . .

az,t) = — / "7ko,k1( ) fko,lﬂ( ) Wio (ekl)e¢k0m+¢klemdkl
2T koez’® iv2

by proposition 4.1 such functions fulfill the equations

aﬁ(.’ﬂ,t) = ﬁ(mat) + 63Au($=t)
0 ? 2 - 3, .3
Ep(;c t) = Wu(x,t) —e“ou(z,t)” + e Ap(x, t) (38)

where Ay, Ap are the functions of proposition 4.1 represented in space z. By lemma 7.3 the
estimates
SI:P||Au(-at)||sa+1/2 =1, SliPHAp(-vt)Hsa—lm <1.

hold. The norm S has to be computed in Fourier transform (with respect to z). Denote by
U := (u,p)/e the rescaled solution of the original Klein Gordon equation eq. (1), denote also
U := (@,p), Ay := (Ay,Ap) and by A the linear operator describing the Klein Gordon equation;
finally denote by F(U) := (0, —ou?) the nonlinearity, we have that the equation for the (rescaled)
remainder 7 := U — U takes the form:

7= Ar 4+ E[F(U +r) - F(0)] + Ay, (39)
which is the equation giving the error. In order to estimate its solution we have first to estimate the

difference between the initial datum for (@, ) and the original initial datum in order to estimate
the initial value of r.
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To this end denote

ﬁ(w,t) — / 6ko,kl +7’k0,k1 (t) eik0z+ik1€zdk1
2wy, (€k1)
1 i t) — t ) .
Bla,t) = o / 77190Jc1( ) gko,lﬂ( ) Wiy (ékl)ezkow+zklewdkl
T ko==t1 w2
and remark that, by lemma 7.1 one has
_ ug(.) z _ po(.) z
L0 =2 <e|¢o) ,0) — < e||éco)
i,0 = 2| e, o= <o,
and also
e 1) — wa(s Dllge = €llCllgqr > (40)
On the other hand, by the estimates of the canonical transformations we have
lla(.t) —als )l gatrsz <€ [[B(51) = P( D)l ga-1/2 X € (41)

provided £,7 € W$! with s > a + 1, it follows that, under the regularity assumptions of the
theorem one has that the initial datum ro to be inserted in (39) fulfills

||7"0||sa+1/2><sa—1/2 <e.
So a simple use of the Gronwall lemma and of the fact that the group generated by the Klein
Gordon operator A is unitary gives
sup ||r(t)llgat1/25 ga—1/2 X €
[t|<T/€2
and using also (40), (41) and remark 3 one has the thesis. O]
From the proof of the above theorem we also obtain the following result

THEOREM 4.2. Fiz a > 1/2, consider an initial datum (u1,p1) such that
lI(w1,p1) — (40, P0)||gat1/25 gam1/2 < €

with uo,po given by (36), then for the corresponding solution (u1(x,t),u1(x,t)) one has

sup ||(€’ua(.,t),€’lla(.,t)) - (ul(')t))ul('at))|‘sa+1/2><sa—1/2 = e
[t|<T/e?

5. Extensions. In this paper we confined our attention on the submanifold M 41 of the phase
space; it is possible to perform exactly the same study considering the manifold

Mz, tn = {(&m) ¢ €kg = Mky =0 Vko : ko & {£1,...,£n}} . (42)
We explain this point more in detail. First one has to eliminate from the Hamiltonian the terms
linear in the variables with index 0 or index larger than n obtaining that this manifold is approx-
imatively invariant (in the same sense as M4 is approximatively invariant for the Hamiltonian
(18)). Then the computation of the normal form on this manifold (as in theorems 3.2 and 3.3)
shows that the dynamics consists of 2n non interacting traveling waves each traveling with velocity
+v; (j = 1,...,n) and modulated by an NLS equation with suitable parameters.

