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We consider a discrete one-dimensional model that was investigated numerically by Daumont and
Peyrard [Chaos 13, 624 (2003)] as a model for turbulence in fluids, i.e., for the energy transfer from
large to small scales. They found numerically that there exist two different regimes for the energy
spectrum at high energies and low energies, respectively, and gave an analytical explanation for the
high-energy spectrum. An analytical explanation is given here for the low-energy spectrum, which
corresponds to the laminar regime. © 2009 American Institute of Physics.

[DOLI: 10.1063/1.3156729]

This paper aims at giving an analytical understanding of
some numerical results found by Daumont and Peyrard
in a series of papers (see Refs. 1 and 2), in which a par-
ticular one-dimensional lattice was studied as an ex-
tremely simplified tractable model for one-dimensional
turbulence. This is based on the following idea. It is well
known that in one-dimensional lattices, typically in the
celebrated Fermi—Pasta—Ulam (FPU) system, the interac-
tion between normal modes becomes negligible for low
enough energies. So one can think that at low energies,
such systems behave essentially in a linear way, especially
for what concerns the high frequency modes. In fact, in
this paper it will be shown that a purely linear analysis
reproduces with a very good accuracy the numerical re-
sults found by Daumont and Peyrard1 at low energies,
i.e., in the “laminar regime.”

I. INTRODUCTION

In Ref. 2, Peyrard introduced a discrete mechanical
model to study the phenomenon of energy transfer from large
scales to small scales, which is of particular relevance for
turbulence (see the references in the cited paper for a more
comprehensive description of the model and the relations
with the problem of turbulence). The model can be described
as a linear chain of particles, each of which is acted upon by
a nonlinear on-site force due to a Morse potential and also
interacts linearly with its first neighbors. This actually
amounts to a discrete version of an analog of the well known
¢* model (see, for example, Refs. 3 and 4). To a such purely
mechanical system, two further forces are added. The first
one is a dissipation term acting on each particle, which is
taken proportional to the particle velocity as to mimic a
damping due to viscosity. The second one is a time-periodic
forcing term which mimics an energy pumping at a large
scale.

The problem is then to investigate in which way does
energy, injected in the system by the time-periodic external
force, flow to the small scales. A large part of the subsequent
paper by Daumont and Peyrard1 is devoted to investigate this
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feature in terms of the spectrum: The authors compute it by
solving numerically the equations of motion and then try to
explain it by analytical means. Let us recall that the spectrum
is defined as the curve which gives the time-averaged ener-
gies of the normal modes of the system versus wave number.
Here, by normal modes we always mean those of the purely
mechanical system (with no damping and forcing) linearized
about the equilibrium position of the system.

First of all, the authors found that as time increases, the
spectrum approaches a definite limit, which depends on the
intensity of the forcing term. Moreover, they found that the
form of the spectrum decays as an inverse power of the wave
number if the forcing is below a certain threshold, while it
decays exponentially fast above such a threshold. Then, the
authors explain through some analytical arguments the expo-
nential behavior at high forcing but are unable to find an
analytical explanation for the power law behavior at low en-
ergies. In their own words, “This simple analysis ... does not
explain why the energy exchange between the modes leads
to the observed power law.”

The main result of the present paper is to show that a
purely linear analysis, which might be expected to be the
suited one at low enough energies, actually gives for the
spectrum a power law decay and indeed with a power which
fits very well the one found numerically by Daumont and
Peyrard. Such an analysis is given in Sec. III. The model is
recalled in Sec. II together with the results of some numeri-
cal computations which show that the linear approximation
is actually justified at low energies. The conclusions are then
given in Sec. IV.

