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ABSTRACT

The solutions of the Lorentz-Dirac equation are investigated, for the problem
of a one-dimensional scattering of a charged particle by a potential barrier, and
a phenomenon is found having some similarity to the quantum weak-reflection
effect. Namely, there exists an energy strip, slightly above the maximum of
the barrier, such that for any given initial energy in the strip there is a certain
number of physical (or nonrunaway) solutions of two types, i.e. those of me-
chanical type, transmitted beyond the barrier, and those of nonmechanical type,
reflected by the barrier. From the mathematical point of view, the existence
of this phenomenon is related to the nonuniqueness of the physical solutions
of the Lorentz-Dirac equation for given initial data of position and velocity.
This in turn is strictly related to a property recently pointed out, namely the
asymptotic character of the relevant series expansions occurring for that equa-
tion. Correspondingly, the width of the energy strip where the phenomenon
occurs is found to decrease exponentially fast, as the small parameter entering
the problem tends to zero.
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1. Introduction. The main result described in the present paper is that classical
physics allows for situations where a kind of indeterminacy is manifested having a certain
similarity to that of quantum mechanics. The instance in which this is exhibited is the
so called “weak reflection effect” [Y, which occurs in the one—dimensional scattering of a
point particle by a potential barrier, when the initial particle’s energy is slightly larger
than the barrier’s height. In such a situation, according to quantum mechanics the final
state of the particle is in a sense unpredictable, because the particle can suffer either
transmission or reflection, and the theory affords only predictions of a statistical type,
providing probabilities for each of the two possible cases. In purely classical mechanics
the particle has instead constant energy and so is always transmitted. But we found
that a situation somehow similar to that of quantum mechanics occurs if one abandons
the domain of pure mechanics and takes into account the role of electromagnetism. The
point is that electrodynamics has necessarily to be taken into account for any particle
having a charged structure whatsoever, because of selfinteraction with its own field; for
example, for a charged point particle it is usually assumed that in some approximation the
selfinteraction be described in a universal way by the Lorentz—Dirac equation. Here we
study such an equation, showing that its solutions exhibit an effect qualitatively similar to
the quantum one of weak reflection. We recall that, in the nonrelativistic limit, to which
we will restrict our attention, such an equation has the form

& =% —F(x)/m, (1)

where x is the position vector of the particle, m its (renormalized) mass, F an external
field of force, and the “small parameter’ ¢, with the dimension of a time, is given by

2 e?
“T 3me
e and c being the charge of the particle and the speed of light respectively.

We have insisted above in stressing the possible impact of our result for the foundations
of physics, because this is indeed our main domain of interest. But our result could have
been stated also in a purely mathematical context, as answering a problem on the Lorentz—
Dirac equation itself, considered as early as 30 years ago by two specialists in the theory
of ordinary differential equations, Hale and Stokes, 2] namely that of uniqueness of the so
called physical (or nonrunaway, see below) solutions of the Lorentz—Dirac equation. Indeed,
such authors investigated the general problem whether initial conditions on position and
velocity, together with the global condition of nonrunaway, uniquely define the solution
of the equation. They could prove only existence, and we show here, in the example of
scattering by a potential barrier, that there are domains of initial position and velocity
with any number of physical solutions.

There is however another mathematical aspect of the problem, which is related to
a remark on the LorentzDirac equation which was made very recently,® and actually
stimulated the research that led to our result. We refer to the circumstance that the
series expansions in the parameter ¢ usually given for the solutions of that equation in
general are divergent and asymptotic, as should be expected on general grounds due to
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the singular character of the equation. Now, as was pointed out in ref. [3], this has the
consequence that the physical solutions of the Lorentz—Dirac equation should be classified
as belonging to two qualitatively different classes: those well approximated by suitable
finite truncations of the series expansion, which are thus perturbations of solutions of the
purely mechanical Newton equation corresponding to € = 0, and were consequently called
“of mechanical type”; and the remaining ones, qualified as “ of nonmechanical type”. On
the other hand, it occurs that the solutions of mechanical type, being well approximated
by finite truncations of the series, depend only on the initial data of position and velocity;
so it is clear that there would be no indeterminacy if the series expansions were convergent.
In other terms, it is just the asymptotic character of the series which allows for both the
existence of the indeterminacy phenomenon alluded to above and the existence of solutions
of nonmechanical type. However, the existence of solutions of nonmechanical type was only
conjectured in ref. [3], no concrete example being available. Now, it was kindly suggested
by an anonymous referee, as a free comment to that paper, that examples of solutions
of nonmechanical type might possibly be found in the domain where the quantum tunnel
effect occurs. The motivation was just a mathematical analogy, because in the framework
of the semiclassical limit of the Schroedinger equation it is known that, for what concerns
the tunnel effect, the existence of behaviours qualitatively distinct from purely mechanical
ones (think of the orbits crossing the barrier) is due just to the asymptotic character of
the relevant series expansions. The analogy turned out to be effective, because we could
exhibit the existence of motions of nonmechanical type among the physical solutions of
the Lorentz—Dirac equation in the problem of particle scattering by a barrier, for initial
energies slightly larger than the height of the barrier. This is indeed the analog of the
so called weak reflection effect; but in some cases, as will be shown below, we also found
transmission for energies slightly lower than the height of the barrier, and this has a
somehow greater similarity to the tunnel effect. An illustration of these facts is the scope
of the present paper. We very gratefully acknowledge the influence of the anonymous
referee in stimulating the research that led to the present work.

