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Abstract

We investigate the thermal fluctuations of the ionic motions in a
Born model of ionic crystals, namely, a model in which the electrons are
eliminated, being replaced by suitable effective potentials among the
ions. The model is studied in its classical version, computing the New-
tonian trajectories of the ions. The general motivation is that, although
being an essential ingredient within Green-Kubo linear response the-
ory, thermal fluctuations apparently were not studied systematically
by molecular dynamics methods, as was done instead for the approach
to equilibrium in the Fermi-Pasta-Ulam problem. The time evolution
of the fluctuations is studied in terms of the time-changes of the mode-
energies of the system. The stages of the “regression” of the fluctuations
are described, from a first stage of strong time-correlations up to a fi-
nal decorrelation, and a comparison with the process of approach to
equilibrium is performed. Finally, the dependence on specific energy
is investigated.

keyword: relaxation times — ionic crystal model — long–range interactions.

1 Introduction

In the present paper we investigate a modified version of the classical Fermi-
Pasta-Ulam problem, somehow an extension of it. Indeed, instead of study-
ing how equilibrium is attained starting from a non-equilibrium state, we
study thermal fluctuations, namely, how fluctuations evolve at equilibrium.
Here, by equilibrium state we just mean a "generic” one in the sense of
Khinchin [1], namely, one in which the mode-energies are Maxwell-Boltzmann
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distributed, with a mean equal to the specific energy ε of the system. Thus
we leave aside any subtler question of ergodic type concerning the motions
occurring at equilibrium, discussed for example in the papers [2, 3, 4, 5], and
[6, 7, 8, 9].

“Thermal fluctuations” (see [10], chapter 12) are a constitutive ingredient
of the Green-Kubo linear response theory [11, 12, 13] and of the previous
Onsager theory [14, 15, 16], and thus were much investigated in connection
with macroscopic quantities of physical interest. Recent works are for exam-
ple [17, 18, 19] for thermal conductivity in variants of the FPU model, and
[20, 21, 22] for infrared spectra in a realistic model of ionic crystals. Here,
instead, the fluctuations are investigated for microscopic quantities, namely,
the energies Ei of the normal modes, which constitute the basic, prototype
microscopic quantities for all crystals, and are the ones considered in the
FPU work.

However, the study is performed for the realistic FPU-like model of ionic
crystals mentioned above, which, as shown by Fig. 1, could reproduce in
a surprisingly good way the experimental infrared spectra, in terms of the
Newtonian trajectories of the ions. There, the relevant quantity for the
spectra was the electric polarisation P(t) = [

∑
eixi(t)]/V (where ei and

xi(t) are charges and position vectors of the ions, while V is the volume),
and here our aim is to frame the thermal fluctuations of such a quantity
within the fluctuations of the prototype microscopic quantities Ei.

In order to investigate the time-fluctuations of the mode energies Ei, we
start considering their time-changes after a time-increment τ , as functions
of τ , i.e., the functions

∆Ei(τ) = Ei(Φ
t+τz)− Ei(Φtz) , (1)

where Φtz denotes the evolved point at time t of an initial point z in phase
space. These are random functions, since they depend on the initial datum
z and on the current time t along an orbit, conceived as parameters over
which they can be sampled (in the second case, for example, through a time-
average).

It is clear that the energies Ei at times t and t+τ , being equal for τ = 0,
are strongly correlated for τ small, whereas they are expected to become
independent after a certain relaxation time. Now, such a relaxation time
might be estimated by studying the time-auto correlations of the energies
Ei(t). However, one can also use a different quite elementary tool, of which
we are unable to quote a previous reference.1 By the way, such a tool has
the merit of allowing one to compare in some natural way the process of
“regression of the thermal fluctuations” to that of approach to equilibrium
from a non equilibrium state, analogously to what was done by Onsager in
connection with macroscopic quantities.