Il. THE MODEL

As mentioned above, the mechanical part of the model
can be described as a chain of a finite number of equal par-
ticles, each of which is acted upon by an on-site Morse po-
tential V(y)=Q%(e™—1)2, where () is a positive constant,
and furthermore interacts with its first neighbors through a
linear force. For reasons that will appear clear soon, it is
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convenient to label the particles with an index (n) ranging
from O to N+3. The Hamiltonian of the model is thus

N+3 1 dy 2
H= | L —_ _ 2 _ 2
nE:oL( y ) + K0 =30+ G = 3]

t
+ 02 (en = 1)2:|, (1)

where K is a positive constant. Here y, with n=0, ... ,N+3 is
the displacement of the nth particle from its equilibrium po-
sition, and one deals with fixed ends, i.e., one takes y,
=yn+3=0. The linearized Hamiltonian can be analyzed in
terms of the linear normal modes, which are defined as usual
by

2 s ( kn

Eynsm N+3

A= , k=1,...,N+2, (2
k N+3,5 ) @

the linear frequencies w; of the system being given by the
dispersion relation

Tk
2(N + 3)>' 3

In Ref. 1, a damping force (with a positive parameter v)

w; =207+ 4K sin2<

Fn= V(yn+1 +yn—] _2)}11)

acting on each particle was added in order to simulate the
standard viscous damping, which is present in fluids. We
shall dispense with this term in the rest of the paper for
reasons which will appear clear in Sec. III. Here we just
mention in passing that the authors of Ref. 1 themselves
found out that such a term has no substantial influence on the
spectrum, inasmuch as spectra computed for very different
values of the “viscosity coefficient” v, when stabilized after a
sufficiently long time, turn out to essentially coincide.

In order to simulate a time-periodic force acting on the
system at a large scale, Daumont and Peyrard made the
choice of assigning the motion of particles 1 and N+2, i.e.,
of assigning the functions y;(r) and yy,,(¢). Precisely, they
made the choice

2
yn(=A sin(}\,f3 )sin(wzt),

4)

V() =—A sin(Nz_:r3 )sin(wzt),

where w, is the frequency of the second normal mode given
by formula (3). These are the motions that the two consid-
ered particles would perform (in the linearized system with
damping neglected) if only the second mode was excited.
The aim is then to look at the way in which energy flows
from the second normal mode to the higher-frequency ones.
One might be tempted to understand this energy flowing as
due to the nonlinear coupling among modes (and to the pos-
sible presence of damping), as is the case for fluids. We will
show instead that this flowing is a purely linear phenomenon.
The nonlinear coupling between the modes rather has, at
least in certain cases, the inverse effect of preventing the
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FIG. 1. Time averages (up to time ) of the kinetic energies of the first five
normal modes vs time ¢ for a small specific energy E/N, namely, E/N
=1.6398 X 10™* and N=256, with the second mode only initially excited.

flow of energy. This is actually in agreement with the fact,
observed and explained by Daumont and Peyrard, that the
spectrum decays exponentially fast in the case of a high en-
ergy, i.e., when the nonlinear coupling prevails.

We finally close this section by showing that the Dau-
mont and Peyrard model, in its purely mechanical version
defined by Hamiltonian (1), i.e., with no damping and forc-
ing, exhibits the so-called FPU phenomenon (see, for ex-
ample, Refs. 5 and 6). This concerns the motions correspond-
ing to initial data in which only a few low-frequency normal
modes are initially excited and amounts to the following.
There exists an energy threshold E,, such that if the initial
energy E is less than E., then the energy remains confined to
a certain packet of low-frequency modes, while substantially
no energy flows to the high-frequency ones, whose energies
remain essentially constant. In this sense one can say that
below such a threshold, the normal modes (or rather the
high-frequency ones) are not actually interacting, and the
behavior of the system is essentially linear. This fact is illus-
trated in Figs. 1 and 2, where the time averages (up to time ¢)
of the normal mode kinetic energies are reported versus time
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FIG. 2. Same as Fig. 1 for a large specific energy, namely, for E/N
=4.198 X 1072, The approach to equilibrium (energy equipartition) is clearly
exhibited.
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t in log-log scale for a case of low energy (E/N=1.6398
X 107%) and a case of high energy (E/N=4.198 X 1072), re-
spectively, with N=256 (the same number considered by
Daumont and Peyrard). In the case of low energy one sees
that not only energy equipartition is not attained within the
observation time but also the system appears to have actually
relaxed to some state in which the time averages of the single
normal modes remain constant somehow, as would occur for
the linearized system. Instead, in the case of high energy one
clearly sees that equipartition is already attained (i.e., the
time averages of the energies of all modes attain the same
value) after =107, This shows that the present model also
presents what is usually called the FPU phenomenon. Further
details can be found in Ref. 6.