An other interesting extension pertains to the case of a quadratic nonlinearity, i.e. the case
where the nonlinear term is u? instead of u3. Here it happens that the first order average of the
perturbation vanishes, and that NLS appears as the second order normal form. The procedure of
sect. 3 can be performed also in this case leading to very similar results, however the procedure
of sect. 4 has to be modified in order to obtain a meaningful result. Indeed, a straightforward
application of such a procedure would show that NLS describes the original system only up to
time scales of order 1/, a time scale over which the NLS dynamics is invisible. To obtain the time
scale 1/€2 one has to study more in detail the equation (5), and in particular one has to remark
that it has the form

7 = Ar + edX (u(t))r + higher order terms ; (43)
if one just estimates the solution of this equation using only the fact that dX(u(t)) is bounded
than one is lead to the time scale 1/¢. To reach the time scale 1/¢2 one has to study more carefully
the linearized equation where the higher order terms in (43) are neglected. Such an equation is a
small periodic perturbation of a time independent diagonal system, and so it can be studied using
Floquet theory, or more precisely its infinite dimensional extension (see e.g. [9], which involves
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some subtleties due to regularity problems). In particular it can be shown that under suitable
nonresonance conditions (fulfilled in our case) the solutions of such a linearized system are time
periodic modulations of the solutions of the linear Klein Gordon equation. Exploiting such a
property one gets the result. We point out that for the case of nonlinearity «? the validity of NLS
has already been proved by different techniques in [2, 10].

Finally we discuss briefly the problem of computation of higher order terms of the normal forms.
Althoght the formal computations are quite straightforward, their justification is far from trivial
because of two different problems. The first one is the generation of the normalizing canonical
transformation: the generating vector field turns out to be non smooth, therefore it is not obvious
that it generates a flow. We have some ideas on how to overcome such a problem but the question
is very technical and is left for future work. The second problem is the use of the normal form,
indeed, in this case the same problem appears as for the case of quadratic perturbation of the
Klein Gordon equation, namely the time scale over which the corrections are visible are longer
than the time scale over which we are able to ensure the validity of the approximation. We have
no ideas on how to solve this problem, we think that it deserves numerical investigation.

6. Proof of the normal form results. We start by proving theorem 3.1. We will generate

the normalizing canonical transformations as the time ¢ flow of the Hamiltonian vector field of
. . . . 2 .

a suitable Hamiltonian function xo. So, denote by 75 the time €2 flow of the vector field Xy, .

One has

2

Ho 7—66 = HO,L =+ GHI,L + EQHQ,L + 62 [{Xo, HO,L} + fo} + h.o.t. (44)
where explicitly we have

2 2
h.o.t. :6(1{1,11075E —fIl,L)—|—€2(I{2,L075E _H2’L)
2 2
+  E(fooT§ —fo)+(HooTs — Ho. —€ {xo,Ho,})
+  ERooTf . (45)

As usual the idea is to determine xo in such a way that the square bracket in (44) takes a suitable
normal form. Explicitly the normal form must not contain terms linear in the variables &g, Nk,
with kg # £1. It is easy to see that the wanted function x¢ is given by

o —1
xo(&,m) = %W/%G(ﬁm)dﬁ

with
Glen) = _GEs | ¥imés  3amits , mits
’ ' 3wi + w3 w1 + ws w3 — w1 —3w1 + w3
&n_s |, 3&mn_s , 3&nin_s | n} —n_s
+ + + +
3w — ws w1 — wWs —Wws3 — W1 —3w1 — w3
£ 1&3 3¢2 m-1€3  3€_1n? &3 3 ,&3
+ + +
3w + ws w1 + w3 w3 — w1 —3w1 + w3
N s 3 nomy 3-niim Py -m
3w — ws w1 — w3 —Wws — w1 —3w1 — w3

which is easily seen to generate a smooth (actually analytic) vector field from P, to P for any
a > 0. In order to prove theorem 3.1 we have just to estimate the normal form transformation,
i.e. the time €2 flow of the vector field of xo and the higher order terms (45). This is completely
standard; we will report here the estimates from [11] for the sake of completeness. Actually these
estimates depend only on the smoothness properties of the vector field of xo, so we will state them
making reference to a general function x with analytic vector field. More precisely we fix p and we
assume that the Hamiltonian vector field X, of x is analytic as an application from Py D Ba/(p)
to Po. We will denote by 7 the time ¢ flow of such a vector field

LEMMA 6.1. There exists ex such that, for any t with |t| < ex, one has

sup [|T%(2) — 2], < [tHIIXxllf o - (46)
l2lla <20/3
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Proof. Tt is just an application of the equality
t dz t
2(8) — 2(0) = / 92 )ds = / Xy (2(s))ds .
o dt 0
[

LEMMA 6.2. Let h be a function with Hamiltonian vector field that is C*™ as a map from Ba/(p)
to Pg, then for |t| < €2 < ex (see previous lemma), one has