1Such a tool was proposed by the third author (A. C.) as the subject for an undergrad-
uate thesis in Physics at the Milan University [23].
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Figure 1: Imaginary part of susceptibility vs frequency at room temperature.
Comparison between calculations (solid line) and experimental data (taken
from E. Palik, Handbook of optical constants of solids, Academic Press, Am-
sterdam, 1998). This is Fig. 1 of [21]: see also Fig. 2 of that paper

The simple underlying idea for such a tool, is that the product Ei(Φt+τz)·
Ei(Φ

tz), which is the key ingredient of a time-correlation, although not ap-
pearing in the expression (1) of the energy changes, appears however in its
square. Then the parallel with the standard FPU approach is even stronger,
if one considers the modulus (instead of the square) of the energy changes,
i.e., one introduces the positive quantities

|∆Ei(τ) | . (2)

Indeed it is easily seen that, when relaxation did occur, i.e., when τ is large
enough for the variables Ei(Φt+τz) to become independent of the variables
Ei(Φ

tz), then the quantities (2) are Maxwell-Boltzmann distributed, with
the same mean as the energies Ei, namely, as the specific energy ε of the
system.2 Thus one is reduced to study how the quantities |∆Ei(τ)| relax
to a MB distribution with mean ε, in analogy to how, in the ordinary FPU

2Consider the paradigmatic case of two positive random variables x, y which are inde-
pendent, and Maxwell-Boltzmann distributed with the same mean. Then for the proba-
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problem, one studies the relaxation of the energies Ei(t) themselves to a MB
distribution, starting from a non equilibrium state.

In particular, the statistics of the quantities |∆Ei(τ)| can be studied in
terms of the two simplest tools, i.e., mean and standard deviation. Thus,
recalling that in the exponential distributions mean and standard deviation
are equal, we will find that the relaxation occurs in three stages. In the first
stage (presenting a strong time-correlation) the probability distribution of
the random variables |∆Ei(τ)| is far from exponential; in the second stage
the distribution is exponential, but with a mean smaller than the equilib-
rium one; eventually the mean relaxes to the equilibrium value, so that the
Maxwell-Boltzmann distribution is attained. We also compare the results
for the fluctuations with those for the approach to equilibrium. Finally we
investigate the dependence on energy, which will be seen to open possibly
interesting perspectives.

In section 2 is described the particular Born-type ionic-crystal model
used, in section 3 the results are illustrated, and some further comments are
reported in the conclusive section.

2 The Born model for ionic crystals

The model

We now recall what is the Born model that is commonly used for dealing
with the motions of the ions in ionic crystals. Such crystals are considered
to be the simplest, somehow the paradigm, of crystals (see for example the
handbook by Seitz [24]), and among them Lithium Fluoride (LiF), which we
study here, is the prototype, playing for crystals a role analogous to that
of Hydrogen for atoms. The reason is that the electronic configurations of
the ions ( Li+ and F− in our case) have the same stability as that of noble
gases (He and Ne respectively). Thus, as pointed out by Born since almost a
century, to a very good approximation the ions can be dealt with as a system
of point charges, in which the degrees of freedom of the electrons could be
eliminated. Indeed, due to the large mass difference between ions and elec-
trons, in the spirit of the adiabatic principle the screening effect due to the

bility P (|x− y| > ∆E) one has

P (|x− y| > ∆E) = β2

∫
|x−y|>∆E

e−β(x+y)dx dy .

Performing the change of variables X = x+ y, Y = x− y, the integral becomes

P (|Y | > ∆E) = β2

∫ +∞

∆E

e−βXdX

∫ X

∆E

dY = e−β∆E

∫ +∞

0

ze−zdz = e−β∆E ,

having defined z def
= β(X −∆E). This shows that |x− y| too is MB distributed, with the

same mean as x an y.
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electrons can be taken into account through 1) the introduction of “effective
charges” entering the Coulomb potentials, and 2) the introduction of a fur-
ther “effective potential” acting among the ions. We want to emphasize that
this "effective potential", either calculated in quantum mechanical terms or
introduced in a phenomenological way, implicitly introduces Planck’s con-
stant in our model. This fact is responsible for the explicit showing up of
a such a constant in one of the results for the Born model, dealt with as
a classical dynamical system. In this paper, we use the phenomenological
Buckingham potential which proved to produce the remarkably good infrared
spectra shown in Figure 1, namely,

