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Absbad. The Lorentz-Dirac equation. which describes the self-interaction of a classical 
charged particle with the electromagnetic field, is studied, for the case of scattering and 
in the non-relativistic approximation, in the framework of the theory of singular 
perturbation problems. We prove that the series expansions, which are usually given for 
the solutions in terms of the electric charge, in general are divergent and have 
asymptotic character. A closer inspection of such series leads to recognition of two types 
of particle motions, namely those qualitatively similar to purely mechanical ones 
(corresponding to vanishing charge), and those qualitatively dissimilar. For an attractive 
Coulomb potential, the distinction turns out to depend on the value of the initial angular 
momentum, the threshold being of the order of magnitude of e'lc. Finally, we discuss 
the implications for the radiated spectrum, showing that the threshold in angular 
momentum should correspond to a frequency cutoff of the order of magnitude of the de 
Broglie frequency. 

PAC numbers: 0350,0365,0230 

1. Introduction 

It is very well known that the series expansions occurring in quantum electrodynam- 
ics are in general expected to be divergent and (at most) of asymptotic type (see [l], 
[2] page 84, and [3] chapter 37), and it thus seems quite natural to ask whether the 
same characteristics are shared by the series expansions of classical electrodynamics, 
typically those obtained from the Lorentz-Dirac equation (see for example [4], 
section 17.6). However, to our surprise. we couldn't find any clear statement on the 
subject, and even met with statements suggesting a possible analytic character. 
Indeed, in the concluding section of a review article by a well respected scientist (see 
[SI page 362, and also [6]) one finds the following sentence: 'The existence of 
solutions of the Lorentz-Dirac equation was proven. But their uniqueness has not 
been proven. Nor is 'the dependence of these solutions 'on the charge e known. Are 
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they analytic in e? Under what conditions do perturbation expansions converge?’ (for 
related problems, see also [7,8] and [9, IO]). 

Here we show that in general such series are divergent and have asymptotic 
character. In fact this should be considered today as almost obvious, due to the 
singular character of the Abraham-Lorentz equation. And indeed, in the present 
paper we study such an equation in the general framework of singular perturbation 
theory (see, for example, [11-13]), which is familiar in boundary layer theory and in 
many other fields of applied mathematics, but apparently not so much in classical 
electrodynami&. Furthermore, we point out that in connection with such series 
there exists, for problems of scattering by a Coulomb potential, a kind of threshold 
in angular momentum, the physical interpretation of which might be of some 
interest in the kamework of the general relations between classical mechanics and 
quantum mechanics. 
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2. The Lorentz-Dime equation 

The equation under discussion is that of Lorentz-Dirac for a point electron, which 
we consider for simplicity’s sake in the non-relativistic approximation, namely 

L 
f - - F(x)  

m 

where x is the position vector of the electron and m its (renormalized) mass, F(x)  is 
an external force field, and 

is the ‘small parameter’, e and c being the electron charge and the velocity of light. 
We recall that the,quantity E has the dimensions of time, and has for the electron a 
value of the order of IO-” s; it will be shown below how a pure number related to E 

will appear naturally for any solution of the equation. We do not enter here into a 
discussion on the justification of the Lorentz-Dirac equation; for example, in our 
opinion it is not clear whether it is justified for motions not satisfying the ingoing 
condition f ( t ) + O  for t--t--m (for a potential vanishing at infinity), required 
typically for scattering problems. Equation (1) is an ordinary differential equation in 
the ‘enlarged phase space’ x, f, f, which for E = O  reduces to the ‘mechanical 
equation’ tn2 = F(x) in the ‘ordinary or mechanical phase space’ X, f, thus losing 
one order of dserentiation. Problems related to equations with such a property, 
named singular perturbation problems, are well known to lead in general to 
asymptotic expansions about E = 0; in any case, we give here a direct discussion for 
the Lorentz-Dirac equation. 