The paper is organized as follows. In section 2 we recall the main facts about the
Lorentz-Dirac equation, with particular reference to the problem of a one-dimensional
scattering by a potential barrier; we recall the Hale and Stokes uniqueness problem, and
give a preliminary estimate of the range where solutions of nonmechanical type can be
expected. In section 3 we give an account of some preliminary numerical studies for
a gaussian potential barrier, just with the aim of illustrating in a vivid pictorial way the
phenomenon discussed here. In section 4 we give a mathematical discussion of the problem,
in the framework of the qualitative theory of dynamical systems, showing how the essence
of the phenomenon is easily explained in terms of notions there familiar, such as the stable
and unstable manifolds of the unstable equilibrium point corresponding to the maximum
of the potential barrier. In section 5 we consider a case for which a complete analytical
discussion can be performed, namely that of a rectangular barrier; in particular we can
there control what happens by varying the “small parameter” €, and exhibit some peculiar
properties of the solutions of nonmechanical type. Some further comments are deferred to
the conclusive section 6.

2. Main facts about the Lorentz—Dirac equation. = We will restrict our consider-
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ations to the case of a particle on a line under the action of a potential barrier V(z), of
characteristic height V, and size L. It is then convenient to take m, L and V, as units
of mass, lenght and energy, which leads to \/mL?2/Vj as a time unit. The Lorentz—Dirac
equation then reads

e =i —V'(x), (2)

where the prime denotes derivative with respect to x, the potential V' has height 1 and
size 1 (think of V(z) = exp(—x?)), while the characteristic time ¢ has to be thought of as
expressed in the proper time unit.

The singular character of the equation is due to the fact that the order of the equation
reduces from three to two as the parameter ¢ vanishes. Correspondingly, for ¢ = 0 the
Cauchy problem is well posed in the “mechanical phase space” of position x and velocity
v = &, while for € # 0 it is well posed in the “enlarged (or extended) phase space” of
position velocity and acceleration a = v.

It was apparently first remarked by Dirac [ in the year 1938 that the equation presents
the difficulty of having generic solutions with the so called runaway property, i.e. with
acceleration growing exponentially for ¢ — +o00; the simplest example is just that of the
free particle, where the equation reduces to ea = a, with solution a(t) = agexp(t/e). This
fact is probably better understood by the following argument, of a general type. Write
equation (2) as usual in normal form 2 = f(z), with 2 = (z,v,a) € R® and f(2) the
corresponding vector field, namely

if=v, v=a, d:%(a—F(a:)), (3)

where F' = —V' is the force field. For small € it is obvious that, apart from a small layer
situated about the two—dimensional “slow manifold”, defined by a — F(z) = 0, the vector
field f(z) is essentially parallel to the a axis and directed away from the slow manifold.
Thus the field of directions parallel to the a—axis constitutes the so called “fast foliation”,
along which the point in the enlarged phase space escapes exponentially fast to infinity,
thus producing the generic runaway solutions.

However there can exist exceptional initial data, possibly in a small layer about the
slow manifold, giving rise to orbits not escaping to infinity; for example, in the case of the
free particle this occurs for ag = 0, namely for data lying exactly on the slow manifold.
Dirac himself proposed that the generic solutions should be discarded, and that the only
relevant or “physical solutions”, should be the ones, if they exist, characterized by the
global nonrunaway property a(t) — 0 for ¢ — +o00; this seems indeed to be a sensible
prescription in scattering situations, when the force field vanishes at infinity.

This leads to the following mathematical problem. Given an initial datum (xg, vp) in
the mechanical phase space, one asks whether there exists a value ag of the acceleration
such that the corresponding initial datum zg = (zo, vo, ap) in the enlarged phase space gives
rise to a motion z(¢) satisfying the Dirac prescription a(t) — 0 for ¢ — +oo. Notice that
neither existence nor uniqueness is obvious, because this somehow resembles a problem of
Sturm-Liouville type. Under mild conditions on the force field F' it was shown by Hale and
Stokes that existence is guaranteed, but they were not able to prove uniqueness. From the
technical point of view, this is due to the fact that one has here a problem of fixed point
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type in a nonstandard form, because one deals with a mapping which is not a contraction,
so that existence is proven by making recourse to topological nonconstructive methods.
However, one might have the impression that the lack of uniqueness be not a real fact, but
just an oddness due to technical difficulties in the proof. We will show instead that, in the
presence of a potential barrier, one has really nonuniqueness.

