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Abstract. It is well known that in the presence of an attractive force having a
Coulomb singularity, scattering solutions of the nonrelativistic Abraham—Lorentz—
Dirac equation having nonrunaway character do not exist for the case of motions
on the line. By numerical computations on the full three dimensional case, we give
indications that indeed there exists a full tube of initial data for which nonrunay
solutions of scatterig type do not exist. We also give a heuristic argument which
allows to estimate the size of such a tube of initial data. The numerical computa-
tions also show that in a thiny region beyond such a tube one has the nonuniqueness
phenomenon, i.e. the “mechanical” data of position and velocity do not uniquely
determine the nonrunaway trajectory.

1 Introduction.

It is usually assumed that the motion of a charged point particle in self-
interaction with the electromagnetic field is described by the Abraham-—
Lorentz—Dirac equation. In its nonrelativistic version, to which we restrict
our attention in the present paper, such an equation takes the form

2
mi = Fe(x) + i—3x , (1)
where x(t) € R? denotes the position of the point charge at time ¢, Fe®
is an external force field, while the term e%%/c3 describes the reaction force
due to the selfinteraction with the electromagnetic field; m, e are the mass
and the charge of the particle respectively, while ¢ is the speed of light. This
is a third-order equation, so that the Cauchy problem requires to assign
in addition to the usual “mechanical” initial data, namely position xy and
velocity v, also the initial acceleration ay (which should be understood as
defined by the Cauchy data for the complete system of particle and field,



as shown in [1]). On the other hand, it is well known that a generic initial
acceleration ay leads to absurd “runaway solutions”, and in this connection
we just follow the point of view of Dirac[2], which consists in considering as
physically relevant only those solutions which have nonrunaway character,
i.e. satisfy (in the case of scattering) the prescription X — 0 as t — +o0.
Let us recall that, according to Dirac, such a prescription constitutes “ a
striking departure from the usual idea of mechanics”, but on the other hand
“ will lead to the most beautyful feature of the theory”.

The aim of the present paper is to investigate whether there exist nonrun-
away solutions in the scattering of an electron from an attractive Coulomb
center of force. Such a problem should be of interest in itself, but a special
motivation comes from the desire of clarifying a rather paradoxical result,
that was obtained long ago by Eliezer [3] (see [4] for the relativistic version),
namely that, in the particular case of head—on collisions, the Abraham-—
Lorentz—Dirac equation does not admit any nonrunaway solution of scatter-
ing type. More precisely, it was actually proven that the only nonrunaway
solutions are the motions that at a certain time spring out from the sin-
gularity. Instead, in the case of scattering, i.e. when it is assumed that
there exists some asymptotic velocity for the particle at ¢ = —oc directed
towards the singularity, irrespective of the choice of the asymptotic acceler-
ation the resulting motions were proven to be always of runaway type (i.e.
non physical according to Dirac).

On the other hand, it is also true that the special initial data considered
by Eliezer have zero mesure in the three-dimensional problem, so that they
might be ignored from a physical point of view. So there naturally arises
the question: if the initial “mechanical data” (i.e. position and velocity) are
taken near those leading to a head—on collision, does there exist an initial
acceleration leading to a nonrunaway solution, or rather will all motions
be of runaway type, as in the case of head—on collisions? We will give
numerical evidence that the set of mechanical states, for which nonrunaway
solutions exist, is indeed open and, in a sense we will explain below, very
large. We will also give an argument which allows to understand why this
phenomenon occurs, and to give a rough estimate of the size of the region
for which nonrunaway solutions do not exist.

The paper is organized as follows: in Section 2 a general mathemati-
cal discussion of the problem is given, together with an exposition of the
argument mentioned above (the proofs being deferred to Appendix A); in
Section 3 the numerical results are illustrated (error bounds being discussed
in Appendix B), while a short discussion of the results is given in Section 4.



2 The Abraham—Lorentz—Dirac equation in a cen-
tral force field.

In order to study equation (1) in the case of the Coulomb force, i.e. with
Feot = —Z62£3 r=|x|,
T

where Z is the atomic number, one first of all reduces it, by a suitable change
of units', to the dimensionless form

% = —r—’; X 2)
It is easy to verify that the non-runaway solutions are indeed planar just as
in the familiar Newton case, in which the selfinteraction force is neglected.
This is seen as follow. Considering the triple product % - (x x x), it is easily
checked that for any solution x of (2) one has

dt(x-(xxx)) =% (X Xx).

