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We illustrate what we call the Boltzmann—Jeans effect, namely that the relaxation
time to equilibrium for oscillators of a given frequency in general increases expo-
nentially fast with the frequency. This leads one to expect that the blackbody
spectrum (divided by the density of modes) might present a plateau in the low
frequency region.

1 Introduction

The black—body spectrum is a fundamental object of physics, because it gave
rise to quantum mechanics on October 19, 1900, through the discovery of
Planck’s law. The common opinion is that everything is well established
from a theoretical poini of view, and that Planck’s law is well confirmed
by laboratory experiments. Further confirmation also came from the cosmic
background radiation (CBR) because, after some preliminary rather puzzling
results, the CBR spectrum was found to fit extremely well Planck’s law. So
possible deviations of the CBR spectrum from Planck’s law would be inter-
preted as supporting one among different cosmological theories rather than as
indicating an actual property of the black-body spectrum itself. We propose
instead that some deviations from Planck’s law in the low frequency (or high
temperatures) region might occur.

In fact, concerning the black body spectrum things are not so simple
as usually presumed. The first strange fact is that there are essentially no
laboratory experiments after the year 1921, and that the available ones fit
Planck’s law only within 3 percent (a historical review can be found in the
second part of my the paper !; see also Crovini et al. 2). The available
data turn out to lie in the range 0.1 < z < 10 in terms of the dimensionless
parameter

hv

.’L'Zk—T,

where h and k are Planck’s and Boltzmann’s contants, v and T frequency and
absolute temperature respectively. By the way, also the available data for the

vahe bis: submitted to World Scientific on July 18, 2000 1




CBR spectrum have z ~ 0,1 as a lower limit, and it turns out that the data
in the low x region present very huge fluctuations.

We come now to the theoretical reasons that lead us to expect that rele-
vant deviations from Planck’s law might be found in the low frequency domain
(the Boltzmann—Jeans effect, as we call it). The most striking fact is that such
a reasoning is based on completely classical arguments. In our opinion, this
is not an indication of a weakness of the argument, but instead a hint that
something deep might possibly still be understood in the relations between
classical and quantum mechanics. This is supported by the fact that the
Boltzmann—Jeans effect is based on a mathematical argument which is ex-
tremely general and simple, namely the property that the Fourier transform
f(w) of a real analytic function f(¢) of a real variable decreases exponentially
fast with the angular frequency w for large frequencies.

Essentially, the reasoning goes as follows. First of all one reduces the
problem to that of the average energy of a single oscillator of given frequency,
by the familiar procedure of counting the number of equivalent harmonic os-
cillators in a given range of frequencies per unit volume. Then one admits, as
usually presumed in classical physics, that at any given temperature equipar-
tition should hold for all frequencies (namely that the average energy of an
oscillator should be independent of frequency, and equal to kT if an infi-
nite observation time were available, but one wants to take explicitly into
account the corresponding relaxation time, namely the amount of time that
is actually required to reach equipartition. This is a problem that was dis-
cussed by Boltzmann and Jeans, but is usually not considered. Now, there
are very general arguments indicating that, due to the analytical property
mentioned above (see Section 2), the energy transfer to the high frequencies
is extremely nonuniform with respect to frequency. Indeed it turns out that,
if energy is initially given to the low frequencies, in general the transfer to a
high frequency w is exponentially slow, so that the relaxation time increases
exponentially fast with the frequency w. Thus one expects that for any fixed
observation time ¢ there will be a cutoff frequency w(¢) such that equipartition
(a plateau) will prevail for the lower frequencies, while an exponential tail will
occur at the high frequencies; moreover, the equipartition front @(t) will move
at an extremely low rate, and will appear practically as being blocked. This
is the essence of the Boltzmann—Jeans effect, which we propose might be ob-
servable in the black body spectrum and in the analogous phenomena usually
described through Planck’s law (specific heats of crystals and of poliatomic
molecules, CBR and so on). The advancing of such a plateau was exhibited
by numerical computations on a simple one—dimensional model of blackbody
about twenty years ago 2, and beautiful indications in the same direction were
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also given in a very interesting paper written by a group of researchers around
G. Parisi. 4