This property can be rephrased in the following way. Consider the subset of the en-
larged phase space corresponding to motions satisfying the Dirac condition, and call it the
“physical (or Dirac) manifold”: uniqueness in the sense of Hale and Stokes would corre-
spond to the physical manifold being a graph, say a = g(z, v), while our result implies that
it is folded. Moreover, it turns out that the initial data belonging to different branches of
the folded physical manifold, and having the same position and velocity, give rise alter-
natively to motions of mechanical and of nonmechanical type, which are transmitted and
reflected respectively.

We now add a few words about an estimate for the region where the solutions of
nonmechanical type can be expected. As recalled above, the solutions of mechanical type
are the ones that are well approximated by truncations of the series expansions in €; thus
a first order estimate for them is given by the requirement that the first order term of the
expansion be smaller than the zero order term, namely that for all times ¢ one has

el (@) F' (z(1))] < [F(z(2))]

along the unperturbed orbit. For the problem at hand, with the potential barrier of height
Vo, it is obvious that for E > V}, there exists for the unperturbed orbit a time ¢ such that
F(z(t)) = 0, while it is always |F’| > 0. So the first order estimate leads to the possibile
existence of nonmechanical orbits for £ > V. On the other hand, it is clear that for
E > Vj one should have orbits of mechanical type, so these heuristic considerations lead
to the expectation that orbits of nonmechanical type might exist for mechanical energies
about Vj.

3. Preliminary numerical results. = We report here the results of some numerical
computations that were performed in a rather naive way, just as an exercise to introduce
us to the subject, but in fact led us to meet with the phenomenon described in the present
paper. The computations were performed for the exponential barrier V(z) = exp(—xz?).

In integrating the Lorentz—Dirac equation, one is first of all confronted with the tech-
nical problem that the instability of the flow due to the runaway property of the generic
solutions makes any naive method unstable, leading rather soon to an overflow, even if
one were able to select a priori the exceptional initial data lying on the physical (or Dirac)
manifold; indeed, this practical difficulty is due to the fact that the physical manifold is a
repellor for the flow of the considered dynamical system. An available way out, which was
already considered in the literature [®], is based on the remark that the physical manifold
is instead attractive, if one goes backward in time. So, taking a “final condition” in the
enlarged phase space in a region of essentially vanishing potential and integrating back-
ward, one obtains after a very short transient, for any choice of the “final” acceleration, the
desiderd physical solution; in practice, we just took a vanishing “final” acceleration. Thus
the whole discussion of the present section will always have a backward flavour, which is
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due to the trick used to overcome a numerical problem. As for problems of numerical pre-
cision, they are essentially irrelevant in the present context, just by virtue of the attractive
character of the backward integration procedure; standard Runge-Kutta methods were
used, but in fact the essential results were preliminarly obtained even using a first order
Euler method.

The results are illustrated in Figs. 1-5, which all refer to e = 1. In Fig. 1 we report in
abscissae the position  and in ordinates the mechanical energy £ = T + V of the particle,
T = 3mi? being the kinetic energy; for reference, the potential energy V() of the barrier
is also drawn. For any final datum, a curve of E versus x is drawn, obtained by eliminating
time from the functions F(t),z(t), computed in a suitable range of time ¢; more precisely,
the final position was always taken to be z = +6, and the computations were run up
to reaching an initial position with z = 10 or £ = —10. Indeed, it can occur that the
particle be reflected by the barrier or transmitted, and this turns out to depend only on
the final energy Ff; namely, there is a threshold in the final energy such that for lower
energies the particle is always reflected, while for higher energies it is always transmitted.
Clearly, the curves corresponding to reflection are characterized by showing a turning
point, with vanishing kinetic energy (i.e. there exists a time ¢ with E(t) = V(z(t))), while
the kinetic energy is always positive for the curves corresponding to transmission. The
most peculiar phenomenon exhibited by Fig. 1 is the existence on an “overlapping energy
strip”, characterized by the property that for the same given initial energy in that strip
there are orbits of both types, with reflection and trasmission respectively; in the figure,
the overlapping strip is contained in the interval 1.4 < E < 1.5. In fact, in Fig. 1, for the
sake of clarity of illustration we chose to exhibit only one reflected and one transmitted
motion in the strip, but we will show below, both numerically and analytically, that for
any positive integer n one can find a suitable strip of initial energies giving rise to exactly
n different reflected motions and n + 1 transmitted motions.