Preliminarly, we discuss the problem of the subsidiary conditions that have to be 
added to (1). Conditions of a Cauchy type, which assign position, velocity and 
acceleration at one time, give as usual existence, uniqueness, and continuity with 
respect to initial data and to the parameter E ,  for E # 0. However, as first apparently 
pointed out by Dirac [14,1S], it occurs that for generic initial data the solutions 
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have runaway character, i.e. have the property that the acceleration diverges? 
exponentially for t+ +m, even in the absence of an external force. 

Now, the generic appearence of runaways does not exclude the possibility of 
exceptional solutions with bounded acceleration, and the proposal of Dirac was just 
to add such a requirement on the solutions. In particular, for scattering problems 
non-runaway solutions of (1) are selected by imposing subsidiary conditions of 
mixed type, namely conditions of ordinary Cauchy type for position and velocity (so 
defining a unique solution for the corresponding 'reduced' or 'mechanical' problem 
m i  = F(x)),  and an asymptotic outgoing condition for the acceleration, precisely 
2(t)+O for t +  +m. This requirement eliminates the runaways by definition, but we 
stress that it is only sufficient, and not necessary, for a solution to be non-runaway; 
on this point we will come back below, and for the moment we restrict ourselves to 
solutions satisfying the Dirac outgoing condition. From the mathematical point of 
view, such a condition, together with conditions of a Cauchy type on the initial 
position and velocity, leads to a problem of the Stutm-Liouville type, which in 
general might admit no solution. However, with ordinary potentials vanishing at 
infinity the reduced mechanical problem does admit scattering states for suitable 
initial data, and so the same might be expected to hold also for the Lorentz-Dirac 
equation (1) with subsidiary conditions of Dirac type, at least for suitable initial 
data. A mathematical discussion of the existence of solutions with the Dirac 
outgoing asymptotic condition was given in 1961 by Hale and Stokes 1161. 

In the present paper we assume the existence of solutions of the Lorentz-Dirac 
equation satisfying the Dirac outgoing condition, and discuss the character of the 
corresponding series expansions in E. The force field F(x)  is assumed to be analytic, 
which implies that the solutions %(I ,  E )  are analytic in t ,  and also in E for E # 0; the 
problem at hand is then just the analyticity in E at E = 0. Furthermore, we will 
consider solutions x(t,  E )  having at least a singularity in the complex t plane, which is 
clearly the generic situation for a nonlinear force field F(x). Actually such 
singularities will be shown below to play a relevant role. 

3. The series expansion: its divergence and asymptotic character 

For a given force field F(x), consider a solution x ( t , E )  of the Lorentz-Dirac 
equation satisfying the outgoing Dirac condition 

lim ?(f, E )  = 0. (3) 
c-+- 

The series expansion in E for the solution x ( ~ , E )  is usually defined through an 

?This can be seen in a particularly perspicuous way if one takes the point of view of the qualitative 
theory of dynamical systems. Considering for simplicity the case of one degree of freedom, equation (1) 
can be written in the form 

1 
i = v  6 = a  U =- (a  - F ( x ) / m )  

& 

So, in the enlarged phase space x ,  v ,  a. outside a 'small' layer about the 'slow manifold' defined by 
a - F(x)/m = 0 the vector field defining the differential equation is 'prictically infinite' and essentially 
parallel to the a-axis, being directed away from the slow manifold. Thus, with a by now standard 
terminology, the existence. of runaways is described by simply saying that for the Lorentz-Dirac equation 
the 'fast foliation' is parallel to the acceleration and away from the slow manifold. 
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expansion for the corresponding acceleration f This is given' in the form 
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N 
mjr(r, E )  = 2 e&, &)E" + R N ( f ,  E )  (4) 

"=O 

with coefficients 

E )  = D V W &  E ) )  

where we have denoted D: = d"/dt", and remainder 
+oa 

RN(t, E )  = I, e - " D g p ( x ( i  + &U, E ) )  du. 

