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Abstract

In the paper [6] it was shown that, for motions on a line under the
action of a potential barrier, the third-order Abraham–Lorentz–Dirac
equation presents the phenomenon of non uniqueness of non runaway
solutions. Namely, at least for a sufficiently steep barrier, the phys-
ical solutions of the equation are not determined by the “mechanical
state” of position and velocity, and knowledge of the initial accelera-
tion too is required. Due to recent experiments, both in course and
planned, on the interactions between strong laser pulses and ultra rel-
ativistic electrons, it becomes interesting to establish whether such a
non uniqueness phenomenon extends to the latter case, and for which
ranges of the parameters. In the present work we will consider just the
simplest model, i.e., the case of an electromagnetic plane wave, and
moreover the Abraham–Lorentz–Dirac equation will be dealt with in
the non relativistic approximation. The result we found is that the non
uniqueness phenomenon occurs if, at a given frequency of the incoming
wave, the field intensity is sufficiently large. An analytic estimate of
such a threshold is also given. At the moment it is unclear whether
such a phenomenon applies also in the full relativistic case, which is
the one of physical interest.

Keywords: radiation reaction, Abraham–Lorentz–Dirac equation, non
uniqueness.

1 Introduction

The effects of radiation reaction acting on a accelerating charge was shown to
be relevant in a series of recent experiments of interactions between beam of
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ultra relativistic electrons with strong laser pulses (see [7], [17]). Abraham
in ref. [1] and Lorentz in ref. [15, 16] (for the later Dirac relativistic version
see ref. [9]), proposed the following equation in order to describe the motion
of a radiating electron:

mẍ = F(x, ẋ) +
2e2

3c3
...
x , (1)

where m, e and c are the mass of the electron, its charge and the speed of
light respectively, while F(x, ẋ) is the Lorentz force due to an incoming elec-
tromagnetic wave. Notice that, by considering quantum models of charged
particles interacting with the quantized electromagnetic field, taking the
electrons described in the non relativistic approximation, the expectation
value of the electron position operator (in the single particle state) satisfy
equation (1) in a suitable limit (see [18] or the more recent [4, 3]).

As it is well known, the solution of the equation (1) for generic initial
data diverge, for t → +∞, as exp(t/ε), where we have defined the char-

acteristic time ε
def
= 2e2/3mc3. So, they are physically absurd, since they

keep continuing to accelerate also if the force (i.e. the electromagnetic pulse)
vanishes. To overcome such a difficulty some proposal were advanced. Dirac
himself in [9] proposed to consider only solutions whose acceleration ẍ van-
ishes for t → +∞. From the mathematical point of view, one has then to
deal no more with a Cauchy problem, for which existence and uniqueness
of solutions are granted, but with a boundary value problem, in which are
given the mechanical data of position and velocity at −∞, and the accelera-
tion at +∞. For boundary problems uniqueness is not granted, i.e., having
fixed the mechanical data before the interaction, there might exist several
solutions which satisfy the non runaway condition ẍ→ 0.

The proposal of Dirac led to interesting developments: as the non run-
away solutions form a sub manifold in the phase space of the problem,
a proposal was to find second order equations restricted to the non run-
away manifold whose solutions would be the non runaway solutions of the
Abraham–Lorentz–Dirac equation (see [20], [10]). An other approach was
followed in papers [11, 2], in which the equation of motion are formulated
in terms of integral–differential equations without runaway solutions.

There exist a more drastic approach in which the Abraham–Lorentz–
Dirac equations are replaced by second order differential equation of motion
without runaway, the so called Sokolov equation (see [19, 5]).

A more pragmatic attitude can be taken. Following Landau–Lifschitz
(see ref. [14], or the more recent ref. [8]), due to the smallness of the radiation
reaction, one can think to approximate the term

...
x with Ḟ/m ending up

with a second order equation, the so called Landau–Lifschitz (more on the
derivation will be said in Section 5). On the other hand such an equation
can be obtained also by taking the classical limit of the first perturbative
order of Quantum Electrodynamics (QED) (see for example [13, 12]).
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The Landau–Lifschitz approximation was very recently tested in some
experiments of interaction between a beam of ultra relativistic electrons
with strong laser pulses. The agreement between theoretical prediction and
experimental data was not completely satisfactory (see ref. [7, 17]). In
particular, it seems that the Landau–Lifschitz approximation overestimate
the energy emitted by the scattered electrons.