Thus either the triple product is zero for all times, so that the motion is
planar, or it will grow exponentially, which is impossible for a nonrunaway
solution (because the property ¥ — 0 implies that the triple product can
grow at most as a power).

The description of the scattering can be given, in the familiar way, in
terms of the asymptotic velocity and of the impact parameter, or equiva-
lently in terms of the asymptotic values of the energy E and of the angular
momentum (actually, its component normal to the plane of motion, which
we denote by L ), defined as usual by

E=x%-%x/2-1/r , L=xxx-k,

k being the unit vector normal to the plane of motion. We concentrate our
attention on the map (E;, L;) — (Ef, Ly) between the asymptotic values of
E and L before and after the scattering respectively:

E; = t_l)iglooE(t) , Ey= lim E(t),

t——4o00
L= Jm 1), Ly = lip, L0).

Obviously such a map reduces to the identity if the selfinteraction is ne-
glected, because the energy and the angular momentum are then constants
of motion. This will no more be the case if the selfinteraction is taken
into account, because the particle is then found to radiate both energy and
angular momentum. Indeed we have the following

'One has to take m as unit of mass, 70 = 2e’>/3mc® as unit of time and ro =
3/4Z]9 €?/mc* as unmit of lenght. Note that one has then a Z-dependent unit of ac-

tion, namely Lo = §/2Z2/3 e?/c, which is not very dissimilar from Planck’s constant
h~137¢%/c.



Theorem 1 Assume there erists a nonrunaway solution x(t) of equation
(2) with asymptotic data E;, L; for t — —oo. Then the asymptotic values
Ey¢, Ly fort — +oo erist, and one has

N Ef—Ei:—/Ra'éZ(t)dt (3)
N Lf—Li:—/Ri;((tt)) dt . (4)

In addition, L(t) is a monotonous function having a constant sign, and all
non—runaeway trajectories are convez.

A sketch of the proof is given in Appendix A. We add here a comment
on the fact that the existence of the two limits F; and L; for t — —oo was
assumed rather than proved. This is due to the fact that proving it turns
out to be deeply linked to proving the very existence of scattering solutions,
which in the present case is far from be trivial. Indeed, the standard exis-
tence theorem (see [5]) doesn’t apply here because of the singular character
of the force. One could prove the existence of such limits, but only for a
certain set of initial asymptotic data. As one of the aims of the paper is to
determine by numerical computations the set for which scattering solutions
exist, we rely on the numerical evidence that indeed such solutions exist do
(see the next section).

From the above Theorem 1 one can deduce rather easily an inequality
which will play a central role in the present paper. For definiteness let us
consider the case in which L; is positive (which can always be obtained by
a suitable choice of the orientation of the reference frame); then one has

d
LZ->/—(P, (5)
’YT‘

where 7y is the trajectory parameterized by the polar angle ¢; this is possible
because, as stated in Theorem 1, L has constant sign so that the angular
velocity never vanishes. The inequality (5) follows from relation (4), remem-
bering that Ly is nonnegative and using ¢ as an independent variable.
Inequality (5) suggests that, having fixed the initial energy E; (or equiv-
alently the initial velocity v;), the allowed values of the impact parameter
b cannot be too small, because, if one lets b decrease to zero, the Lh.s also
tends to zero, while the integral at the r.h.s is expected to diverge. In other
terms the possible values of L; leading to scattering nonrunaway motions
are expected to have a positive lower bound (depending on the initial energy
E;). We thus expect that there exists a function L (E;) such that nonrun-
away scattering motions can exists only if the initial angular momentum
L; is larger than L (E;). Equivalently, one can say that nonrunaway mo-
tions cannot exist within a tube of a certain critical radius b (v;) around



the straight line of head—on collisions. In particular the result of Eliezer is
thus recovered. In other terms, the Dirac manifold (i.e. the manifold of the
nonrunaway motions) is “pierced”.

The existence of the critical functions L (E;), b (v;) just introduced
will be supported by the numerical computations that will be illustrated in
the next section. In what follows we give instead a qualitative argument for
the divergence of the integral at the r.h.s of relation (5) when the impact
parameter tends to zero. From the convexity property of the trajectories
one expects that they are “closer” to the center of force with respect to the
asymptotes. In this way, substituting to the true trajectory the straight
line corresponding to one of the asymptotes the value of the integral would
decrease. As the asymptote has equation (in polar coordinates) r = b/ sin ¢,

one gets
[ [ap=e =2,

which diverges as b tends to zero. Using this rough estimate for the integral,
one obtains from (5) a lower bound for the function L, namely L (E) >

YET3.