Writing out explicitly the first two terms, the series reads 

(5) 

A simple deduction of the expansion is the following: by the variation of constants 
formula, the Lorentz-Dirac equation (1) with the outgoing condition (3) is rewritten 
in the integro-differential form 

and then N repeated integrations by parts are performed. This gives for the 
remainder the expression 

+"~ 
RN(t, E )  = 1 e"-")"D~+%(x(s, E ) )  ds 

which reduces to (6) by a trivial change of the integration variable?. Series 
expansions of the type (4), with coefficients depending on the expansion parameter E 

itself, are sometimes called 'of generalized type', as contrasted to series 'of regular 
or Poincark type', whose coefficients are independent of E. 

The fact that the expansion (4), (5) diverges for any & # 0 ,  as N + m ,  is an 
immediate consequence of thc assumed existence of a singularity in t for the solution 
x(t,  E ) .  It suffices to consider the Taylor expansion of F(x(t ,  E ) )  about t ,  - s" 

,=on! 
F(x(t + s, E ) )  = 2 --D?F(x(t, E ) )  

and use the obvious inequality (s("/n! C JEJ", which holds for any E # 0 and for any s, 
for large enough n.' This shows that the convergence of the series expansion (4), (5) 
in E would imply F(x(t +s, E ) )  to be an entire function of s, against the assumption 
that x(t,  E )  has a singularity in the complex t plane. 

The discussion about the asymptotic character of the expansion (4), (5) is a little 
more delicate. We recall that a series is said to be asymptotic if, for all fixed N ,  one 
has lR, j /~~-tO as E +O. So, preliminarly, since the series is associated to any given 
solution x(t,E),  one has to define which family of solutions depending on E is 

t By the way, the expansion (4) can be extended to Ihe case N = -1, when it reduces to (8) provided one 
makes the convention that the sum Xilo  vanishes. 
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considered: the natural choice is just to keep fixed the initial data x,. io in the 
mechanical phase space.. 

From the expression (6) of the remainder it is clear that, in order to prove the 
asymptotic character of the series, one has to give a bound for all derivatives 
Dfx(t, E ) ,  for E 9 1 and all t. A useful control is provided by the assumed Singularity 
of the solution x( t ,  E )  in the variable t ,  making use of the Cauchy estimate 

a! 
d( t ,  E)" 

IDyF(x(t, E ) ) /  S 9(t, E J  - 
Here d ( t ,  E )  is for example half the distance of t from the nearest singularity of 
x(t ,  E ) ,  and 9(t. E )  =sup IF(x(z, E ) ]  for li - tl <d(t ,  E). This gives immediately the 
uniform bound 

where Z ( E )  is half the amplitude of the analyticity strip of the solution in the 
complex t plane, and $(E)  = sup 9 ( r ,  E )  for all real 2. So we conclude that the 
divergent series expansion for the given family of solutions is asymptotic if Z>O, 
where T = inf,,,, z(E). 

4. Motions of mechanical type and of non-mechanical type 

It is well known that. for any fixed E ,  the divergence of a series En C,E" representing 
asymptotically a given function does not imply at all that the series be useless. 
Rather, the expansion can provide a good estimate of the function by truncation to 
an optimal order NoPC, defined by the property that the modulus of the remainder 
has a minimum; moreover, the remainder usually turns out to be exponentially small 
with I/&. if Nopt > 0. 

In our case, with the estimate for the remainder given above, one immediately 
finds NJE) = [z(E)/E], where [.] denotes integer part. Thus the situation strongly 
depends on the value of z ( E ) / E .  Indeed. if such a ratio is larger than 1 one has 
N,,>O, and correspondingly the remainder turns out to have an exponentially 
small estimate; precisely one easily finds 

with a suitable constant c. Instead, if the ratio is smaller than 1 one has Nopr = 0, 
and the estimate for the remainder just reduces to that given by (9) evaluated for 
N = 0, namely 

which is not 'small', because E/Z(E) is then larger than 1. 
So we see that the usefulness of the series depends on the value of T ( E ) / E ,  which 