One might think that the use of the original equation (1) could give
better agreement. Some physical reasons will be given in Section 5.

In any case, approximations, such as the Landau–Lifschitz one, which
admit just one solution for given initial data of position and velocity, will
be a poor one in a regime in which Abraham–Lorentz–Dirac equation ad-
mit more then one non runaway ones. So, if such a regime exists, the
difference between the two equations would became apparent. This show
the importance to understand whether, and eventually in what regime, the
non uniqueness of the non runaway solutions shows up for the Abraham–
Lorentz–Dirac equation.

In this paper we investigate such a problem for the non relativistic version
(1) of the Abraham–Lorentz–Dirac equation, in the case of an incoming
electromagnetic plane wave. We will show through numerical computations
that there exists a threshold in the intensity of the field, above which non
uniqueness occurs. Some numerical checks are also performed, to control
whether below threshold the Landau–Lifschitz approximation is sound. It
seems that, also well below the threshold, the two equations lead to very
different behaviors, because the electron energy loss, computed according
the Abraham–Lorentz–Dirac equation, appears much smaller than the one
computed using the Landau–Lifschitz approximation.

The paper is organized as follows. In Section 2 we describe the model
studied, while in Section 3 we give an analytic estimate of the region of
parameters in which non uniqueness is expected to occur. In Section 4 we
illustrate the numerical results, and in Section 5 a comparison with the
Landau-Lifschitz approximation is given. The conclusions follow.

2 The model

We consider the case of the interaction of an electron, described by the
Abraham–Lorentz–Dirac equation, with an external electromagnetic lin-
early polarized plane wave. We will take the x axis as the direction of
the wave propagation, the y axis as the direction of electric field and finally
the z axis as the direction of the magnetic field. In the Coulomb gauge,
the scalar potential vanishes, while the vector potential A takes the form
A = (0, F (x− ct), 0), being F (x− ct) an arbitrary function, and c the speed
of light. To be definite, we model the electromagnetic pulse by choosing
F (ξ) = A exp(−ξ2/2σ) cos(kξ), although every choice with F vanishing suf-
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ficiently fast at infinity would give the same qualitative results. So, the
electromagnetic field takes the form:{

E(r, t) = −F ′(x− ct) êy
B(r, t) = F ′(x− ct) êz ,

where êy and êz are unit vectors directed as the y and z axis respectively,
while F ′ denotes the derivative of F with respect to its argument. Denoting
by x(t) =

(
x(t), y(t), z(t)

)
the electron trajectory, the Abraham–Lorentz–

Dirac equation takes the form:
mẍ =

e

c
F ′(x− ct)ẏ +mε

...
x

mÿ = eF ′(x− ct)− e

c
ẋF ′(x− ct) +mε

...
y

mz̈ = mε
...
z ,

where, we recall, ε denotes the constant 2e2/3mc3. Notice that the equation
for z decouples, and that the only non runaway solutions are z(t) = z0 +vzt,
i.e., uniform motions. From now on, we consider just the first two equations,

which, by defining ξ
def
= x− ct, can be put in the following form:ξ̈ =

e

mc
F ′(ξ)ẏ + ε

...
ξ

ÿ = − e

mc
F ′(ξ)ξ̇ + ε

...
y .

