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Abstract

A crucial problem concerning a large variety of fusion devices is

that the confinement due to an external magnetic field is lost above

a critical density, while a widely accepted first principles explanation

of such a fact is apparently lacking. In the present paper, making

use of standard methods of statistical mechanics in the Debye–Hückel

approximation, we give indications that for a plasma there exists a

density threshold corresponding to a transition from order to chaos,

the ordered motions being those in which the confining Lorentz force

on a single electron prevails over the diffusive effect of the Coulomb

forces. The density limit, which is proportional to the square of the

magnetic field, turns out to fit not too badly the empirical data for

plasma collapses in a large set of fusion devices.

1 Introduction

It is well known that in most fusion devices a density limit for plasma con-
finement exists, while “there is no widely accepted first principles model”
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for it (see the review [1]). In the present paper, using the methods of sta-
tistical mechanics in the Debye–Hückel approximation, we show that for a
magnetized plasma there exists a transition from order to chaos at a criti-
cal density. By ordered motions we just mean those for which the confining
magnetic Lorentz force acting on a single electron prevails against the sum
of the diffusive Coulomb forces of all the other particles, so that gyration
prevails over diffusion.

The transition occurs beyond a density limit which is comparable to that
observed for plasma collapses in a large set of fusion devices. Let us recall
that, according to Alfvén [2] (see also page 382 of the first scientific paper [3]
of Bohr), a plasma can present a diamagnetic behavior (and thus a confining
pressure) only when it is in an out–of–equilibrium state, which thus can
persist only in the presence of sufficiently ordered motions, corresponding to
the existence of a suitable adiabatic invariant. Instead, in the presence of a
strong chaoticity, diamagnetism is quickly lost (see [4]). This is the reason
why the transition from order to chaos discussed here may be related to the
collapses observed in fusion devices.

So the problem is that of comparing the size of the confining Lorentz
force acting on a single electron to that of the diffusive force due to the
Coulomb interactions with all the other particles. The estimate is trivial for
the confining Lorentz force, for it is sufficient to estimate the velocity of the
electrons, and this is immediately obtained in terms of temperature. For what
concerns the size of the diffusive force due to all the Coulomb interactions, we
estimate it using the standard methods of statistical mechanics, which compel
one to take into account the n–body collisions for all n, so that the Debye
length λD then naturally enters into play (a comment on the possibility of
using the methods of kinetic theory instead of the general ones of statistical
mechanics will be given later).

Now, rigorous estimates of the sum of the Coulomb forces on a single
particle can be found in the literature only for systems of pure electrons.
Indeed, the Gibbs distribution can be consistently dealt with in such a case,
because the results do not depend too strongly on the cutoffs that have to
be introduced to manage the long range character of the forces. Instead,
in the presence of the neutralizing ions one meets with the problem that
the potential energy is not bounded from below. This requires introducing
short range cutoffs, and the results now strongly depend on them, i.e., are
model dependent (for a general introduction to the problem see [5], [6], [7],
[8] and the huge bibliography in [9]). On the other hand, one expects that
the force due to the ions makes the system more chaotic, so that, in order to
give a model independent estimate of the threshold, in the present paper we
limit ourselves to considering the contribution of the electrons, which should
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correspond to giving an upper bound to the threshold.
We will show that this leads to a theoretical electron density limit ne

given by the law

ne = 3
B2

µ0mc2
, (1)

where B is the magnetic field, µ0 the vacuum permeability, c the speed of light
and m the electron mass. Using ne = 1/a3 where a is the mean interelectron
distance, relation (1) can also be put in the particularly expressive form

1

2µ0

B2a3 =
1

6
mc2 , (2)

according to which the transition from order to chaos occurs when the mag-
netic energy inside a cell of volume a3 = 1/ne just equals (apart from a factor
1/6) the electron rest energy mc2.

We will show below that the theoretical formula (1) fits not too badly
the phenomenological density limit for plasma collapses in a large set of
fusion devices, and this suggests that the contributions of the ions, which
we have here neglected, should be of the same order of magnitude as that
of the electrons. This conjecture is supported by a further result, which will
be published elsewhere (see [10] for the case of a smeared out background).
Namely, one can discuss the stability properties of the equilibrium solutions
of a neutral system of electrons and ions in a constant magnetic field, and
one finds a bifurcation to an unstable solution, at a critical density which is
the same as (1) apart from a factor of order one.