2p/3
1 Xporel204% < 1

Proof. First remark that, since 7 is a canonical transformation one has
Xport (2) = AT "HTH(2)) Xn(TH(2)) (47)
from which
Xport(2) = (AT H(TH(2)) — 1) Xp(T*(2)) + Xa(T*(2)) -

To estimate the first term remark that

sup  [[dT7H(TH(z)) — 1]| < sup ||dT7%(z)— 1| <€ (48)
Izl o <20/3 llzllo <p
where the last equality is due to the fact that d7? is Lipschitz in time. O

LEMMA 6.3. Let h be as above and assume that Xy is smooth also as a map from Pg to itself,
then, for t| < €2 < ex one has

[ Xnore—nll 2052 < € (49)

a,

Proof. One has
Xport —n(2) = (T HTH2)) = 1) Xp(T*(2)) + [Xa(T*(2)) — Xp(2)] -

The norm of the square bracket is estimated using Lagrange mean value theorem and (46). The

other term was already estimated in (48), so we have the thesis. [
Finally we have to estimate the term containing the transformation of Ho,, to this end it is

useful to remark that xo is constructed in such a way that it fulfills the homological equation

{HO,L7X0} :.fo 3 (50)
where fo is the part of fo that does not contain terms linear in the variables §x, nx, With ko # *1.

LEMMA 6.4. Denote
2
0:=HoroT§ —Hor—€¢ {x0.Hor} ,
then, || X¢||27* < €.

Proof. One has

2

2
2 € d € .
Ho,0(75"(9) = Ho(2) = [ SHonT@at= [* fom@).,
where we used the homological equation to compute {Ho, L,xo}. One has

2

0z) = /0 " (Fo(Te@) — Fol@)dt ;

Using (49) one gets the result. [

Collecting these results one easily gets theorem 3.1.

‘We come to theorem 3.2.

From now on we will restrict to the manifold M+1. By abuse of notation we will denote by
Pa the Banach space Po NM41 endowed by the natural topology and the natural symplectic form.
So we will consider the restriction of the above Hamiltonians to this manifolds. The restricted
function will be denoted by the same symbol as the original one. We will construct canonical
transformations on M1, they can be extended to the whole phase space by the choice that they
act as the identity on the variables &y, Ny, with ko # £1.
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The proof of theorem 3.2 is absolutely identical to the previous one, one just has to substitute
xo0 with x1 defined by

T
(@) =g [ [fO@hE) - rOx@he]
where T := 27 /w1, and <f(1)> defined by

(1)@= 1 [ @b

A simple computation shows that the function x1 defined in (6) is such that

{x1,Hor}+ M = <f(1)>,

and that such a x1 has an Hamiltonian vector field which is smooth as a map for P, to itself.
For more details on the construction see [1] lemma 8.4. Here we just point out that in our case
we have

%3
X1(§7 7)) = 83
where
62, —mn2,
4
- &mn’, —ni&in-1 .

G1(§,n) + &€ m1 + &mn,

Finally we come to theorem 3.3. First remark that, if one is given a function x2 such that
{x2,H1,L} + N1 =Nz ,

and such that its vector field is smooth, then the proof can be achieved exactly as before, just
substituting the spaces F,,o to the spaces P,. It is easy to see that the wanted function is given
by

xa(2) =~ [ sen(n)f (@72 ar

where Ny := N; — Na, and we denoted by ®7 the flow generated by the Hamiltonian vector field
of Hy 1 (and by sgn(7) the signum of 7, which is one for positive 7 and minus one for negative
7). The proof of the regularity of the vector field is more difficult here. To this end we explicitly
compute Xy,. To this end consider the map Y*(¢,n) defined by

&1(z1) i€1(z1)€—1(z1 — 2tv1)m (1 — 2tvr)
me) | —i&1(z1 + 2tv1)n-1(z1 + 2tw1)n(z1)
&-1(z1) 1€1(x1 + 2v1t)é—1(z1)n—1(x1 + 2v1t)
n-1(z1) —i€1(z1 — 2v1t)m (x1 — 2v1t1)n—1(x1)

then one sees that

a6 == [ sen ()Y (€.mer

moreover, since Xy, is a polynomial map, in order to show that it is analytic it is enough to show
that it is bounded as a polynomial on Fs. So, one has to show that it each component of Y*
considered as a function in L!(R, W*!) is bounded by the third power of the norm of (£,7). This
is an immediate consequence of the fact that W*-! is an algebra. So theorem 3.3 follows.