Vss′(r) = ass′e
−bss′r +

css′

r6
, (3)

where s = 1, 2 and s′ = 1, 2 denote the ionic species. The values of the
constants ass′ , bss′ and css′ and of the effective charges can be found in the
work [21], Table I. It is a fact (shown by Figure 1) that, with such a choice
for the parameters, the experimental infrared spectra were reproduced in
an impressively good way. However, it is also true that in the procedure
followed there remains an element of arbitrariness, which might particularly
influence the dependence of the results on specific energy.3

So the model consists of an even number N of point charges (the pairs
of ions) located inside a cubic “working cell”, the side L of which determines
the density of the system. In our computations we took a density, 2.713
g/cm3, which is the experimental one extrapolated to zero temperature at
atmospheric pressure. For example, for the case of 512 particles, which
is the one considered in this paper, it corresponds to L = 1.596 nm. In
order to simulate a macroscopic system, with the long-range character of the
Coulomb forces somehow taken into account, the standard procedure is used
of imposing periodic boundary conditions. Thus the Hamiltonian is given by

H =
∑
j,s

p2
j,s

2ms
+
∑
n∈Z3

∑
j,j′,s,s′

[
Vss′

(
|xj,s − xj′,s′ + nL|

)
+

e
(s)
eff e

(s′)
eff

|xi,s − xj,s′ + nL|

]
,

(4)
with the sum over j running from 1 to N/2. In fact, a question of principle
remains open in the model, in connection with the long range character of
the Coulomb interaction. Indeed, as it stands, the Hamiltonian function only
has a formal character, since the series involving the Coulomb potential is

3The point is the following. The experimental spectra are measured at given tem-
peratures T , while the theoretical ones are computed at given specific energies ε. The
pragmatic choice we made was to optimize the parameters of the potential by reproducing
the spectrum at T = 300 K through computations at the same value of specific energy, i.e.,
with ε = T (in units of Boltzmann’s constant). On the other hand, it is not clear which
should be the relation between specific energy (as defined by us) and the experimental
internal energy, so that the above mentioned choice is questionable. We plan to come back
to this point in the future.
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not absolutely convergent. In this connection we take the pragmatic attitude
of completing the definition of the model by the usual prescription that such
a series be summed according to the Ewald method, which transforms it into
the sum of two rapidly absolutely convergent series, of which one is defined
over the direct lattice, and the other one over the reciprocal lattice.4

The normal modes and the characteristic time of the system

Hamiltonian (4) turns out to admit a stable equilibrium configuration, which
is a minimum of the potential energy, and is taken as defining the vanishing
value of energy. The corresponding ionic positions x0

j,s form a face-centered
cubic lattice, which indeed is the structure of the LiF crystal.5 For not too
large specific energies (say, below 1060 K),6 7 the ions are found to oscillate
about such equilibrium positions, thus reproducing the oscillating crystal
structure of the solid. The normal modes related to the chosen minimum
are then defined, each of them being determined by one of the six branches
ρ = 1, . . . , 6 of the dispersion relation, and by a suitable wave vector k of the
reciprocal lattice. The normal-mode energies Ek,ρ will be simply denoted
by Ei. The corresponding angular frequencies ωi are located in the infrared
range, extending from about 100 to about 600 cm−1, where the nonphysical
lower limit is due to the smallness of the number N of ions amenable to
computer simulations. The main peak in the spectrum (' 300 cm−1) cor-
responds to a frequency of ' 1013 Hz, so that the characteristic time of the
crystal is about 0.1 ps. The numerical computations were performed by a
standard Verlet method, with a typical integration step of 2 fs (about one
fiftieth of the characteristic period).

The initial data

As in our previous investigations concerned with the spectra, the initial data
with a given energy Etot were chosen in the following way (apart from one
exception that will be mentioned later). One sets the ions in the positions
corresponding to the chosen minimum of the potential energy, and gives to
the single ions velocities extracted from a Maxwell-Boltzmann distribution,
with a total kinetic energy equal to the desired total energy Etot. In such a

4For the Ewald method, see the original German work [25], or the recent one [26], or
our work [27].

5Obviously, there also exist the other configurations obtained by permutations of the
ions of the same species.

6As in the previous papers, we measure the energies in Kelvin, so that for example a
specific energy (per degree of freedom) ε = Etot/3N of 300 K means ε/kB = 300 where
kB is the Boltzmann constant.