Another relevant phenomenon is the existence of a kind of “inversion effect”. Namely,
in a certain range of energies the initial energy is observed to decrease if the final energy
is increased. This is peculiar, because obviously at very high energies, when the motion
is actually insensitive to the potential energy, the final and the initial energies have to be
essentially equal, and the growing of the one corresponds to the growing of the other one.

This second effect is not clearly visible by inspection of Fig. 1, and we could exhibit
it by suitable dilatations of the figure. Instead, both phenomena are clearly exhibited if
the initial energy F; is drawn versus the final energy E; this is shown in Fig. 2. For very
small and very large final energies the curve approaches that corresponding to the purely
mechanical case € = 0, namely E; = E;, while the two new phenomena occur in a strip
of initial energies centered near the value £ = 1 of the maximum of the potential barrier.
The inversion is particularly evident, as corresponding to a negative slope of the curve in
a strip extending between a maximum and a minimum. Even more interesting is the fact
that another inversion strip, with a corresponding pair of maxima and minima, seems to
appear inside the main one, and this suggests that infinitely many higher order inversion
strips might occur.

Fig. 1 is the result of a backward computation. But a better illustration is obtained by
a suitable exhibition of just the same results in the spirit of a “forward attitude”. Indeed,
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in performing the numerical integration we took all final data to the right of the barrier,
and consequently the initial states occurred to be to the right for reflected motions and
to the left for transmitted motions. On the other hand, as the equation is invariant with
respect to the transformation r — —x, it is clear that for each reflected motion there
also exists a corresponding one with the same instantaneous energy and with initial and
final states to the left of the barrier. So we might draw a new figure corresponding to
Fig. 1 with all initial states to the left of the barrier. We prefer instead to draw the
corresponding “mechanical phase portrait”, namely the projection of the corresponding
orbits in the mechanical phase space of position and velocity. This is shown in Fig. 3,
where the two features pointed out above, namely existence of the overlapping strip and
of inversion, are fairly evident.

The existence of inversion strips corresponds to the fact that for a pair of initial
mechanical data xg, vy of position and velocity there exist several initial data ag for the
acceleration giving rise to nonrunaways solutions. In other terms, the physical manifold
in the enlarged phase space corresponding to nonrunawy solutions is folded. In order to
exhibit this fact visually, one can consider the section of the enlarged phase space with a
plane xy = const for a large negative value of the position xy, and draw the points in the
plane vg, ag which give rise to nonrunaway solutions (computed as usual by the backward
tool, by varying the final energy). The result is shown in Fig. 4 for several values of z¢, and
the folding seems to be clearly exhibited. For the sake of illustration, a three-dimensional
view of the complete physical manifold is reported in Fig. 5.

Obviously the width 0 F of the inversion strip depends on the parameters entering the
problem; in particular, for a given potential, one can expect from heuristic considerations
that it vanishes exponentially fast in the limit ¢ — 0. This was indeed checked numerically,
and the best interpolating function was found to be

2
0F = e%e_b/ c
a and b being suitable constants, depending on the form of the potential. We point out
that if € is large enough, then the width of the strip is correspondingly large, so that it
can occur that the strip of indeterminacy may extend to values of the energy below the
maximum of the potential. So for large € there exist orbits transmitted beyond the barrier
although having initial energy smaller than the barrier height. This is a rather interesting
fact which we actually observed, and is similar to the well known quantum tunnel effect.
We conclude this section with a remark concerning the behaviour of the mechanical
energy ' =T +V during the motion of the particle. This concerns the widespread opinion
that, because of radiation, energy should decrease steadily during forward motion; in Fig.
1 one sees instead that for a transmitted motion there is a time interval where energy
increases, although one always has Fy < E;. This can be understood in the following way.
Recall that, through multiplication by #, the Lorentz-Dirac equation gives the energy
theorem in the form E = ez, or equivalently

E = —¢(#)%+ e%(m) . (4)

Now, the first term at the right hand side corresponds to the usual energy loss according
to Larmor formula, while the second one (known as Schott term) has no fixed sign. As in
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a scattering problem the acceleration vanishes for |t| — +o0, the contribution of Schott’s
term to the total energy loss vanishes, so that one always has E¢ < E;, and in this sense
energy decreases. But this is not true in general for the instantaneous energy, and moreover
it is clear a priori that in some circumstances the instantaneous energy should indeed
increase with time. To see this, consider the first order approximation (in €) of the original

equation, where the term i = %% is approximated by — SV (z(t)) = —=V"(x(t)) &(t). This
gives E = —ez2V"(z), and so energy actually has to increase, in that approximation, in

the regions where the potential energy is concave downward.