The equations of motions corresponding to Hamiltonian
(1) were integrated using the standard leap-frog method with
a time step £=0.08, which insures an energy conservation
of 1%.

lll. LINEAR ANALYSIS

In the present section we consider the system linearized
about its equilibrium position and solve the problem of find-
ing the motions y,(¢) of particles n=2,...,N+1 when the
motions y;(¢) and yu,,(f) of particles 1 and N+2 are as-
signed. In particular, we give an explicit expression for the
functions y,(f) when the motions y,(¢) and yy,,(¢) have the
form

n()=A Si“<NZ3 )Sin(wlt),

(5)

yn(t) =A sin(%r)sin(wlt),
which corresponds to exciting mode 1 in place of mode 2.

The general method consists of determining a change in
coordinates (actually a simple translation will suffice) such
that particles 1 and N+2 become fixed, and the system just
appears as subject to a time-dependent forcing. Then one can
pass to the normal modes of the corresponding chain with
fixed ends, so that each normal mode satisfies the equation of
a harmonic oscillator subject to a time-dependent forcing.
Solving the corresponding trivial equation and going back to
the original variables y,(z), the spectrum can be finally
computed.

We now implement such a method for a forcing given by
Eq. (5). Performing the translation

T
X,(1) =y,(t) — A sin sin(w;? 6
(1) = ,(1) <N+3) (1) (6)
with n=1,...,N+2, one obtains x;=xy,,=0, while for the
variables x, (n=2,...,N+1) one gets the equations

X, = K(x,. +x,_1 — 2x,,) — Zszn

+ (w% -20%)A sin( Nq_: 3 )sin(wlt). (7)

Introducing the normal modes a;, which now refer to a chain
of N+2 particles with fixed ends by
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one finds for each a; the equation of a harmonic oscillator
with an assigned forcing, i.e.,

2 oA o T Tk )
(0] —20%A Sln<N+3>COt<2(N+1)

dk+ ﬁiak= >
\/N+ 1
©)

where @, are now the frequencies for a system of N+2 par-
ticles with fixed ends, which are given by

sin(w; 1),

wk )
2(N+ 1)/
Notice that the angular frequencies @; and w; are slightly
different because they refer to chains of slightly different
lengths. Nevertheless, it will be seen that such a difference
has a relevant impact on the form of the spectrum, inasmuch
as it has the effect of producing in its power decay an expo-
nent which actually fits the numerical results.

The solution of Eq. (9) is given by

@ =207 +4K sin2<

) ) . T Tk
(0] —20°A SIH(N+3)COt<2(N+ 1))

2 ~2 2
a1 el

Notice that a solution of the corresponding homogeneous
equation should have been added, but we put it equal to zero
just to mimic the effect of a damping (however small), which
was present in the original model and was neglected here.
We note in passing that the damping would change the factor
@;—w’ in the denominator of Eq. (10) into the complex ex-
pression @; —w}+ivw, and, analogously, the factor w?—20Q?
of the numerator into wj—20%+ivw,. So the solution (10) is
the asymptotic one for large times. This produces a corre-
sponding “final” spectrum in which the damping coefficient
did disappear, in agreement with the fact that also the nu-
merical spectrum discussed in Ref. 1 is an asymptotic one,
which was found not to depend on the damping coefficient v.
Inverting the transformation (8) for the functions y,(¢)(n
=2,...,N+1) one finds the expression

ai(t) = sin(w1).