7The experimental melting temperature of the LiF crystal is 1118 K. Indeed, in our
model (see [22]), for specific energies up to 1300 K the ions kept oscillating, whereas at
specific energy 1450 K some ions began to jump from their site to another one.
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Figure 2: Mean value of the random variable |∆E(τ)| vs time-increment
τ . Number of ions N = 512 (here and in the whole paper), specific energy
ε = 500 K

way the normal-mode energies Ei too (in addition to the particles’ velocities)
turn out to present a MB distribution, albeit with phases far from random,
since they are all equal. Then one waits a time of 10 ps, which we know (and
will be seen here) to be amply sufficient to reach thermal equilibrium (i.e.,
for randomization of the phases too) at the considered specific energies.

It may be worth recalling that, due to the non linearity of the dynamical
system, the harmonic energy (sum of the normal mode energies) presents a
fluctuating character, its difference with respect to the constant total energy
being typically of two percent. When speaking of the specific energy ε of the
system, we will usually refer to the total energy (non linearity included) per
degree of freedom. In one occasion, in connection with Figs. 7 and 8, we will
make reference to the harmonic specific energy εharm, i.e., total harmonic
energy per mode.

3 Results

Regression of the fluctuations

The object of our investigation is the random function |∆E| (τ), i.e., the
modulus of a mode-energy change as a function of the time-increment τ .
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For any given τ , the random variable |∆E| depends on the mode i, on the
initial datum z of a trajectory, and on the current (discretized) time t of a
trajectory.8 The first statistical tools we consider are mean and standard
deviation, namely,

< |∆E| > and σ|∆E| .

The corresponding averages are performed over all modes i, over all dis-
cretized times t of a trajectory (which amounts to performing a time aver-
age), and over the different trajectories (i.e., the initial data z). Ten different
trajectories were taken, each of them lasting 2 ns. The time-increment τ was
taken in the interval 0.02 to 30 ps (i.e., from 10 integration steps up to 300
characteristic times). All results of this paper were obtained for a number
of ions N = 512

The result for the mean is reported in Fig. 2, for a specific energy ε =
500 K. Recall that |∆E| starts from 0 at τ = 0, and that its distribution
is expected to relax to a Maxwell-Boltzmann one, i.e., to an exponential
distribution with mean equal to the given specific energy ε. One sees that
after 10 integration steps (one fifth of the characteristic time) the mean has
already made a jump to one fifth of the final expected value. Then one has
an apparent sequence of logarithmic growths, with a final relaxation to the
expected value, which is essentially attained at a time of about 10 ps. One
may notice that, as expected in virtue of non linearity, the final value ' 506,
which refers to the normal-mode energies, does not exactly coincide with the
specific energy 500 K if the system.

We now give more details on how the relaxation develops. This is illus-
trated in Fig. 3 and Fig. 4. The two panels of Fig. 3 report the evolution
of both mean and standard deviation (left) and of their ratio (right). Recall
that for an exponential distribution such two quantities are equal. Now,
the left panel clearly shows that such two quantities are different for small
values of τ , while becoming equal at larger times. The right panel then
shows that equalization occurs at about 4 ps. Thus one concludes that there
is an initial stage in which the distribution of |∆E| is not exponential. A
second stage with an exponential distribution then occurs for times larger
than 4 ps. However, this is not yet the equilibrium stage since, as the left
panel shows, mean and standard deviation are still increasing. Eventually,
the necessary condition (exponential distribution with mean equal to the
specific harmonic energy) for the full regression of the fluctuation is satisfied
at about 10 ps. In fact such a Maxwell-Boltzmann distribution is actually
attained, as exhibited by the histograms of |∆E| reported below.

Two such histograms are given in Fig. 4, at times τ = 0.02 ps (left) and
τ = 20 ps (right), corresponding to the non exponential stage and to the
fully relaxed stage respectively. Each histogram was obtained by collecting,
from all the available time steps of all runs, the modes whose |∆Ei| belongs

8The values of the energies were collected every 0.02 ps, i.e., every ten integration steps

8



490

500

510

 1  2  4  8  16

E
n

er
g

y
 (

K
)

τ (ps)

< |∆E| >
σ|∆E|

0.998

1.000

1.002

1.004

1.006

1.008

1.010

 0  5  10  15  20

σ
|∆

E
| /

 <
 |∆

E
| >

τ (ps)

Figure 3: Color online. Mean (black) and variance (red) of |∆E| (left panel)
and their ratio (right), versus time increment τ . The straight line in the
left panel corresponds to 506 K, which is the value of the specific harmonic
energy.

to each bin, and reporting their number divided by the bin width, so that the
integral is normalized to 1. The bin width, equal to the maximum observed
value of |∆E| divided by 1000, is approximately 10 K.