4. Analysis of the problem in light of the qualitative theory of dynamical
systems. We show here how the numerical results illustrated above are rather easily
explained in terms of standard concepts of the qualitative theory of dynamical systems.
In order to go to the heart of the problem, we concentrate our attention on a nonanalytic
particularly meaningful case, namely that of a force vanishing for |z| > 1 and linear for
|z| < 1, i.e with potential energy

Vz)=1—2% for |z|<1, V(z)=0 for |z|>1,

with continuity conditions for the acceleration at the points x = +1. Nonanalytic cases of
this type were often studied, but the description given here seems to be new, because in
the literature the attention was concentrated on the analytical expression of the solutions
rather than in a qualitative discussion, which became so familiar since the year sixties, with
the discovery of strange attractors an so on. To determine the global physical solution,
one takes initial data xg, vy in the mechanical phase space, with o < —1, and investigates
the solutions for positive times, exploring all possible initial accelerations aq. It is evident
first of all that there exists an interval of negative values of ay which lead to motions never
reaching the barrier for positive times, and all these are runaway solutions (apart from the
trivial ones with vy < 0 and ay = 0). For all other values of ag, there exists instead a
positive time ¢; such that x(¢,) = —1, and it then always occurs, as will be shown shortly,
that there also exists a time t5 > t; with either z(t2) = —1 and v(t2) < 0 or z(t2) =1
and v(t2) > 0; in such cases the nonrunaway solution has clearly to be selected by the
prescription a(tz) = 0. Our aim is to give a qualitative description for such solutions
without making recourse to their explicit analytical expressions, which could be written
down explicitly, but are not easily discussed. A complete analytical discussion will be given
in next section, for the simpler case of a rectangular barrier.

After time t; (and before ¢3) one has to solve the linear problem 2 = Az where
z = (z,v,a) € R® and A is the 3 by 3 matrix

0 1 0
A= 0 0 1
—2/e 0 1/e

The eigenvalues of A turn out to be real for small €, while an interesting bifurcation occurs
at € = 1/2/27, because for larger values of ¢ the matrix A has a real negative eigenvalue
and two complex conjugate eigenvalues with positive real part. So, in the case of “large €”
to which we now concentrate our attention, for the corresponding linear system the phase
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space turns out to be the direct sum of a one dimensional “stable linear space” E® and a
two dimensional “unstable linear space” EY, the restriction of the system to E" being an
unstable focus. The dispositions of such linear spaces are easily determined,(*) and it is of
interest to locate some special subsets of them. The first one is the point, say z, defined by
the intersection of the stable linear space E® with the plane z = —1. Indeed, recall that for
a nonlinear system the stable manifold W#* of an equilibrium is defined as the set of points
which give rise to orbits tending to the equilibrium for ¢ — +o00. So, in our case a branch
of the stable manifold W* of the origin is just the union of the unique orbit arriving from
the left to z, and the segment of E* joining z to the origin; analogously, one also has the
symmetrical branch located at the right of the barrier. By the way, these are the unique
nonrunaway solutions satisfying the Dirac prescription a(t) — 0 for t — +o00, while being
not solutions of scattering type; they are in fact the analogs of the well known separatrices
of the purely mechanical problem, approaching the equilibrium from the left and from the
right. A relevant role will also be played by the analogs of the two further separatrices
of the mechanical problem, characterized by the property of tending to the equilibrium
for t — —o0, i.e. constituting the unstable manifold W" of the origin. In the purely
mechanical case, the unstable manifold is constituted by just the two separatrices, while in
the nonmechanical case it is constituted by the union of that part of the plane E" having
|z| < 1, and its continuation for |z| > 1 through solutions of the free particle problem. So,
the generic solutions belonging to the unstable manifold W* will be of runaway type, and
the only nonrunaway solutions on W" are the two ones passing through the points, say
2T and 27, which are the intersections of the plane E“ with either the straight line a = 0,
x = +1, or the straight line a = 0, x = —1 respectively.

With this preliminary information in mind, it is now quite easy to describe the non-
runaway solutions which are either transmitted or reflected. Indeed, consider the orbits
arriving from left and inciding onto the plane x = —1 near the point Z, namely the orbits
arriving from left near W*. As the orbits on W® tend to the origin for t — +o00, by conti-
nuity the orbits passing near z also start going toward the origin, but in the meantime also
go on spiraling in broader and broader arms around E®, and at a certain moment t2 reach
either the plane x = +1 (having v > 0), or the plane x = —1 (having v < 0), and then
are transmitted or reflected respectively. But the only nonrunaway solutions among them
will be the ones that, in reaching such planes, will have exactly a vanishing acceleration.
The nonrunaway solutions not lying on E* will thus be characterized by suffering either
transmission (i.e. by meeting with z = +1) or reflection (meeting with z = —1), and by
having performed a certain positive integer number n of turns around E® in the region
lz| < 1.