(2)

The phase space corresponding to such an equation is six–dimensional,
but the system can be reduced to a four dimensional one exploiting the
invariance by translation along the y–axis. In fact, the second equation
gives

d

dt

(
ẏ − e

mc
F (ξ)− εÿ

)
= 0 ,

i.e., the Abraham–Lorentz–Dirac equation reduces toξ̈ =
e

mc
F ′(ξ)ẏ + ε

...
ξ

ẏ = − e

mc
F (ξ) + εÿ + C ,

where C is an integration constant which depends on the initial data. We
can include the constant C in the potential, thus defining the ”effective

potential” FC(ξ) = F (ξ) + C, and introduce the new variable v
def
= ẏ: in

such a way, one gets the equation
...
ξ =

1

ε

(
ξ̈ − e

mc
F ′C(ξ)v

)
v̇ =

1

ε

(
v +

e

mc
FC(ξ)

)
,

(3)
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i.e., an equation in a four–dimensional phase space.
To discuss the solution of this equation, consider first the “mechanical

case” ε = 0, i.e., the case in which emission is neglected. So one getsξ̈ =
e

mc
F ′C(ξ)v

v = − e

mc
FC(ξ) ,

which reduces to the one dimensional Newton’s equation

ξ̈ = − e2

m2c2
F ′C(ξ)FC(ξ) ,

with a potential VC(ξ) = e2F 2
C(ξ)/2m2c2. The solutions are readily found.

In particular, for motions of scattering type, if the initial “kinetic energy”
ξ̇2/2 is larger then the maximum of VC(ξ), the electron will pass the bar-
rier, while it will be reflected if the initial kinetic energy will be smaller. In
addition, it is easily checked that the zero of FC(ξ) gives stable equilibrium
points, while maxima of the modulus |FC(ξ)| will give unstable equilib-
rium. Return now to the full Abraham–Lorentz–Dirac equation (3). As
recalled in the introduction, we look for “exceptional” initial data which
correspond to solutions having an asymptotically vanishing acceleration. In
other terms, given the initial value ξ0 and ξ̇0, we want to find whether ini-
tial data v0 and ξ̈0 exist such that the corresponding solutions of (3) are
non runaway. Since we are considering a scattering problem, this can be
implemented in a straightforward way by numerically integrating backward
in time the equations of motion. In other terms, one fixes the final data
outside the interaction zone and integrates backwards in time: in such a
way the Dirac manifold (the subset of phase space spanned by the non run-
away solutions) becomes an attractor, and after a small transient the orbit
practically will lie on such a manifold. Once the electron did come back into
the non interacting zone, one gets the initial data which gives rise to a non
runaway solution. Numerical evidence suggests that, if the electromagnetic
field F (ξ) is “strong” enough, then, having fixed the mechanical data ξ0 and
ξ̇0, there exist several initial v0 and ξ̈0 which give rise to non runaway dif-
ferent trajectories. In geometric terms, the Dirac manifold is folded. Such
non uniqueness phenomenon will be discussed in the next Section.

3 The non uniqueness phenomenon

Following ref. [6], in order to discover whether there exist several non run-
away solutions corresponding to the same initial mechanical state, we start
investigating the unstable equilibrium point. By rescaling time by t → εt,
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Figure 1: Plot of the initial kinetic energy vs. the final one for field amplitude
A = 1, and vanishing wave vector. The map is not one to one, and this
implies non uniqueness of the non runaway solutions. Indeed, drawing a
horizontal line at energy about 1.13, one immediately checks that to a given
initial energy there correspond different final ones. The inset hints at the
complex structure of the maxima and minima of such a curve.

the equations (3) becomes
...
ξ =

eε2

mc
F ′C(ξ)v + ξ̈

v̇ = − e

mc
FC(ξ) + v .

(4)

The equilibrium points of such an equation can be subdivided into two
classes:

• The point(s) v = 0, ξ = ξ∗ with FC(ξ∗) = 0 (and obviously ξ̇ = ξ̈ = 0).
Such points corresponds to the stable equilibrium points of the me-
chanical case, and are not interesting for the scattering states. In fact,
the non runaway solutions are the ones which fall on the equilibrium
point, and thus they do not describe scattering states.

• Points v = v∗, ξ = ξ∗ with F ′C(ξ∗) = 0 and v∗ = e
mcFC(ξ∗).
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Figure 2: Plot of the initial kinetic energy vs. the final one for three field
amplitudes: A = 0.31 smaller than Acr ' 0.38, the critical one and A = 0.45
larger then the critical one. The wave vector vanishes. One sees that for
A = 0.45 there exists a very weak local maximum (see the inset), which
entails the non uniqueness of the non runaway solutions.