The left panel shows that at short times one already has an exponential
distribution, but only in the tail, whereas one meets with a full exponential
(with the correct equilibrium parameter) in the fully-relaxed stage (right
panel). However, one could exhibit figures with fully exponential histograms
already at times larger than 4 ps, with parameters which relax to the equi-
librium value for increasing time.

The non fully exponential character of the distributions at short times
plays a relevant physical role, inasmuch as it contributes to determining the
correct form of physically significant fluctuations, as occurs for the fluctu-
ations of polarization in the case of infrared spectra. Here we just limit
ourselves to mention that, if one excludes the data with |∆E| < 200 K, the
histogram is pretty well fitted by a modified Tsallis distribution (with three
parameters, apart from the normalization factor C) [28], defined by

ρ(x) =
C(

1− λ
µ + λ

µe
(q−1)µx

) 1
q−1

.

Instead, the part with |∆E| > 1500 K is well reproduced by an exponential
(although not yet with the equilibrium mean).

In the particular case of the the left panel, the fitting with the modified
Tsallis distribution exhibited corresponds to q = 1.56, 1/λ = 87.1 K, and
1/µ = 215 K. Instead, the fitting with the exponential distribution for the
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Figure 4: Color online. Histograms of the random variable |∆E| (circles).
Left panel : τ = 0.02 ps (non exponential stage), Right panel : τ = 20 ps (full
relaxation). The fits are as follows. Left panel : blue line, best fit with the
modified Tsallis distribution function (see text), restricted to data above 200
K; red line, best fit with exponential distribution, for data restricted above
1500 K. Right panel : best fit with exponential distribution over all data (red
line).

tail corresponds to a mean value of 223 K. One is naturally led to conjecture
that one in general meets with a crossover between exponential and modified
Tsallis distribution, which for increasing time shifts to the left, leading to a
full exponential. See ref. [29], ref. [30] Figure 8, and ref. [31] Figure 2.

Comparison with the process of approach to equilibrium

We now compare the process of “regression” of the thermal fluctuations, just
illustrated, to the process of approach of the mode energies Ei to equilib-
rium, starting from a non equilibrium state, which is the process studied
in the standard FPU problem. We consider two types of initial conditions,
illustrating the corresponding results in the two next figures, Fig. 5 and Fig.
6.

The first case is the analogue of that considered in the very FPU paper,
in which only a small fraction of modes, with small frequencies, were initially
excited. This is indeed the case in which, in the words attributed by Ulam to
Fermi (see the preface to the reproduction [32] of the paper in the Collected
Papers of Fermi, vol. 2), the authors were faced with an apparent “little
discovery”, inasmuch as the system appeared not to attain a state of energy
equipartition, and thus not to attain a Maxwell–Boltzmann distribution. As
is well known, about fifty years of studies were needed to ascertain that
instead, after a sufficiently long time the equilibrium Maxwell–Boltzmann
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Figure 5: Approach to equilibrium from an initial condition of FPU type,
with only the 12 lowest-frequency modes initially excited. The evolution of
the initially unexcited modes only is illustrated, through both mean < E >
and standard deviation σE (left panel), and through their ratio (right panel).
The same three stages as for the fluctuations are observed, with characteristic
times of the same order of magnitude.

distribution of the mode energies is eventually attained.
So we consider an initial condition in which the only modes excited are

the ones having the same frequency, the smaller one present in the system
(ω = 95.8 cm−1), which are in number of 12 (over a total of 3×512−3 = 1533
modes). The total energy, corresponding to a specific energy ε = 500 K
(the same one considered here for the thermal fluctuations), was equally
distributed among them, and the phases were taken at random. Such a
kind of FPU initial condition is particularly suited for a close comparison
of the evolution of the mode-energies Ei(t) with the evolution of their time-
changes |∆Ei| (τ). Indeed, in the present case we study the evolution of
the fluctuations only for the modes not initially excited. Thus in both cases
one meets with quantities that start initially form zero, and are expected to
attain a Maxwell–Boltzmann distribution.