3 Numerical results.

As we saw in the previous section, the problem of the existence of scattering
nonrunaway solutions can be addressed by studying the map from (E;, L;)
to (Ey,Lys). Actually it happens that this map is non regular, presenting
several branches. This can be explained as follows: in order to obtain a
nonrunaway solution one has to give besides the mechanical initial data
of position x¢ and velocity vy, the particular initial acceleration ay which
should give rise to a solution with a(¢) — 0. But it may happen that, for a
given mechanical state, there exist several such initial accelerations. In such
a case the physical manifold is folded, in the sense that to a given mechanical
state there correspond several physical motions; the different motions will
then have different final mechanical states so that the map from (E;, L;)
to (Ef, Ly) will have several branches. We recall that for the scattering on
a line by a potential barrier it was proved (see [6], [7]) that the folding is
present for a certain set of initial data and of parameters of the potential. We
will see that indeed numerical evidence suggests that also in the present case
one meets with the phenomenon of nonuniqueness of nonrunaway solutions.
For this reason, it is more convenient, from the mathematical point of view,
to study the inverse map (Ey,Ly) 2z (E;, L;), which turns out to be a
regular function. Moreover, the function ® is the object which is actually
determined by the numerical computations. In fact, it is very difficult to
integrate directly equation (2), because nonrunaway solutions are unstable,
so that the integration errors grow rapidly and the motion quickly becomes
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Figure 1: Plot of the map

runaway. Instead, the runaway solutions are stable for the backward flow, so
that, if one integrates backward in time, after a small transient the motions
practically coincide with non-runaway solutions. So, in order to integrate the
equation, one chooses some final data, i.e. the final value E, L; of energy
and angular momentum, a final distance from the center of force larger than
a certain threshold value Ry and a vanishing final acceleration. Then one
integrates backwards in time the equation, stopping the integration when the
distance becomes again larger than the threshold Ry. One finally proceeds
to compute the quantity F;, L;. Obviuosly the choice of the threshold value
Ry affects the results, but it can be estimated (see Appendix B) that the
errors on the energy are of order 1/ \/E_ng, while the errors on the angular
momentum are of order L;//E;R3. In our computations we take Ry = 100,
which assures that the relative errors are less than 10~*. The numerical
integrations were performed using a standard Runge-Kutta fourth order
method. The integration step h was chosen variable at every step using the
formula h = 1073|x|; this assures that the step is small only when the force
tends to diverge, and relatively large when the particle is essentially free.
In this way the integration times can be kept small. In order to check the
consistency of our computations, we changed both the cut—off distance and
the integration step, and the changes in the results were found to be within
the mentioned bound. In addition we checked that, when the particle is far
from the force center, it moves essentially following the Coulomb motions;
moreover, by increasing the cut—off distance one obtains solutions which
have nonrunaway character over increasing long distances, while the value
of energy and angular momentum seem to settle to some definite asymptotic



values. This gives a numerical support to the conjecture that scattering
solutions exist and can be computed through backward integration.

In this way the function ® can be built up point by point. From Theo-
rem 1, one knows that the function ® maps the first quadrant in a subset of
the same quadrant. We chose to represent graphically this function in the
following way (see Figure 1). Taking a segment in the plane (Ef, Ly), its
image by ® will be a curve in the plane (E;, L;). Correspondingly, taking
a pencil of parallel segment we obtain a pencil of curves. In Figure 1 we
report the curves obtained by applying ® to a pencil of segments parallel
to the L; axis. The shape of the curves can be understood in the follow-
ing way. For fixed energy, to high angular moments there correspond high
impact parameters, so that the motions remain a large distance from the
center of force. In this case the particle radiates a small amount of energy
and angular momentum, so that the map & is very near to the identity, and
the curves essentially coincide with the original pencils of segments. Now, if
we decrease the final angular momentum, the distance from the singularity
decreases and correspondingly the energy and momentum radiated increase
and the curves become more distorted. The appearance of a minimum is
explained as follows. As we have seen in the previous Section (inequality
(5)), at a fixed energy the initial angular momentum L; has a minimum
value L (E;); so, initially, to a decreasing of the final angular momentum
there corresponds a decreasing also of the initial one, but after L; reached
its minimal value it starts increasing even if L; is decreased.

Looking at Figure 1 one has a first information: the envelope of all curves
gives the boundary of the region (i.e. the one below the envelope) in which
nonrunaway scattering solutions do not exist. From the points of the graphic
one can estimate that this boundary is well above the estimate for L (E;)
given at the end of Section 2; in particular it is not clear whether L; — 0
when E; — 0 as the estimate suggests. It may be possible that L; > Lg
where L is a constant independent of the initial energy.