2 The theoretical density limit

In order to apply the methods of statistical mechanics, dealing with pure
Coulomb interactions, we neglect any boundary effect, and just consider an
infinite system of point electrons in a constant magnetic field, disregarding
the role of the ions. If xj and vj denote the position vector and the ve-
locity of the jth electron, e its charge, B = Bez a constant magnetic field
directed along the z axis, and ǫ0 the vacuum dielectric constant, the system
of equations of motion in the nonrelativistic approximation is then

mẍj = evj ∧B+
e2

4πǫ0

∑

k 6=j

xj − xk

|xj − xk|3
. (3)

It goes without saying, that we are considering here a model describing an
autonomous system, i.e., an isolated one, on which no power is injected from
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outside. In terms of fusion devices, this model is presumably better suited
for high field devices, which are, in general, characterized by large energy
confinement times, and hence need a lower sustainment.

Obviously, the two forces at the right hand side of (3) play opposite
roles, the magnetic Lorentz force producing ordered motions with confine-
ment, while the Coulomb repulsions of the other electrons produce a diffusive
effect, which we consider as a perturbation depending parametrically on den-
sity. Thus a critical situation should occur when the Lorentz force and the
transverse component F⊥ of the total Coulomb force somehow balance. The
size of the Lorentz force, to which only the transverse component v⊥ of the
velocity contributes, is immediately estimated by

v⊥ ≃
√

2kBT/m

where T is absolute temperature and kB the Boltzmann constant.
Much more delicate is the estimate of the vector sum of the Coulomb

forces due to all the other electrons, or rather of the modulus F⊥ of its
transverse component. This problem can be tackled by statistical methods,
considering F⊥ as a random variable. As F⊥ obviously has zero mean, ac-
cording to Chebishev’s theorem its typical value is given by its standard
deviation σ⊥. The computations, with respect to the Gibbs ensemble at a
given inverse temperature β = 1/kBT , will be performed in the Debye–Hückel
approximation, i.e, at the lowest order in the density.

To compute the standard deviation σ⊥ of F⊥ (the modulus of the trans-
verse component of the total Coulomb force acting on a single electron, the
jth one), one uses the fact that the correlations between xj − xk and xj − xl

can be neglected in the Debye–Hückel approximation (see [11]), so that one
has

σ2

⊥ =
2

3

(

e2

4πǫ0

)2
∑

k 6=j

<
1

|xj − xk|4
>

where < . . . > denotes canonical average. On the other hand, the proba-
bility of the relative distance r between two particles is well known to be
distributed according to the Gibbs ensemble relative to the effective Debye–
Hückel potential

Veff (r) =
e2

4πǫ0r
exp (−r/λD) ,

where
λD =

√

ǫ0kBT/(nee2)

is the Debye length. So eventually at first order one finds

σ2

⊥ =
2

3

e4

4πǫ20

1

a3

∫

+∞

0

1

r2
exp [−βVeff (r)] dr . (4)
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Bringing the integrand into dimensionless form one sees that, if a/λD is
small, significant values of the integrand are assumed only in a region about
the Bjerrum length b. This is defined (see [6]) by b = e2/(4πǫ0kBT ), so that
one also has 4πbλ2

D = a3. So the integral in (4) is well approximated by the
integral

∫

+∞

0

1

r2
exp

(

−
b

r

)

d r =
1

b
=

4πλ2
D

a3
,

and finally one gets

F⊥ ≃ σ⊥ ≃

√

2

3

e2

ǫ0

λD

a3
.

Thus, in the Debye–Hückel approximation a balance between confining
Lorentz force and diffusive long range Coulomb forces on each electron occurs
when

B
√

2kBT/m ≃

√

2

3

e

ǫ0

λD

a3
. (5)

So temperature altogether disappears, and the transition from order to chaos
occurs when density and magnetic field are related by

ne = 3 ǫ0
B2

m
,

i.e., by (1), if ǫ0 is expressed in terms of the vacuum permeability µo =
1/(ǫ0c

2).