We consider only equilibrium points of the second type, more precisely we
considers points such that ξ∗ is a maximum for F 2

C(ξ). It turns out that, as
the parameters are changed, such points exhibit a bifurcation from a saddle
to a saddle-focus, the same which drives the non uniqueness phenomenon
in the one dimensional case (see ref. [6]). In fact, putting χ = ξ − ξ∗ and
u = v − v∗, the equation (4) to the first order becomes{...

χ = −k2χ+ χ̈

u̇ = u ,
(5)

were we defined

k2
def
=

e2ε2

m2c2
F ′′C(ξ∗)FC(ξ∗) . (6)

So the linearized equations decouple: the second one defines a direction
which is always unstable, while the first one is the same one just studied for
the one-dimensional case in ref. [6]. As shown in the quoted paper, there is
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Figure 3: Plot of the initial kinetic energy vs. the final one for field amplitude
A = 1, and non vanishing wave vector. Notice the jump. The inset is an
enlargement of the curves around the minimum, which clearly exhibits the
non uniqueness phenomenon. There are other jumps, not shown in the
figure, at low energy. The jumps imply that, for some initial energies, there
are no scattering solutions: for such energies the electron falls onto a stable
equilibrium point.

a bifurcation value

kcr =
2
√

3

9
. (7)

For k < kcr the equilibrium point is an unstable saddle, with one stable
direction and two unstable ones. Instead, for k > kcr one gets two complex
eigenvectors, i.e., one has again a stable one-dimensional manifold (call it
Σs), but the unstable manifold is indeed an unstable focus: the points spiral
out from the origin going to infinity. This is the source of the non uniqueness
behavior. In fact, one can argue as follows. Return to the nonlinear equation:
the unstable manifold is three–dimensional, while the non runaway manifold,
as recalled above, is a two-dimensional one, so that generically there will be
a one-dimensional intersection γ(t), which will be a solution belonging both
to the unstable manifold and to the non runaway manifold: γ(t) springs out
spiraling from the unstable equilibrium point at t = −∞, and goes to infinity
with a vanishing acceleration for t → +∞. Consider now, at t = +∞, the
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Figure 4: Same as figure 3, for A = 0.3, below the critical value. Now the
insets show that the map is one to one, so that one has uniqueness.

non runaway solutions near to γ, and propagates them back in time: by
continuity of solution of (4) with respect to the initial data, this solutions
will follow γ(t) near the equilibrium point spiraling about the stable one-
dimensional manifold Σs. The backward-time flow turns the stable direction
into the only unstable one, so that the orbits will finally follow the Σs

manifold returning again to infinity. In other terms, the existence of an
intersection between the unstable manifold and the Dirac one, entails that
the Dirac manifold will be wrapped around the stable manifold Σs. This
is the origin of the non uniqueness property. In fact, fix now ξ = const
sufficiently distant from the origin, and consider the intersection of the two-
dimensional Dirac manifold (before scattering) with the three-dimensional
hyperplane ξ = const: one would get a curve which projects on the plane
of the initial “mechanical data” (ξ̇, v) like a (deformed) spiral. Letting C
changing, the different spiral will have in general different center, so that
they will intersect giving rise to different non runaway trajectory for the same
mechanical initial data. These geometric considerations are obviously not a
proof, but just an indication that the bifurcation of the unstable equilibrium
points could drive the appearance of the non uniqueness behavior. In the
next Section we will show, by numerical computations, that this is indeed
the case.
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4 Numerical results

The equations of motion (2) were integrated by a third order Runge–Kutta
method which is easy to implement and sufficiently fast for our purposes.
Moreover, we studied two case: either a simple Gaussian incoming wave

eε

mc
F (ξ) = A exp

(
− ξ2

σ2

)
, (8)

or the more complex wave form

eε

mc
F (ξ) = A exp

(
− ξ2

σ2

)
cos kξ , (9)

which allows one to investigate the role of the wave-length in the scattering
process.