In fact, as in the standard FPU problem, here too we find that the
Maxwell–Boltzmann equilibrium state is attained, and actually through an
evolution essentially analogous to that of the thermal fluctuations. This is
illustrated in Fig. 5. The left panel shows that one initially meets with a non
exponential distribution for the mode energies Ei, followed by an exponential
distribution at a specific energy ε lower than the equilibrium one, until the
Maxwell–Boltzmann distribution with the equilibrium mean of ' 500 K is
eventually attained. Moreover, the times involved are of the same order of
magnitude as for the thermal fluctuations, since the first and the second
stages terminate at about 2 ps and 15 ps respectively.
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Figure 6: Same as Fig. 5, but for an initial condition with all atoms in
equilibrium position, and their velocities generated according to a Maxwell
distribution. In this case the averages are performed over all modes.

A further interesting remark was pointed out to us by A. Ponno. Namely,
that an analogue of the second stage just described for the regression of fluc-
tuations was essentially observed also in the standard FPU problem with
FPU-like initial conditions. Indeed, after a first stage in which one ob-
served the formation of a meta stable smooth packet about the initially
excited modes, with the higher-frequency modes still having essentially no
energy, the approach to the final equilibrium phase occurred with an es-
sential equipartition among the higher modes (which is compatible with an
exponential distribution), at a specific energy increasing with time. See for
example [33].

All these facts seem to confirm the general connection between irre-
versible processes and spontaneous fluctuations at equilibrium, that was pro-
posed by Onsager and Machlup in the first lines of their work [16]. Namely,
the “ postulate that the decay of a system from a non equilibrium state pro-
duced by a spontaneous fluctuation obeys, on the average, the (empirical) law
for the decay from the same state back from equilibrium, when it is produced
by a constraint which is then suddenly removed ”.

We now come to the process of approach to equilibrium for a different
type of initial condition, actually the same one we adopted in our previ-
ous investigations on the infrared spectra, and also in the investigations on
thermal fluctuations reported above. Namely, an initial condition with the
particles in their equilibrium positions (which we take as defining the zero
value of energy) and their velocities extracted form a Maxwell distribution
at a given kinetic energy, which defines the total energy Etot of the system.

The results, still in terms of the evolution of mean and standard devi-
ation of the mode-energies, are reported in Fig. 6. One sees that again
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Figure 7: Mean < |∆E| > /εharm of the normalized energy-change versus
time-increment τ , at three different specific energies ε = 300, 500, 1000 K.

one has an initial non exponential stage. However, now there is no third
stage at all since, when mean and standard deviation become equal, they
already have the equilibrium value ε = 500. This is due to the special ini-
tial condition chosen for the particles, that induces for the mode-energies a
Maxwell-Boltzmann distribution with the same mean ε. The phases how-
ever are not random, since they are actually all equal, and some time is then
required for a full equilibrium to be established.

Dependence on specific energy: a challenge for the Born-like mod-
els

We finally come back to the main result on the regression of the fluctua-
tions, and investigate its dependence on specific energy ε. To this end we
complement the result at ε = 500 K, illustrated in Fig. 2 through the curve
< |∆E| > versus τ , and now consider also the cases at specific energies 300
and 1000 K.

The results for the three cases are collected in Fig. 7. In order to compare
such different cases it is clearly expedient to normalize energies in such a
way that they have a common range. This could be obtained by reporting
< |∆E| > /ε. However, a more exact comparison (to which we are interested
here) is obtained by reporting the data normalized in terms of the harmonic
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specific energy εharm, which is just defined by Nεharm =
∑
Ei. The figure

clearly exhibits a well expected property, namely, that the regression process
slows down for decreasing energy.

It is then quite natural to try to determine some analytic features of
the energy-dependence illustrated in the figure. Clearly this is a problem
concerning specifically ionic-crystal models, and thus going somehow beyond
the questions of a general character previously discussed. To this end we
performed a preliminary investigation which, as will be seen, led to results
having an interlocutory character. We decided however to give here a short
account of them, since they appear to open some interesting perspectives.