This picture can also be described in the following way. Consider the half straight
line v*, defined by the intersection of the plane = +1 with the plane a = 0 and lying
with respect to the plane E" on the same side as the branch of E® coming from left; then
let ** evolve backward according to the flow of the linear system, i.e. consider the orbits
exp(At)z, t < 0, z € 4**. Due to the inclinations of the plane E" and the straight line E®
with respect to v, it turns out that the backward orbits exp(At)z, t < 0, z € v intersect

(*) To fix ideas, for ¢ = 1 one has the eigenvalue —1 with eigenvector (1, —1,1) and the
eigenvalues 1 + i with eigenspace spanned by (1,1,0) and (0, 1,2).
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the plane z = —1 along a certain curve, say 7'7; such a curve is by definition the intersection
(or, as we say, the trace) of the physical manifold, corresponding to transmission, with the
plane x = —1. The trace corresponding to reflection is obtained analogously, considering
the finite segment "¢ on the straight line x = —1, a = 0, lying with respect to the plane E"
on the same side as the branch of E® coming from left, and furthermore such that v < 0;
then let v* evolve backward along the linear flow, up to reaching again the plane x = —1
on a certain curve 4. As the points of the half straight line ** and of the segment ™
which are situated near the plane E" have by continuity to perform many turns around E*
before reaching backward the plane x = —1, it is clear that the two traces of the physical
manifold have to wind indefinitely around Zz.

In conclusion, the intersection (or trace) of the physical manifold with the plane
x = —1 is constituted by two curves, ¥** and 4*¢, which both spiral about the same point
Z. So there is an interval of values of velocity where such an intersection is folded, i.e. the
acceleration is not uniquely determined by the velocity. This is indeed the nonuniqueness
property of the physical solutions for given zy and vy, which explains the phenomenon of
the existence of an overlapping strip. Indeed it is quite clear how to prove that for any
positive integer n there exist velocity intervals I't and I, such that there are n possible
accelerations for which the physical solution is transmitted or reflected respectively.

Moreover, it is just this spiral structure that explains the inversion phenomenon de-
scribed above, concerning the initial and final energies E; and Ef. Indeed, moving con-
tinuously along the trace of the physical manifold, with its winding around Zz, corresponds
to an alternate increasing and decreasing of the “initial” energy, while the “final” energy
tends monotonically towards a well defined value, namely that corresponding to the ex-
ceptional nonrunaway solution constituted by W#*. This just explains the main features of
Fig. 1.

So much for what concerns the trace or intersection of the physical manifold with the
plane x = —1. The complete part of the physical manifold itself in the region z < 1 is then
trivially obtained by the analytical solution of the problem of the free particle. The main
feature seems to be that for £ — —oo the whole manifold turns out to be squeezed on the
plane a = 0, which constitutes the physical manifold for the free particle. This has the
consequence that in a scattering experiment it would be practically impossible to control
the additional nonmechanical parameter, namely the initial acceleration ag, in order to
predict whether one will have transmission or reflection.

For what concerns the analytical case of any potential barrier, by virtue of the stable
manifold theorem it is quite clear that the qualitative behaviour should not be dissim-
ilar from that described above, but we renounce to give here any precise mathematical
statement of this.

5. Analytical discussion for the case of a rectangular barrier. After the
indications given by the numerical computations, and the general discussion in terms of
the qualitative theory of ordinary differential equations, it seems useful to have available
a case for which an almost complete analytical discussion with explicit formulae can be
provided. The simplest case seems to be that of a rectangular barrier

Viz)=1 for —1<2<0, V(r)=0 -elsewhere, (5)
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because one has then to deal just with the problem of the free particle for all times for
which it is z(t) # —1 or z(t) # 0; a global solution is then obtained by suitable matching
conditions. These are continuity of position x and velocity v; instead, as is easily seen
from the energy equation (4), for the acceleration a it turns out that one has to require a
jump of amplitude +1/¢|v|, with the plus sign at z = —1 and the minus sign at 2 = 0.

The analytical manipulations are easy and some details are deferred to the appendix.
The results can be described by making reference to Fig. 6, where the initial velocity v; is
plotted versus the final velocity v, for several values of € < 1 (the solid line corresponds
to € = 0.2, the dotted line to ¢ = 0.4, and the dashed one to ¢ = 0.6). One sees that
there appear two branches, one with vy > 1 and another one with vy < 1; from the
analytical discussion reported in the appendix one can see that the former corresponds
to transmission, while the latter one corresponds to reflection. Notice in particular that
the curves occur only above a minimum for v;, and this means that nonrunaway solutions
exist only for values of v; larger than that minimum. Another remarkable fact is that the
second branch turns out to be independent of ¢, while the other one squeezes down towards
the line v; = vy as € decreases. So the branch with vy > 1 corresponds to the solutions
of mechanical type, while the other one corresponds to the solutions of nonmechanical
type, which persist for any small value of € # 0. In other terms, as should be expected,
the nonmechanical solutions are the reflected ones, and moreover they turn out to be
independent of e.