The figure also suggests that in some region of the phase space the
nonuniqueness phenomenon is present. In fact the figure shows that there
are different curves that do intersect, so that an initial datum corresponding
to a point of intersection gives rise to different solutions with different final
data (because the final points lie on different segments). In other terms,
one has that the nonrunaway manifold is folded. In particular it seems that
at least three branches are present. At the moment we have no theoretical
explanation for this folding, and we are not even sure of the number of the
branches which are present (three or more).



4 Further comments.

We have shown that there exists a set of mechanical initial data (position
and velocity) for which no nonrunaway scattering solutions exists. One can
wonder whether, for such initial data, there exist other type of nonrunaway
solutions. For example, in the relativistic Coulomb case, if the initial angular
momentum is below a certain threshold, the particle falls on the center of
force. But, in our case, in a recent paper (see [8]) a theorem was proven
according to which it is impossible for a solution of the Abraham-Lorentz—
Dirac to fall on the center of force in a finite or infinite time. There remains
open the possibility of having motions which are bounded in a open region
and never fall on the center of force. But it is in general believed by physicists
that motions of this type are forbidden for energy conservation reasons (the
particle would radiate an infinite amount of energy). So it may be the case
that really there aren’t any nonrunaway solutions for such initial data, all
solutions being of runaway type. The presence of a set of initial data for
which no nonrunaway solutions exist is very pleasent from the mathematical
point of view; because it would show that the Eliezer result is not an oddness,
but is a particular case of a more general situation.

From the physical point of view such a situation would be much less
pleasent, because it is usually assumed that it is possible to assign initial
data at will, in particular the values of the possible initial data cannot be
affected by the presence or by the absence of a force in the future (but in this
connection see also [9]). On the other hand, we want to stress that, when
discussing scattering experiments, a cut—off on the impact parameter b (or
equivalently a cut—off in the angular momentum) is often imposed in order
to correctly compute a quantity of interest, for example in computing the
emission spectrum of bremsstrahlung. In general such cut—offs are imposed
by considerations external to the theory itself. For example, it is assumed
that the theory in no more valid when the initial angular momentum is
below #, i.e. Planck’s constant, so that initial impact parameters below a
certain threshold have to be ignored. Instead, the Abraham-Lorentz—Dirac
equation seems to offer an internal criterion in imposing the cut—off, whose
order of magnitude by the way turns out to be not very dissimilar from &
(see also [10]).

Obviously, one might ask to what extent can the results thus found
be physically relevant, because in the region of interest the particle has
a velocity larger than the speed of light, so that one should use the full
relativistic Abraham-Lorentz—Dirac equation. It is known (see [4]) that
even in the relativistic case there exist no nonrunaway scattering solutions
for head—on collisions; the mathematical study of the full threedimensional
case is more difficult than in the nonrelativistic case, and at present we
are unable to say anything definite. We have performed some preliminary
numerical computations, which seem to indicate that even in the relativistic



case there exists a region in which there are no nonrunaway solutions of
scattering type. We plan in the future to study the relativistic case, both
analytically and numerically, in order to give some definite answer to the
question of the existence of nonrunaway scattering solutions.

Appendix A. Proof of Theorem 1.
Multiplying (2) by % one has

dt( X2)2 —1/r —% %) = —%%,

so that by integration one obtains

x2/2—1/r—sa-x:E,-—/sa(t)dt, (6)

which can be written has

(x —-%)?2=F; - / t)dt + + ;x
The r.h.s converges when ¢t — +o00, because by assumption r — +oo and
X — 0, while the integral of a positive function has always a limit (finite or
infinite). In particular the limit of the integral has to be finite, otherwise
the the r.h.s. would be negative and this in contraddiction with the fact
that the Lh.s. is always positive. Then, as the r.h.s. has a limit, also the
Lh.s. admits a limit, and it is easy to check that the limit of L.h.s. is just
Ey, and thus the relation (3) is proven. It also follows that E is finite, and
this obviuosly implies that also |x| has a finite limit.
The proof of the second relation (4) is a little more complicated. Mul-
tiplying equation (2) vectorially by x, we obtain the following equation for
the angular momentum L

L=L—-%xx. (7)

At variance with the Newton case, the r.h.s. does not vanish. The term x x x
can be expressed as a function of the angular momentum in the following
way: multiplying now equation (2) vectorially by x one obtains