We proceeded in the following way. A preliminary inspection gives in-
dications that the relaxation time τrelax, defined for example as the time at
which the second stage begins, might be inversely proportional to the specific
energy, say as 1/εharm, so that the product τrelax · εharm, which is an action,
would be a constant, independent of εharm. Moreover, the value of such an
action turns out to be of the order of magnitude of Planck’s constant h, which
might have been expected, since Planck’s constant is implicitly involved in
our model, through the effective Born-type potential. So we produced a new
figure, with the time increment τ too rescaled, as τ εharm/h. This led to Fig.
8, left panel. The figure shows that such a rescaling works not so badly for
τ εharm/h larger than about 2. Instead, the dependence of τ on εharm seems
to follow a different law for shorter times, when the distribution is not yet
exponential. To understand what occurs for short times is an open problem.

In any case, the rescaling observed for large times allows one to conclude
that any relaxation time τrelax defined with reference to such a domain of
the curve satisfies a relation of the form

τrelax · εharm ∼ h , or equivalently τrelax · σE ∼ h , (5)

the latter of which (obtained using εharm = σE) has the formal aspect of the
Heisenberg time-energy uncertainty relation. For example, if the relaxation
time is defined as that for which one has |∆E|/εharm = 0.75, then the
proportionality constant is about 2.

Now, this might be a completely fortuitous fact. Or, perhaps, it might
have a physical significance. The latter possibility is conceivable, after all,
since the present Born-like model dealing with Newtonian trajectories of the
ions, already proved to work pretty well in such a typically quantum domain
as that of infrared spectra. Here, the question at hand is the reliability
of the rescaling introduced above, with its linear dependence on specific
energy, which ultimately is responsible for the Heisenberg-like relation (5).
Indeed, the possible physical significance of such a relation could be taken
into serious consideration if the linear rescaling would lead, for the three
curves in question, to a superposition much neater than exhibited in the
left panel. That a neater superposition is altogether possible through a
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Figure 8: Same as Fig. 7 with τ rescaled as τ · εharm/h (left panel), and
as τ · ε1.1

harm/C with C = 0.046 erg0.1 · h (right panel), where h is Planck’s
constant

suitable ad hoc rescaling is clearly exhibited by the right panel, where, just
to give an example, a rescaling with specific energy raised to a power 1.1 was
performed. Now, as mentioned in passing when describing the model, we
are aware that the choice of the parameters entering the effective potential
contains an element of arbitrariness, which moreover might have an impact
on the dependence of the results on specific energy.

So, the preliminary results just reported for the dependence of the re-
gression of thermal fluctuations on specific energy, seem to pose a challenge
for future research on ionic crystals, namely, to ascertain whether the sig-
nificance of the Heisenberg-like relation (5) can be confirmed. This would
be the case if a consistent choice of the parameters of the effective potential
turned out to produce by itself, for large times, an actually linear rescaling
of time with respect to specific energy.

4 Conclusions

So, by considering a particular ionic-crystal model, we have shown how the
classical Fermi-Pasta-Ulam problem of the approach to equilibrium can be
investigated in an extended form, in connection with evolution and regression
of thermal fluctuations. In particular, we reported results confirming the
general property postulated by Onsager and Machlup [16], about the analogy
between approach to equilibrium from a non equilibrium state and regression
of a spontaneous fluctuation.

If the expectations raised by the “little discovery” of the original FPU
work (lack of approach to energy equipartition) may have been frustrated by
the realisation that equilibrium is attained starting from a non equilibrium
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state, we point out that nevertheless thermal fluctuations (so important for
physics in the frame of linear response theory) are still there, just when
equilibrium was attained. If such a fact was not taken into consideration
by Fermi, Pasta and Ulam, since it was emphasized by Kubo and Green
after the FPU work (and after Fermi’s death), it is quite possible that the
original key idea underlying the FPU problem (i.e., to disclose unexploited
potentialities of classical statistical mechanics) may remain still alive today,
in connection with thermal fluctuations. A significant example seems to be
that of ionic crystals, whose experimental infrared spectra were reproduced
in a surprisingly good way (Fig. 1), by just applying a naive classical version
of Green-Kubo’s theory [34], in terms of the Newtonian trajectories of the
ions in the Born model.
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