In the latter case one can rescale the distances by the wave length of the
incoming laser pulse. Then, all the constants of the problem are resumed
into only two parameters: the field intensity A and the width σ of the
electromagnetic pulse. In the pure Gaussian case (8), we have taken σ = 1
and studied the behavior of the non runaway solutions as the field intensity
A is changed. In particular, we find that ξ = 0 is an unstable equilibrium
point, in fact the only equilibrium point. We compute the value Acr which
corresponds, through the formula (6) to the value of kcr. For σ = 1 one
finds Acr ' 0.38.

In the case of the potential given by (9), we have taken a larger value
σ = 10, and, by rescaling, k = 1. Such values of the parameters correspond
to the values used in the actual experiments, in which the laser wave length
is about 0.8 µm, while the duration of the pulse is about 40 fs, so that the
laser wave length is an order of magnitude smaller than the pulse width.

In this latter case ξ = 0 is again an unstable equilibrium point, even
if now there exists an infinite number of them (both stable and unstable).
The point ξ = 0 gives however a lower value for Acr, which in this case
corresponds to Acr ' 0.36. Moreover, as the peak intensity E of the
electric field, i.e., the maximum of F ′(ξ), is given by

E ' mc

eε
kA =

3m2c4

2e3
kA (10)

to Acr correspond a critical field Ecr (remember that here k = 1)

Ecr ' 0.54
m2c4

e3
, (11)

which is larger than the critical field of quantum electrodynamics by a factor
of 70, i.e. 300 times larger than the maximum field experienced by the elec-
trons in the experiments performed in [17]. Nevertheless, as the numerical
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Figure 5: Comparison between orbits computed using the Landau–
Lifschitz approximation (broken line), and the ones computed using the full
Abraham–Lorentz–Dirac equation (full line) with the same initial mechani-
cal data: upper panel refers to a pure Gaussian field with intensity A = 0.31
below the critical one and initial energy E = 0.00295; lower panel refers to
a pure Gaussian field with A = 1 above the critical one, for an initial energy
E = 1.1322 for which there are several non runaway solutions.

results of Section 5 show, the difference between the Abraham–Lorentz–
Dirac equation and its Landau–Lifschitz approximation cannot be neglected
also in that regime.

As remarked in Section 2, to obtain the non runaway solutions one in-
tegrate backwards in time. In such a way, one constructs a map from the
“final data” (ξf , yf , ξ̇f , ẏf , ξ̈f , ÿf ) to the initial one (ξi, yi, ξ̇i, ẏi, ξ̈i, ÿi). The
only independent final parameters are the final velocities ξ̇f and ẏf . In
fact, as one is dealing with s scattering case, one has to considered ξf large
(i.e. states in which the electron has left the interaction zone with the laser
pulse), i.e., an arbitrary (but fixed) value for |ξf | = R such that the force
due to the electromagnetic field essentially vanishes. In such a case one is
forced to fix ξ̈f = ÿf = 0, by the non runaway condition. Moreover, due
to the invariance under translation along the y axes, one can fix arbitrarily
yf = 0.

Having fixed the final data, one starts integrating backwards up to a
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time such that the electron, after having interacted with the electromagnetic
wave, returns into a zone of vanishing field, for example again at |ξi| = R.
At this moment one collects the initial value ξ̇i, ẏi, ξ̈i, ÿi. So defined, the map
from the “final” to the “initial” data is one to one. The problem is whether
the inverse map, i.e., the physical one which maps the “initial” data to the
“final” ones, is one to one, or not. If it is one to one there is uniqueness,
i.e., to a mechanical data of position and velocity corresponds just one non
runaway solution; if it is one to many, to a single mechanical state, there
corresponds different non runaway solutions with different asymptotic final
states. In order to answer this question, we made the preliminary step of
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Figure 6: Energy loss in a collision versus the energy of the incoming electron
in logarithmic scale, for three values of the field intensity, A = 0.36, 0.036,
0.0036. The potential is given by formula (9), with k = 1 and σ = 10.
Squares are the losses computed according Landau-Lifschitz equation while
circles are the losses computed according Abraham–Lorentz–Dirac equation.
Notice that the Abraham–Lorentz–Dirac equation predicts a maximum for
the energy loss, while, according to the Landau-Lifschitz equation, the loss
keep to continuously increasing as the electron initial energy increases.In the
case A = 0.36, missing points represent initial data in which the incoming
electron fall on one of the potential minima (no scattering occur).