2 The essence of the analytical argument for the
Boltzmann—Jeans effect: the Landau—Teller approximation

To go to the heart of the problem, we consider the simplest example for which
the Boltzmann—Jeans effect is exhibited. The model is one-dimensional and
consists of two points P and () on a line: P (which we call the spring) is
attracted by a linear spring to a fixed origin O, while @ collides with P
through a given smooth (say analytic) potential (for example on can think of
a typical molecular potential, or more simply to one decaying exponentially
fast). Such a model was studied by Kelvin and Poincaré ¢ (see also Poincaré
") and later by Landau and Teller 8, and is the simplest one describing the
essence of the dynamics of a diatomic gas (see Benettin et al.?). Denote By z
and y the abscissas of the spring P and of the impinging point () respectively.
Then one has a system of two coupled equations for the dynamics, namely
Newton’s equations with the mutual opposite forces due to the given potential,
and rigorous estimates on the exchanges of energies occurring in any single
collisions are not obtained in an easy way. But things are much better in the
first order approximation, which goes as follows. One considers the case in
which the initial energy of the spring is very small so that for the uncoupled
system the spring remains very close to the origin, i.e. |z(t)| < 1 in suitable
units. Thus in the mutual force F, which depends on the relative position
y — x, one can replace in a first approximation the relative position y — x just
by y. Consequently Newton’s equation for the impinging particle decouples
from the other one, becoming a closed equation for y, and is in principle
solved by a certain function y = y(t) depending on the initial data. Denoting
F(y(t)/m = f(t) (m being the mass of P, which can be taken to be unitary),
the equation of motion for the spring P then becomes

F+wiz = f(t)

with the given function f(¢), and everyone knows (see Landau’s book on
mechanics) that such an equation is solved by

¢
z(t) = €™ [ +/0 e " f(s)ds]

in terms of the complex variable z = & + iwz. On the other hand the energy
E = (1/2)(¢* + w?z?) of the spring is immediately written down in terms of
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z(t), and the energy exchange AE = E(4+00) — E(—00) in a single collision
turns our to have the simple expression

+oo .
AE =/ e "PF(s)ds .

Thus in the first approximation the energy that in a single collision the col-
liding particles gives to a spring of frequency w is the Fourier transform (eval-
uated at w) of an analytic function, which, as mentioned in the introduction,
is very well known to decrease exponentially fast with the ferquency w. It can
be shown that the qualitative results of such a first order (or Landau—Teller)
approximation hold rigorously for the exact equations (see Carati et al.® and
Benettin et al.° ), and this is the basis for the Boltzmann—Jeans effect. The
simplicity of the argument is really impressive, and one hardly could imagine
that it might have no actual physical consequences.

3 Possible physical consequences

So our idea should be clear. Following Boltzmann (see Boltzmann!!) we
propose that in the blackbody spectrum and in the specific heat of polyatomic
molecules and of crystals one is not actually dealing with equilibrium states,
but rather with situations of a sort of metaequilibrium. Such situations should
indeed be rather similar to the ones discussed in the frame of glasses or spin
glasses, with the familiar phenomena or aging and so on. In fact we have
made explicit 12 such an analogy in the case of the Fermi—Pasta—Ulam system
(namely a one-dimesional model of a crystal).