An interesting remark is that the presence of the gap described above is due to the
nonanalyticity of the potential. Indeed, if the rectangular barrier is smoothed, it occurs
that the gap disappears, and there exist nonrunaway solutions for any value of the initial
velocity. This is shown in Fig. 7, where we report the results of numerical computations for
a potential barrier interpolating the rectangular one, obtained by smoothing the disconti-
nuity with two semi-gaussians, namely V(z) = 1 if z € [-1,0], V(z) = exp [ (z + 1)?/0]
if r < —1and V(z) = exp(—z?/0) if z > 0. The results refer to o = 107° and € = 0.5.

6. Further comments. So we have shown how, when the selfinteraction of a
charged particle with the electromagnetich field is taken into account through the Lorentz—-
Dirac equation, classical physics leads to situations in which a kind of indeterminacy is
manifested, having a certain similarity with that of quantum mechanics; namely, in an
experiment of scattering by a potential barrier, the control of the initial particle energy is
not sufficient to predict whether the particle will be transmitted or reflected. This is due
to the fact that, for given initial position and velocity, the requirement for the solution
to be physical, i.e. nonrunaway, does not determine uniquely the other initial datum
,i.e. the acceleration, and so the solution of the equation. In this connection we would
like to express here a personal opinion of ours, without pretending to substantiate it at
present. Namely, we conjecture that a similar property should occur also for the complete
system describing the electromagnetic field and the particle, and not only for the reduced
equation for the particle discussed in the present paper; in such a more general context, the
indeterminacy on the particle motion should be due to a lack of control of the initial data
of the field, which should act somehow as hidden variables. By the way, as indicated by
the concrete example of the Lorentz—Dirac equation discussed here, it is clear that hidden
parameters of such a type should have quite peculiar properties, the most interesting one
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being that the values they can take are strongly correlated to the mechanical state of the
particle.

However, it turns out that such a similarity between classical physics and quantum
mechanics for what concerns the indeterminacy illustrated here is only a qualitative one,
because one can see that a quantitative comparison fails. To make such a comparison, one
should define somehow, in the classical case, the analogs of the transmission and of the
reflection coefficients; this is a very interesting subject which we hope to be able to discuss
in the future. On the other hand, for a given initial particle position one has available a
clear definition for the range of energy where the phenomenon of indeterminacy occurs,
namely the width of the overlapping strip; and this has a quantum analog, namely the
energy range where the transmission and the reflection coeflicients are both significantly
different from zero. As such coefficients depend exponentially on energy, the latter energy
range is rather well defined, and can be compared with its classical analog. Now, if one
considers a given particle such as the electron, with the corresponding physical values for
its parameters, acted upon by a concrete potential barrier occurring in physical instances,
one easily checks that the classical energy range of indeterminacy and its quantum analog
differ by several orders of magnitude.

Nevertheless, we believe that the phenomenon illustrated in the present paper might
be of a certain interest, inasmuch as it shows, in the domain of electrodynamics, that clas-
sical physics presents a richness of behaviours, which apparently were not fully appreciated
up to now. This state of affairs is very similar to that occurring in classical statistical me-
chanics, where it was presumed that equipartition should obtain, while it has now become
common knowledge that the situation is much more complicated, because one meets with
several phenomena having a qualitative similarity to those described by quantum mechan-
ics; we refer to the freezing of the degrees of freedom with high frequencies, which is now
understood in terms modern perturbation theory (see for example [6], [7]).

NOTE ADDED IN PROOFS.

The discovery of multiple physical solutions to the Lorentz-Dirac equation was made
alraedy in the year 1943 by F. Bopp who, for the nonrelativistic equation, found two
solutions in the example of the one—dimensional potential step (see [8], page 596). A little
variant of that example (a potential step increasing linearly between the two constant
values) was studied by R. Haag [9) in the year 1955. Analogous results were then found for
the potential step in the relativistic case by Baylis and Huschilt, [1% apparently unaware
of the previous works of Bopp and Haag. All such examples were studied by the quoted
authors in a very elementary way, along lines similar to those followed in the present paper
for the example of the rectangular barrier dealt with in the appendix. We are very grateful
to D. Noja for indicating to us the beautiful review article of the year 1961 by T. Erber,
where the results of Bopp and Haag are briefly discussed (see [11], page 355). The thesis
maintained by Erber is that, among the two “physical solutions” of Bopp and Haag, by
some reason one should be retained and the other discarded. The main contribution of
the present paper seems then to be that in general there are not just two, but rather any
number of physical solutions; so there is no hope to determine a privileged one among
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them, and some new interpretation is required. Another point is that the existence of
multiple solutions is not confined to any particular model, but is a general characteristic
occurring when the external potential presents a maximum.