reducing to the case of a scattering normal to the plane wave, i.e., to the case
in which the component ẏi along the y axis of the initial velocity vanishes.
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So, one has to solve the equation ẏi(ξ̇f , ẏf ) = 0 (which is easily solved by
the bisection method). This gives ẏf as a function of ξ̇f , which remains
the only free parameter. A curious feature of this equation, probably linked
to the conservation of the y component of momentum in the mechanical
case, is that ẏf = 0 gives a good approximation to the true solution. Now,
by a simple inspection of the curve ξ̇i as a function of ξ̇f one can check
whether the inverse map is one to one or not. Equivalently one can inspect
the curves of the initial kinetic energy vs. final kinetic energy: in the non
uniqueness case such map would show a non monotone behavior. In figure 1
this curve is drawn for the pure Gaussian potential (8) with A = 1, the
inset showing details about the local maximum. There is evidence of a
complex sequence of nested maxima, as in the case investigated in ref. [6].
So the map is not monotone, and thus the inverse map is not one to one.
Figure 2 shows what happens when the field strength A is increased from
below the critical value to above it: the curves of the initial kinetic energy
are reported versus the final ones (always for fixed initial value ẏi = 0): if
A = 0.31 the curve is monotone increasing, so that the inverse map is one
to one and there is uniqueness of the non runaway solutions. For A = Acr

the curve seems to have an inflection point but one can consider the inverse
map again as one to one, i.e., uniqueness of non runaway solutions. Instead,
a carefully inspection of the case A = 0.41, above the critical value, shows
a weak local minimum for a final kinetic energy of ' 0.06 (more evident in
the inset of the figure), so that uniqueness is lost. Figure 3 and 4 refers to
the case of the potential given by (9). In figure 3 the initial kinetic energy is
plotted versus the final one for A = 1: the inset is an enlargement about the
minimum. Again, above the critical value, the map is not one to one, and
one has the non uniqueness phenomenon. Notice that the map has a jump,
i.e. the inverse map is not defined in a certain interval. It seem reasonable
to assume that for such a value of the initial kinetic energy, the incoming
particle falls onto one of the stable equilibrium points. This indeed happens
for some value of the energy, but an analytical proof is lacking. A more
detailed study at low final energies (too low to be appreciable in the figure)
shows that there are other jumps. Instead, in figure 4, the initial kinetic
energy is plotted versus the final one for A = 0.3, which is below the critical
value. Now, the map appears to be one to one, and uniqueness recovered.
As in the case of A = 1, the inverse map is not defined for some intervals
of the initial kinetic energy. Again we think this is due to the fact that the
particle be captured by one of the stable equilibrium points.

13



5 Comparison with the Landau–Lifschitz approx-
imation

The Landau-Lifschitz approximation is obtained from the Abraham–Lorentz–
Dirac equation using the following argument. For small ε one has

mẍ ' F(x, ẋ) ; (12)

so that one can obtain an approximation of the third derivatives by

...
x =

d

dt
ẍ ' d

dt

(
1

m
F(x, ẋ)

)
,

which substituted into the Abraham–Lorentz–Dirac equation gives, neglect-
ing the terms of order higher,

mẍ = F(x, ẋ) + ε
(∂F
∂x

ẋ +
1

m

∂F

∂ẋ
F
)
, (13)

where we have replaced ẍ again by its approximation (12). This equation
does not have the problem of runaways and therefore of the choice of initial
data. Using a third order Runge–Kutta methods, we integrate this equation,
with the Gaussian vector potential as given by (8), for several values of the
intensity A. Figure 5 show the orbits found: they are computed by first
integrating the Abraham–Lorentz–Dirac equation backward for a certain
amount of time, and then the Landau–Lifschitz equation forward in time, so
that the initial mechanical data for the two equations agree. One can check
that the orbits for low values of A essentially coincide, while they differ for
higher field intensities as expected. A more meaningful comparison is given
in figure 6, where it is reported, in logarithmic scale, the loss of energy