is characteristic for any given solution x(t ,  E )  at any given value of E. If Z(E)/E > 1, 
from the asymptotic expansion of x(t,  E) one~can extract a partial sum which is a 
small perturbation of the solution of the corresponding mechanical problem (i.e. 
that obtained for E = 0). This means that the solution x(t, E )  is qualitatively similar 
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to the corresponding mechanical one, or is, as one can say, of ‘mechanical type’. But 
a radically different situation occurs if Z ( E ) / E  <1, because the expansion becomes 
then useless, the remainder being no longer small. However, this doesn’t mean 
anything special for the solutionr(f, E )  of the complete equation, apart from the fact 
that it is no more a perturbation of the solution of the purely mechanical equation; 
in such a case we say that the solution is of ‘non-mechanical type’. In this sense we 
say that the Lorentz-Dirac equation, which takes into account the interaction of a 
charged particle with ‘its own’ field, should admit solutions of two kinds: those 
qualitatively similar to purely mechanical ones, and those qualitatively dissimilar. 
The difference depends on the value of the ratio Z ( E ) / E  being greater or smaller 
than 1, where Z ( E )  is the amplitude of the analyticity strip of the solution in the 
complex t plane. As far as we know, this remark was never made before. 
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5. Angular momentum threshold distinguishing between the two t p  of motions 
for a Coulomb attractive potential 

But how can one conceive of such non-mechanical motions, i.e. of solutions of the 
Lorentz-Dirac equation which are qualitatively dissimilar from solutions of the 
purely mechanical equation with the same initial data for position and velocity? The 
easiest and most natural way is to think of solutions of the Lorentz-Dirac equation 
still corresponding to situations of scattering experiments, namely satisfying the 
ingoing asymptotic conditions .?(t)+O for t -+- -m,  but not satisfying the Dirac 
outgoing asymptotic condition x(t)+O for t+ +m; indeed, this would just describe 
a situation with a charged particle being captured in a scattering experiment. Now, 
in the purely mechanical model such a situation does not occur, because one has just 
two possibilities, either bound states or scattering states. But things are d ~ e r e n t  
within the much wider mathematical model of classical electrodynamics, where the 
particle, by losing enough energy, might be captured, in which case the Dirac 
outgoing condition would be no longer satisfied. Naturally there remains open the 
problem whether the Lorentz-Dirac equation (which should be considered as an 
approximation giving a closed equation for the particle, starting from the coupled 
equation describing particle and field) does indeed admit non-runaway solutions 
corresponding to capture. Here we admit that this occurs, and content ourselves 
with heuristic considerations aimed at characterizing the domain of the mechanical 
phase space which is expected to lead to solutions of non-mechanical type, 
presumably corresponding to particle capture. The conclusion will be that, in the 
case of a Coulomb attractive potential V(r)  = K / r  (r = kl, K = -Ze2, with 2 the 
atomic number), solutions of non-mechanical type are expected if, in a scattering 
experiment, the modulus io of the initial angular momentum is smaller than a certain 
threshold value, a lirst-order estimate of the latter being 

The difficulty of the problem is due to the fact that one is trying to estimate the 
domain of initial data in the mechanical phase space leading to non-mechanical 
solutions of the Lorentz-Dirac equation, while these were characterized above in 
terms of the singularities of the solutions themselves of the complete equation, 
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which we are unable to control a priori. But a way out, which is expected to lead at 
least to a first-order estimate, consists in estimating the complementary domain, 
namely the domain of initial data leading to solutions of mechanical type; indeed by 
definition such solutions are well approximated by solutions of the purely ,mechani- 
cal equation, which are known. 