3 Comparison with the empirical density limit

in fusion devices

We now check whether the transition from order to chaos discussed here has
anything to do with the empirical data for collapses in fusion machines. A
proportionality of the density limit to the square of the magnetic field in
tokamaks was suggested by Granetz [12] on the basis of empirical data, but
apparently was not confirmed by successive observations [29, 1]. It is well
known that, while at first a proportionality to the magnetic field (through
B/R, where R is the major radius of the torus) had been proposed on an
empirical basis for tokamaks by Murakami [13], in the plasma physics com-
munity the common opinion is rather that the density limit for tokamaks
should be proportional to the Greenwald parameter Ip/r

2
a, where Ip is the

plasma current and ra the minor radius of the torus (see [1]).
We do not enter here a discussion of this point, and only content ourselves

with plotting in figure 1 a collection of available data of the critical density
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Figure 1: Density limit values vs B for various devices: conventional toka-
maks, for which recent data are shown (see references from [14] to [29]) along
with the original ones of Murakami (see [13]), stellarator devices (from [30] to
[33]), and spherical tokamaks (from [34] to [36]). Dotted line is the theoretical
density limit (1).
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for several fusion devices versus their operating magnetic field B in log–log
scale, comparing the data to the theoretical formula (1). One sees that the
theoretical law appears to correspond not so badly to the data for the high
field devices (tokamak and stellarators), whereas a sensible discrepancy is
met for the low field devices (spherical tokamaks), for which the experimental
data are larger by even an order of magnitude.

One should not forget however that we are discussing here a model
describing an isolated, non sustained, system (i.e., with no input heating
power), whereas one should expect (see the empirical Sudo limit for stellara-
tors [33]) that larger densities are accessible as the input power is increased
(although this is not so clear for tokamaks [1]). This is illustrated, in the fig-
ure, by the three points reported for the same device (the stellarator WS-A7
[30]) at essentially the same applied field, which however correspond to three
different (increasing) input heatings. Now, the low field devices for which a
sensible discrepancy is shown in the figure, are just the ones characterized, in
general, by lower confinement time and thus by larger sustainment, so that a
discrepancy corresponding to larger experimental values might be expected.
It would thus be of interest to extend our model by including some forcing
describing the operations of sustained devices.

4 Comments

In view of the lack of any first principles rationale for the existence of a
density limit in fusion devices, the partial agreement of the theoretical for-
mula (1) with the experimental data seems encouraging. In our opinion, a
key feature characterizing the present approach is that, at variance with the
treatments involving the continuum approximation, such as magnetohydro-
dynamics, we are dealing with the plasma as a discrete system of particles.
Indeed in our treatment a key role is played by the fluctuations of the force
acting on a single particle, and so the instability found here would be lost
in the continuum approximation, or in any other approximation involving
high–frequency cutoffs. For an analogous role of discreteness of matter in
cosmology, see [37] and [38].

On the other hand, even in plasma physics theory there exists a literature
in which the discrete nature of matter is taken into account. We refer to the
works (see for example [39], [40] and [41]) in which the approach of kinetic
theory is followed, along the lines of the classical works of Balescu, Lenard,
Lifshitz and Pitaevskii. Now, both the kinetic theoretical approach and
the statistical mechanical one followed here, are originating from a common
source, namely, the previously mentioned work of Bogolyubov [5], so that
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their results should agree. Thus the result found here should in principle be
obtained also within the kinetic theory approach. We leave this interesting
problem for future possible work.

Finally, it is worth mentioning that the proportionality of the density limit
to the square of the magnetic field predicted by the theoretical law (1), if
confirmed, might have relevant implications for future tokamaks. However,
for what concerns the analytical side of the problem, in order to produce
more exact fits with the experimental data one should push the theory much
more forward. First one should settle the problem of the contribution of
the ions, and include sustainment in the model. Then one should consider
the boundary effects, and the inhomogeneities of the macroscopic quantities
characterizing the plasma, such as temperature, magnetic field and density.
More in general, one should consider relativistic effects, i.e., the retarda-
tions of the fields, and thus emission of radiation. Furthermore, one should
consider higher order perturbation effects, going beyond the Debye–Hückel
approximation. Useful information on all these problems should also be ob-
tained through numerical studies, along the lines for example of the recent
work [42] on strongly coupled plasmas.

We thank N. Vianello for fruitful discussions. We furthermore thank
three referees, as well as F. Pegoraro and R. Pozzoli, for stimulating us,
through their criticisms, to undertake a statistical mechanical discussion of
the problem.

This work, supported by the European Communities under the contract of
Association between EURATOM/ENEA, was carried out within the frame-
work of the European Fusion Development Agreement.
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[11] İmre K.Özizmir E., Nucl. Fusion 4, 1 (1964).

[12] Granetz R.S., Phys. Rev. Lett. 49, 658 (1982).

[13] Murakami M., Callen J.D. Berry L.A., Nucl. Fusion 16, 347-348 (1976).
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