. L
XXX=——+

xR

dt

which can be rewritten, for a nonrunaway solution, as

+oo et—s
X X X = d L.
i x % /t — (8)

Note that the quantity X x x has a geometric meaning, being linked to the
curvature radius R by |% x x| = x?/R. In particular, as L can be shown




to have a constant sign, the curvature does not vanish, so the trajectory is
convex. Now, using expression (8) in (7), one finds an integro—differential
equation, which can be put in the form

. +0o0 et—s
L:—/ ds (t— ) L , (9)
¢ T
or, integrating once more, in the form:
tt L +0o0 L
L(t)) — L(tg) = — ds = + ds (t1 —s —1)e" P +

to T t1 r
+o0 L

- / ds(to —s — 1)et°_5—3 . (10)
to r

Now, we have just shonw that |x| has a finite limit, so that L/r3® < |x|/r?
tends to zero as ¢t — £oo. Then, letting t{p - —oo0 and t; — +o0, by
applying the Lebesgue theorem to the second and third integral at the r.h.s,
one sees that the two integrals vanish so that one has (4).

We show now that Ly = limy_, o, L(t) indeed exists (i.e. the integral in
(4) is finite). First of all note that from equation (9) one has the following
alternative: either i) L(¢) has constant sign, or ii) the set {t;} of the zeroes
of L(t) is not limited from above. In fact, if sup{tx} = ¢ < 400, one has
L(t) = 0, because L is a continuous function, and, for ¢ > ¢, L(t) has
constant sign, for example L > 0. But this is impossible because from (9)
one has L(f) < 0, so one would have L(t) < 0 for ¢ > ¢. The same occurs if
one supposes that L(t) < 0 for ¢ > . Now, in case i) one has that L(t) is a
monotone function, |L(t)| is decreasing so Ly is finite.

Let us show that ii) leads to a contradiction. First we prove that not
only the limit L exists, but also that one has Ly = 0. In fact, using (10),
with ¢y = ¢t and ¢; = x4 one has

lht1 [,

0= Lltgy1) — L(ty) = / S dt+0(1) |

12
because, as we have already remarked, when k& — 400 the second and third
integrals at the r.h.s of (10) vanish. We can then conclude that

tet1 [,

lim —dt=0.
T

k—r+o0 Jyg,

Now if € [tk,tg+1] is the point of maximum for L(¢) in that interval, one
has

_ T tet1 [,
L@ <| [ Garrom <| [ Sa+ow),
try T tr r

where the second inequality is due to the fact L(¢) has constant sign on the
interval [ty, tx41]; letting K — +oco one has then |L(¢;)| — 0, so that Ly = 0.

10



Let us show now that L cannot be zero. Suppose that on the contrary
Ly = 0; then, integrating (9) from ¢ to +o0, one gets

t0o 1 (t—s—1)et*
L(t):/ as 1= :3 T
t

As r — 400, there will be a ¢ such that for all ¢ > £ one has

/:oo gs L0 — D) 2.

Notice that the integrand is positive, so that one gets, for t > ,

+00 _ _ _ t—s ~ L
@) <suplr| [ as e m D) swperl]
>t t T 2

Now, taking the sup to Lh.s one has the contradiction sup |L| < 1/2sup |L|.
So the only possible alternative is i), which implies that L is monotone and
has a definite sign. This concludes the proof of the theorem.

Appendix B. Estimate of the numerical errors.

As we have seen in Appendix A, defining £ = %x?/2 — 1/|x| — % - %, one has
(see equation (6))

1€ (+00) — E(t0)| = | /:OO %2dt| |

Now for |x| > 1 one has % ~ —x/r3, so that one can make the estimate

+oo 1
—dt| .
ré |

£(00) = E(t0)] = | |

0

On the other hand, because of r(t) > vs(t — to) + Ry (where vs denotes the
final asymptotic velocity) one gets

1

ko) — E(t0)] = 3,

Remembering that £(+o00) = E(+oc0) and that vy < \/2E}, one obtains the
estimate for the energy error.

The estimate for the angular momentum error can be obtained from

equation (9) using the fact that L is almost constant for |x| > 1. So,
integrating by parts, one gets

L= —§+0(1)

11



where the term O(1) decreases to zero more quickly than the first term.
Now, using again the fact that r(¢t) > vf(t — t9) + Ro and neglecting the
O(1) terms, by integration one finally finds

L; L;
L(£o0) — L(tg)| < < .
o) = L) < 570 < B 72
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