∆E
def
= Ei − Ef , i.e. the difference between the incoming electron energy

Ei and its energy Ef after the scattering, as a function of the energy Ei.
We take for the laser field the form (9) with σ = 10 and k = 1, which, we
recall, are the typical value used in the actual experiment, and three different
values for the field intensity A: 0.36, 0.036 and 0.0036. The largest of such
values correspond to the the critical field for which non uniqueness shows up,
while the smaller one, as explained, is of the order of magnitude of the field
employed in the actual experiments. In the figure 6, the squares correspond
to the loss computed according to the Landau–Lifschitz equation, while
the circle to the one computed according to the Abraham–Lorentz–Dirac
equation. The results are qualitatively different also for field’s intensities
well below the threshold, inasmuch as according Abraham–Lorentz–Dirac
the loss has a well defined maximum at a definite energy, while according
Landau–Lifschitz, at least in the range of energy we have explored, it keeps
increasing without limit. From the figure, it seems that such energy loss
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increases as a power of the incoming electron energy, being the log–log plot
well approximated by a straight line. Fitting the power one gets a value
very close to 1/2.

Moreover, the energy loss is systematically smaller for the Abraham–
Lorentz–Dirac equation with respect to its approximation. This latter fact
can be explained, on a physical ground, as follows. First of all, we recall that
the Abraham–Lorentz–Dirac equation predict, for the power radiated by the
particle, the classical Larmor expression PLar = 2e2

3c3
|a|2 being a the particle’s

acceleration. Instead, as it is easily verified1, the Landau–Lifschitz equation

predict the particle radiates a power given by PLL = 2e2

3c3
|F|2
m2 , where F is the

force due to the impinging laser pulse. Now, the particle’s motion is damped
by the radiation reaction, so its acceleration |a| is smaller with respect to the

undamped case, i.e., with respect to |F|m . So, the Landau–Lifschitz equation
overestimates the energy losses due to radiation, especially in cases in which
the radiation reaction is important. This fact is acknowledged in reference
[17] (see bottom of page 8, first column, and following lines), where, in
Figure 4 panel b, the measured electron energy spectrum is reported together
with the one computed from the Landau–Lifschitz equation. The authors
ascribe such an overestimate to the quantum nature of the photon scattering
process, but apparently, also the quantum corrections (see the same figure
panel c) are not enough to account completely the experimental data. In
this connection, the use of Abraham–Lorentz–Dirac equation which gives
smaller energy losses could allow a better agreement with the experimental
data.

6 Conclusion

We have show that, for the non relativistic Abraham–Lorentz–Dirac equa-
tion, there exists a threshold for the intensity of the incoming field, above
which one has several non runaway solutions for the same mechanical initial
data of position and velocity. Such a threshold agrees well with the bifurca-
tion value of the main unstable point from saddle to saddle–focus. Above
such a threshold the Landau-Lifschitz equation clearly differs from the full
Abraham–Lorentz–Dirac equation, but we have checked that also well below
the threshold the energy losses in a collision does not agree each other. As
this is the main experimental observable, one may wonder whether the use of

1In fact, from the Landau–Lifschitz equation (13) written as mẍ = F + εḞ, by multi-
plying by ẋ one finds Ė = εḞ · ẋ, where E is the mechanical energy. By integrating by
parts the r.h.s., and expressing ẍ again by the Landau–Lifschitz equation, one finds

d

dt

(
E − εF · ẋ +

1

2
ε2F · F

)
= εF · F .

In the bracket at the l.h.s. appears, besides the mechanical energy E, also two other terms
which are the analog of the Schott term for the Abraham–Lorentz–Dirac equation.
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the full Abraham–Lorentz–Dirac equations instead of the Landau–Lifschitz
approximation might lead to an agreement between theory and experiment,
better than the one found in ref. [17]. Answering such a question would
require an analysis similar to that performed in this paper, for the full rel-
ativistic Abraham–Lorentz–Dirac equation, in the regime of interest for the
experiments. This is a much more complex task, on which we hope to come
back in the future.
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