7. Some technical lemmas.

LEMMA 7.1. Denote

/ é.ko,kl +"k0,k1 zk0m0+lk1m1d$1 ,
ker

ko, k €k &
pa(z0,21) 1= o Z/\/— 0.k1 0:k1 gikowo+ikiz1 gy,

koez

1
Ua (20, 21) = 2—

=1
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and
fko kit nko k1 ik k
u(xo, 1) = / J k1 gikomotikizy go,
’ QWIkXE:Z Wk €k1) ’
p($0,$1) — Z / /wko(fkl 77k?o,"?l §k0,k1 zk0m0+zk1m1dm1 ,
k €Z
which correspond to (9); then one has
“ualls 2 e[
llu — uallg N (C3%) atl
- o = H X H 51
lIp = Pallsa = el|&a)| (51)

where the norm of u — ug and of p — po has to be computed using its Fourier transform.

Proof. Simply remark that one has

1 1
Eroky = -
01 w/wko(ekl) ,/wko
2k k
= ey 0 + €k1

VWi Whe (€k1)(/Ty + /Whe (€k1))(Wro + wio(€k1))

and that the Fourier transform of u — u, is given by
1 z "
ﬁEko,kl (gko,kl +"7k0,k1) )

which gives (51). [

LEMMA 7.2. One has
P
< e

2
HXHL N XHO’L B €XH1’L ¢ XH2’L Ha+3 a T

Proof. Applying the (linear) operator to be estimated to a vector (f, 7)) one gets a vector with
&ko,k, component given by

[Wo (k1) — (Why + Vg €k1 + Py €2K3)] €k, ky -

Recalling the definition of vy, hy, one immediately obtains that the square bracket is estimated

by a constant times e3ki’. Proceeding in the same way for the 3 ,x, component one obtains the

thesis. |
Given a sequence of function gz, such that

S 1+ 1hol") [ (14 1| gty ks < 00,
ko€Z R

consider

ik k
Z / Gk kr € et oxz+texk ,

ko€Z

and
g(k) ::/{Rg(w)e_ikzd:c

LEMMA 7.3. There exists a positive finite C' such that

/%(1+|k|a)|g(k)|dks cy <1+|ko\a)/m<1+ k11%) |61y [k

ko€Z

Proof. 1t is a straightforward computation and it is omitted. O
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8. Appendix. Consider the FPU system
ii(j) = —2u(5) +u(G + 1)+ u(j — 1) = B [(u(i) — u(i - 1)* + @(G) - u(j + 1)*]
and introduce a new unknown u(jo, 1) which is periodic of period n > 1 in jo, namely
u(jo +n,z1) = u(jo,z1), =1 €RN
and impose that it fulfills the equations
i(jo,z1) = —2u(jo,z1) +u(jo + 1,71 +€) +u(jo — 1,21 —¢)
— B [(utio,@1) = ulio — 1,21 — ©)* + (uljo, 1) — ulio + 1,71 +€))?*]

in such a way that u(j,€j) fulfills (8).
It is useful to introduce Fourier coordinates by

n
) 2mjg kg ) A
u(](]awl) = Z e ” \/elkla;lqko,kldkl
ko=1 ®
" 2migko
p(jo,ﬁvl) = Zel n /elklwlﬁko,kldkl
ko=1 ®

(where p is the momentum conjugated to w). Then a straightforward computation shows that in
Fourier coordinates the finite difference operator

u(jo, z1) — u(jo,z1) —u(jo — L,z1 —e€) . (52)
acts as the multiplication of Gxy,x; by Wkg(€k1)dk, 5, Where
27k
wk0(€k1) = QSin( o —|—€k1> ,
n
27k 27k
Oko,ky = sin (ﬂ + ekl) + icos (ﬂ + ekl) ) (53)
n n

and that in such coordinates the quadratic part of the Hamiltonian is diagonal. Again it is useful
to introduce complex coordinates as in (10), so that the quadratic part of the Hamiltonian takes
the form (11) with index ko running from 1 to n, and é—ko,—h = én—ko,—kly and wy, (k1) given
by (53). Concerning the nonlinearity it is easy to see that its main part has again the form of
the function fo of sect. 4 but with a different coefficient. So the system has a form suitable for
the application of our theory, and one can prove that NLS appears also here as a resonant normal
form.
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