The solutions of mechanical type of the complete equation are characterized by 
the condition that the optimal truncation order in the expansion (4) be larger than 
one, or equivalently I c ~ E /  <\col, i.e. (see (7)) 

for all times. For a Coulomb attractive potential. in the case of a one-dimensional 
motion, such a condition becomes 2 m / r  < 1 (with U = PI), while it is easily seen to 
become 

U 1  -<- 
r 5~ 

for a three-dimensional motion. One has now to work out the first-order 
approximation, namely to find conditions on the initial data ensuring (12) for all 
times, for the solution of the Corresponding mechanical problem; as shown in the 
appendix, a necessary and sufficient condition is &>I* where I* is an angular 
momentum slightly larger than the value 7 given by (10). So, for a Coulomb 
attractive potential one has a first-order estimate of the domain of initial data of 
phase space leading to solutions of the complete equation which are expected to be 
qualitatively different. from the corresponding solutions of the mechanical problem: 
non-mechanical motions should occur for small enough values of the initial angular 
momentum Io, an approximate value for the threshold being given by (10). Taking 
for e the electron charge, such an estimated threshold of angular momentum is of 
the order of eZ/c, which, as a first approximation in the spirit of perturbation theory, 
might be considered to he not very dissimilar to that of Planck's constant 
r5=131e2/c. It would be very interesting to understand whether a more accurate 
analytical estimate could lead to an action nearer to b and also possibly independent 
of the atomic number 2. 

6. Possible physical interpretation of the threshold as giving a frequency cutoff in 
the radiated spectrum: analogues of the Duane-Hunt law and of the de Broglie 
relation 

We add now some considerations of a completely heuristic character. which, in our 
opinion, might be of interest for the general problem of the connections between 
classical electrodynamics and quantum mechanics. Let us consider a typical situation 
occurring in scattering experiments, with a beam of charged particles (say electrons) 
impinging on a target: the particles can 'be assumed to come all with the same 
velocity uo and all possible values of the impact parameter b, each with a 
corresponding value lo = mu,b of angular momentum in the range 0 .s lo < m. Thus, 
if lo is larger than the threshold i, the motion is expected to be of mechanical type, 
namely near to a hyperbola, producing a certain emission of radiation in the 
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continuous spectrum. Instead, if lo is below threshold, i.e. b is sufficiently small, then 
the motion is expected to be of a qualitatively different type, possibly leading to 
capture, with emission of radiation of a possibly different nature. So it seems 
reasonable to assume that, in order to study the emission of continuous spectrum in 
bremsstrahlung, to a first approximation one should take ,into account only the 
impact parameters b corresponding to lo above threshold. 

On the other hand, it is very well known that for a given impact parameter b the 
emitted spectrum has a cutoff frequency 0 = 0 ( b ) ,  above which the spectrum 
essentially vanishes: to a f is t  approximation (motions near to uniform ones) one has 
indeed (see [17-201, or [21] page 88) 
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0 = uO/b (13) 
or equivalently (1/2)loij = (l/Z)p; Thus, because of the limitation Io Si, one 
obtains that a beam with initial velocity uo is expected to emit a continuous spectrum 
up to a maximal frequency E. which is estimated by 

This is somehow analogous to the weU known Duane-Hunt law (or inverse 
photoelectric effect, or Einstein relation; see [22]) 

i% = $mu’, (15) 
Now, after the works of Weizsacker [23] and Williams [24] following the work of 

Fermi [17,18] (see also [Z], appendix 6), it is very well known that the quantum 
mechanical computations for bremsstrahlung are to a surprisingly high accuracy 
approximated by purely classical computations, if one adds the external constraint 
that the impact parameter should be limited by the corresponding condition on 
angular momentum lo > h. The motivation is that for lower values of lo one violates 
the uncertainty principle, so that classical mechanics should be abandoned?. In this 
connection, the considerations presented here might be considered to be of some 
interest, inasmuch as they give indications that prescriptions somehow analogous to 
quantum ones might be afforded by classical mechanics , (or rather classical 
electrodynamics) itself, as conditions of internal consistency. 