Strangely enough, the results of Bopp and Haag are mentioned neither by Hale and
Stokes, in their mathematical paper devoted to prove existence of physical solutions, nor
by Rohrlich in his book [*2] which is often considered a the standard reference in this field
(although the papers of Bopp and Haag are quoted). Even stranger is the fact that in the
review paper by Plass exactly the model of Haag is considered and the analytical com-
putations are actually performed (page 54), without finding the phenomenon of multiple
solutions. Apparently this is due to the lack of remarking that a bifurcation occurs when
the parameters are changed. In such a way, the phenomenon of the existence of multiple
solutions turned out to be essentially forgotten.
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APPENDIX

Analytical computations for a rectangular barrier. Our aim is to find the
scattering solutions of the Lorentz—Dirac equation (2) when V(z) is the rectangular po-
tential barrier, V(z) = 1 if z € [-1,0] and V(z) = 0 elsewhere. For x # —1,0 one deals
with the free particle problem, with general solution

z(t) = Ae* + Bt + C ; (6)

thus the nonrunaway scattering solutions are characterized by the existence of a time tp
(with z(tp) = —1 or z(tr) = 0) such that for t > ¢tp they reduce to uniform motion
z(t) = Bt + C. We can take ty = 0. Assuming that the particle incides on the barrier
from the left, the nonrunaway solutions can be classified as being of two types, according
to whether 2(0) = 0 (transmission) or z(0) = —1 (reflection).

Consider first the case of the transmitted solutions, which are characterized by z(t) =
vt for ¢ > 0, where vy > 0 is the final velocity. For ¢ < 0 and > —1 (i.e. “inside the
barrier”) the solution has the form (6) where A, B,C have to be determined in terms of
the final velocity vy by the matching conditions at z = 0. The solution is immediately
checked to be

p(t) = — S (1= /9 + (W - %) .

vy
As the solution has to correspond to transmission, the range of possible values of vy has
to be constrained by the condition that the particle comes from z = —1, namely that the
equation
€ t* /e 1 *
——1—-e/)+ |vg—— )t =-1
vf vf

has a solution t* < 0. It is easy to check that for ¢ < 1 this condition is verified if and
only if vy > 1, so that there are no transmitted particles with final velocity less than 1.
We have now to impose the matching conditions at £ = —1, knowing that at the left of
the barrier, i.e. for ¢ < t*, the solution has the general form (6) with B = v;, where v; is
the “initial” velocity of the particle. Denoting z = t* /¢, this leads to the system

1 1 17171
v; = Uf_@ + (vf + ’Uf—a z-l—;

1:_1(1—e_z)—<vf—i>z,

€ V; vy

with vf > 1. Here vy has to be considered as a parameter, the unknowns being v; and z,
so that the solution of the system provides in particular an expression for v; as a function
of vy, which is the relation of interest for us. The system is easily solved numerically, and
the curves v; versus vy are reported in Fig. 6.

The reflected solutions are calculated in an analogous way. For ¢ > 0 they have the
form z(t) = vyt — 1 with vy < 0. One then looks for the solution “inside the barrier”,
by imposing the matching conditions at x = —1, and looks for the constraints on the

14



final velocity such that the equation z(t*) = —1 has a solution ¢t* < 0; one finds that
this condition is verified if and only if vy € (—1,0). Then one has to impose again the
matching conditions, at x = —1, with the solution corresponding to ¢ < t*, and one obtains
the dependence of the initial velocity on the final one, by solving the system

1 1) 177
vy = Uf_@ + |vf + 'Uf_a z

l_(1—e—Z)+(uf—i)z:o

V; Vf

with vy € (—1,0). Notice that now (at variance with the case of transmitted solutions)
the system, and so the relation between v; and vy, does not depend on e.

FIGURE CAPTIONS

Fig. 1. Particle energy versus position for several numerical solutions of the Lorentz—Dirac
equation with e = 1, for a gaussian potential barrier (also drawn). Notice the existence of
an “overlapping strip”. Results of numerical computations for the same case are illustrated
in the figures 2-5.

Fig. 2. Initial energy F; versus final energy Ef. Notice the “inversion effect”.

Fig. 3 Projections of the orbits of the system on the mechanical phase space of position
and velocity.

Fig. 4. Sections of the physical manifold with several planes z = const.

Fig. 5. A three—dimensional representation of the physical manifold in the enlarged phase
space.

Fig. 6. Initial velocity v; versus final velocity vy for the rectangular barrier, for several
values of e.

Fig 7. Initial velocity v; versus final velocity vy computed numerically for a smooth
interpolation of the rectangular barrier.
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