(10)

N
k
NW )sin(wlt) + 2 a sin( ™ )

t)=A sin
ald) ( +3 P N+1

Having determined the motions y,(7) of all particles (remem-
ber that y,=yy,3=0) one can now compute the normal
modes of the original chain of N+4 particles. In particular,
one can compute the kinetic energies EN of the modes and
their time-averages EIK (i.e., the spectrum), which are given
by
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T
D=A sin( )
N+3

and

(0] —2Q%)D cot(

Tk )
2(N+1)
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N1 e

This expression is rather cumbersome, but it can easily be
estimated numerically. The spectrum, i.e., Ef versus ¢
=[/(N+3), is reported (in log-log scale) in Fig. 3, where the
power decay is clearly exhibited at least for not too large g.
In the figure there is also the curve Ef =Aq,_2‘193, which is the
fit obtained in Ref. 1. The agreement seems to be very good.
In the conclusion some comments will be added to the be-
havior of the spectrum for the high values of ¢.

There remains the problem of explaining analytically
how it occurs that expression (11) actually leads to an expo-
nent very near to the value of 2. This is achieved by approxi-
mating the sums entering Eq. (11) through corresponding
integrals, a procedure which is asymptotically exact in the
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FIG. 3. E_,K vs ¢;=1/(N+3) in log-log scale for A=0.001 and N=256. Con-
tinuous line is the curve E,:Aql'z'm.
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) (11

limit of large N. In principle the computations are simple
because the integrals can be computed through the standard
residue technique. One thus obtains rather cumbersome ex-
pressions, which can actually be estimated, giving the final
result

E}| = CIP (12)

with a positive constant C. This is a clear indication that a
power decay with exactly the exponent 2 should be expected
to occur in the limit of an infinitely long chain. This might be
confirmed by numerical computations involving increasingly
large numbers N. The analytical details leading to estimate
(12) are quite long and not particularly significant, so they
are omitted here.

IV. CONCLUSIONS

So we have shown how the power decaying of the spec-
trum in the Daumont and Peyrard model at low energies is
very well described by the corresponding linearized system,
in which the assigned motion of the extreme particles has
just the effect of forcing independently each mode. In par-
ticular the agreement is very good for not large values of q.

For what concerns the high ¢, it turns out that the spec-
trum falls off faster than a power, as one can check both from
our Fig. 3 and from Fig. 2 of Ref. 1. Here, checking the
agreement is a much more difficult problem because Dau-
mont and Peyrard neither do study the spectrum in this re-
gion nor do they give the raw data. It seems to us that in this
region the agreement is not as good as in the power decay
region. Perhaps, the reason is that in this extreme region, the
small contribution due to the nonlinearities is non-negligible
with respect to the linear one because of the smallness of the
linear contribution itself. We leave for a future work a further
study of this interesting problem.

As the spectrum at high energies is well described in
terms of the breather mechanism, as explained by Daumont
and Peyrard, it might be interesting to explore an intermedi-
ate energy region in which the modes do exchange energy
and the breather mechanism is not yet effective.

1. Daumont and M. Peyrard, Chaos 13, 624 (2003).

M. Peyrard, Physica D 193, 265 (2004).

3E. Fucito, F. Marchesoni, E. Marinari, G. Parisi, L. Peliti, S. Ruffo, and A.
Vulpiani, J. Phys. (France) 43, 707 (1982).

4G. Parisi, Europhys. Lett. 40, 357 (1997).

SA. Carati, L. Galgani, and A. Giorgilli, Chaos 15, 015105 (2005).

°G. Benettin, A. Carati, L. Galgani, and A. Giorgilli, The Fermi—Pasta—
Ulam Problem: A Status Report, Lecture Notes in Physics Vol. 728, edited
by G. Gallavotti (Springer-Verlag, Berlin, 2007).


http://dx.doi.org/10.1063/1.1530991
http://dx.doi.org/10.1016/j.physd.2004.01.025
http://dx.doi.org/10.1209/epl/i1997-00471-9
http://dx.doi.org/10.1063/1.1861264