We add now another comment concerning a rather interesting conception of 
Fermi, which is not well known. In fact, the work of Fermi which stimulated the 
works of Weizsacker and Williams quoted above was based essentially on the idea 
that; from the point of view of the effects produced on matter, a charged particle 
should be considered as equivalent to the classical electromagnetic field that 
accompanies it$. On the other hand, such a field has a spectrum extending up to 
infinity, and Fermi just added the quantum prescription that the true or effective 
field should be the classical one, only truncated at a frequency 6 defined by the 
Einstein relation (15) (see 1181, formula 7). This is a conception very near to that of 
de Broglie, the main difference being that in Fermi’s conception one is referring to a 
realistic wave (precisely an electromagnetic wave) rather than just, in de Broglie’s 
words, to an undefined ‘periodic phenomenon’ or ‘nonmaterial wave’. In the 
t Such a procedure is very similar to that of Bohr in dealing with bound states, where one considers 
classical motions and adds from outside a ‘quantum condition’ on the angular momentum. 
*‘. . . there naturally OCCUIS the hypothesis that the electric field of the particle produce on the atom the 
same excitation or ionization effects that would be produced by the equivalent light’ (see [NI, page 143). 
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present paper we have pointed out that classical electrodynamics alone (in the form 
of the Lorentz-Dirac equation) seems to contain an internal criterion which, in a 
scattering experiment, assigns to a charged particle a characteristic cutoff frequency 
in the sense of Fermi (namely referring to the electromagnetic field accompanying 
the particle). Such a frequency 0 is estimated by (14), namely has the same structure 
as the de Broglie frequency defined by the Einstein relation (15), but in place of 
Planck’s constant 6 has an action proportional to eZ/c with a factor which in a first 
approximation is estimated by 32’”. At the moment we are unable to say anything 
more precise, and just content ourselves with having exhibited such an analogy. 

7. Final remarks 

In conclusion, we have shown, in a rather straightforward way, that the series 
expansions of classical electrodynamics should in general be divergent and have 
asymptotic character. The fact that such a simple remark went apparently unnoticed 
till now supports, in our opinion, the hope that a renewed interest in classical 
electrodynamics might disclose new relevant aspects of it. Indeed we reported here 
some heuristic considerations indicating the possibility that new insights in the 
correspondence between classical and quantum mechanics be disclosed, in the spirit’ 
of [26] (see also [27-291). But even independently of this, it seems to be plausible 
that interesting aspects of classical electrodynamics might be revealed by exploiting 
the known techniques of asymptotic series, especially the most recent ones [30,31], 
such as resummation of the divergent tail of the remainder after optimal truncation, 
resurgence and so on. In particular, the appearance and disappearance of small 
exponentials across Stokes lines [32,33], being usually related to physical effects 
such as tunnelling 1341, might be of interest. These are open problems for future 
work, which should also include an effort at a closer investigation of the solutions 
which were here called ‘of non-mechanical type’. 

. 

Appendix 

We show here that, for solutions ,of the purely mechanical equation with an 
attractive Coulomb potential, condition (12) is guaranteed for all t ,  if lo>?, with 7 
given by (10). One remarks that v( t )  takes its maximal value U,,, just when r(i) 
takes its minimal value rmi,, and moreover one has U,,, = lQ/mrmln. Thus, in order to 
satisfy (12) for all t i t  is necessary to have 

10 1 -<-. ’ ’ 

mrki, 5~ 

Now, r,, is the positive solution of the equation 

so that 
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So (16) becomes, with the expression (2) for E 

A Carati and L Galgani 

The REIS of (18) is a positive increasing function of lo, with a derivative which is seen 
to be always less than 1; so there exists a value I* (depending on U,, and Z), such 
that the inequality is satisfied only if I ,  > I*. It is obvious that I* is larger than the 
value of the RHS of (18) evaluated at 1, = 0, and it is also easy to check that indeed it 
is less than two times such a value, namely one has I* ~4(5/3)”3Zz’3e*/c. Then, a 
fortiori, inequality (12) is satisfied for all lo>? with fgiven by (lo), as.claimed. 
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