What about possible experimental confirmation of our guess? Presently
no one, but we hope that something positive might come out if one looks
carefully at the problem, knowing taht the effect could exist. One example
appears to us promising. We refer to the Johnson effect, concerning the power
spectrum of the temperature noise in conductors, which was already indicated
to one of us by the late Luigi Crovini several years ago as a promising subject.
It is well known that the spectrum should be given by equipartition according
to classical mechanics, and this was was well confirmed for high temperatures;
one expects instead a Planck spectrum for low temperatures, but this was not
observed up to some years ago, as mentioned in the most classical book on
noise’®. In recent years low enough temperatures were investigated 4, and
deviations from equipartition were eventually observed, going just in the di-
rection expected according to Planck’s law. But, as far as we are able to infer
from the quoted paper, it seems that the results actually depend on the obser-
vation time, evolving towards equipartition if longer and longer observation
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times are considered. Figure 17 of the paper Webb et al.'* is the interesting
one, where one can see the different results after different observation times
(if we interpret well the authors, who refer to results after the third and the
fourth demagnetization). The authors also make the following comments:
“We believe that there may be metastable states ... with a spectrum of exci-
tation energies, which gradually decay generating heat. The process may be
analogous to the generation of heat in the ortho—para conversion of molecular
hydrogen. This is just what we expect, and is exactly what we find in our
numerical simulations on the Fermi-Pasta—Ulam model 2, where a glass-like
behavior was exhibited. The high nonuniformity with respect to frequency in
the relaxation times to equipartition is fundamental also in connection with
sound dispersion 13, and was recently very much discussed in the frame of
plasma physics by a group of people around O’Neil (see for example O’Neil
et al.'® and Beck et al.l7).

The study of fluctuations in the energy exchanges is particularly impor-
tant. In a recent work of ours, by the title “Analogue of Planck’s formula and
effective temperature in classical statistical mechanics far from equilibrium”
we have shown how the classical fluctuations, described by a simple formula
rediscovered recently by Benettin '8, lead formally, through a procedure in-
troduced by Einstein ! in his contribution to the 1911 Solvay Conference, to
a classical analogue of Planck’s formula.

Aknowledgments

The contribution of one of us (A.C.) to the present work was made possible
by a grant from Fondazione Cariplo per la Ricerca Scientifica.

References

L.Galgani,Annales de la Fondation Louis de Broglie 8, 19 (1983).

L.Crovini and L.Galgani,Lett. Nuovo Cimento 39, 210 (1984) .

G. Benettin and L. Galgani,J. Stat. Phys. 27,153 (1982).

F. Fucito, F. Marchesoni, E. Marinari, G. Parisi, L. Peliti, S. Ruffo and

A. Vulpiani, Journal de Physique 43, 707 (1982).

G. Benettin, L. Galgani and A. Giorgilli, Phys. Lett. A 120, 23 (1987).

6. H. Poincaré, Revue Générale des Sciences Pures et Appliquées 5, 513
(1894), in Oeuvres X, 246-263.

7. H. Poincaré, J. Phys. Théor. Appl. 5, 5 (1912), in Oeuwvres IX, 626-653.

8. L.D. Landau and E. Teller, Physik. Z. Sowjetunion 10, 34 (1936), in

D. ter Haar ed. Collected Papers of L.D. Landau, Pergamon Press (Ox-

L=

o

vahe bis: submitted to World Scientific on July 18, 2000 5 ‘




10.
11.

12.
13.
14.
15.

16.

17.

18.
19.

ford, 1965), page 147.

A. Carati, G. Benettin and L. Galgani, Comm. Math. Phys. 150, 331
(1992).

G. Benettin, A. Carati, G. Gallavotti, Nonlinearity 10, 479 (1997).

L. Boltzmann, Nature 51, 413 (1895); Lectures on gas theory, University
of Cal. Press (1966), section 45.

A. Carati, L. Galgani, J. Stat, Phys. 94, 859 (1999).

A. van der Ziel, Noise (Prentice Hall, New York, 1954).

R.A. Webb, R.P. Giffard, J.C. Wheatley, J. Low Temp. Phys. 13, 833
(1973).

K. Herzfeld. T.A. Litovitz, Absorption and dispersion of ultrasonic waves
(Accademic Press, New York, 1959).

T.M. O’Neil, P.G. Hjorth, B. Beck, J. Fajans and J.H. Malmberg, in
Strongly coupled Plasma Physics, Proceedings of the Yamada Conference
N. 24, Japan, pag. 313, North-Holland (Amsterdam, 1990).

B. Beck, J. Fajans, J.M. Malmberg, Bull. Am. Phys. Soc. 33, 2004
(1988).

O. Baldan and G. Benettin, J. Stat. Phys. 62, 201 (1991).

A. Einstein, The collected papers of A. Einstein (Princeton U.P., Prince-
ton, 1993), Vol. 3, n. 26.

vahe bis: submitted to World Scientific on July 18, 2000




