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Abstract. — A critical and historical review is given of the problem of the distribution
of energy in a system of weakly coupled harmonic oscillators at equilibrium, when the
relevance of the rate of thermalization is taken into account. It is well known that the
final equilibrium distribution should be equipartition according to classical mechanics, and
Planck’s law according to quantum mechanics. It is illustrated how the modern theory
of dynamical systems, after Fermi Pasta and Ulam, has revived an idea pursued by Jeans
who, following Boltzmann, was trying to explain the observed lack of equipartition as due a
lack of thermalization. The idea is that according to classical mechanics the final approach
to equipartition would take an extremely long time, as is familiar today for glassy systems,
while on a much shorter time—scale one would have a metaequilibrium situation, described
by a Planck-like distribution.

1. — Introduction

The problem of the rate of thermalization consists in determining how long it
takes for a system to reach thermal equilibrium. Thus enunciated, the problem
appears to have no special relevance, because it is clear that every system will have
some characteristic relaxation time, which should be estimated and suitably taken
into account. The situation is however more delicate when relaxation times are met
which are enormously large, as for example in the case of glasses. Indeed, these
are fluids with the special property that the viscosity increases by even 18 orders
of magnitude when the absolute temperature is reduced by only a factor of two,
for example from 600 K to 300 K; thus the relaxation time to equilibrium can be
extraordinarily large, and one meets with situations of a kind of metaequilibrium
or metastability, for which a description by the ordinary methods of equilibrium
statistical mechanics is not feasible.

The main motivation of the present paper consists in illustrating how such a
situation of metaequilibrium is not confined to “strange” systems such as glasses,
but is met in all common situations involving harmonic oscillators, when they present



deviations from a classical behaviour by manifesting a quantum behaviour. Thus,
the property of presenting enormously long relaxation times to equilibrium somehow
seems to correspond to the manifestation of a quantum behaviour, and as such
deserves to be investigated as a property of a general relevant interest.

It will be recalled below how the problem of the thermalization rate was actually
introduced by Boltzmann just within such a foundational perspective, then pursued
by Jeans and Rayleygh, and finally abandoned with a public retractation by Jeans,
struck as he had been by a fundamental paper of Poincaré on the necessity of
quantization. It will then be recalled how the problem of the thermalization rate
reemerged, but only within a sectorial perspective, in the problem of the sound
dispersion in gases, and how finally the problem was reconsidered in the original
foundational spirit of Boltzmann, after the work of Fermi Pasta Ulam (1954) and
the impact of the modern theory of dynamical systems. Finally, some perspectives
will be given concerning the relations between classical and quantum mechanics in
connection with the problem of the rates of relaxation.

2. — The first phase: from Boltzmann to the retractation of Jeans

Boltzmann was confronted with an essential qualiltative difficulty of classical sta-
tistical mechanics in connection with the equipartition principle. Indeed, according
to classical statistical mechanics, equilibrium should be governed by the Maxwell-
Boltzmann probability distribution, the main prediction of which is the equipartition
of energy: every degree of freedom contributes to energy (in the harmonic approx-
imation) with a term 1/2 KT (or kT in the case of harmonic oscillators), where k
is the Boltzmann constant and 7" the absolute temperature. So, at equilibrium the
total energy of a system should be proportional to temperature, and thus the spe-
cific heat be constant, independent of temperature (and of frequency, for systems
of harmonic oscillators). Instead, it was found experimentally that the specific heat
of polyatomic molecules (whose internal motions could be assimilated to harmonic
oscillators or rotators) was decreasing with decreasing temperature. An analogous
qualitative discrepancy was also found to occur in the black—body spectrum, be-
cause the black—body can be assimilated to a system of harmonic oscillators with
frequencies ranging from 0 to oo, and the energy of the high frequency oscillators
appeared to go to zero exponentially fast as frequency increases.

This is known to everybody, because it is exactly in this connection that quantum
mechanics originated, on october 19, 1900, when Planck found empirically, by means
of a skillfull interpolation, that the mean energy U(w,T') of a system of N harmonic
oscillator of angular frequency w at absolute temperature 7' is well fitted by Planck’s

law 5
W
Ulw, T) = N ——— = NkT
(@,T) ePhw _ 1 et —1

(x = fhw, B =1/kT),

where £ is the (rationalized) Planck’s constant. The correspondence principle is
saved because, from the second expression above, Planck’s formula is seen to reduce
to the “classical” formula k7T for x < 1, i.e. for high temperatures or low frequencies,
while decreasing exponentially fast to zero for x > 1, i.e. for low temperatures or
high frequencies. Two months later Planck introduced quantization, i.e. understood



that his law could be obtained by the “simple” prescription that the energy of an
oscillator be quantized, in the sense that only discrete values of energy, actually
E, = nhw, n = 1,2,---, should be allowed (later on, in his “second theory” of
the year 1912, he added the controversial “zero—point energy” 1/2 fiw, which gives
the “energy levels” E, = (n+ 1/2) hw). Planck was originally concerned with the
black-body problem, but his argument was extended by Einstein in the year 1906
to “material” harmonic oscillators. In the meantime, with the celebrated paper
on the photon (1905) Einstein had also shown that quantization was a “real” fact,
and not just a formal one (to this we will however come back below). At the first
Solvay conference (1911, see [1]) the existence of quanta was finally sanctioned by
the scientific community.

This is well known. Less familiar is instead the fact that Boltzmann had previ-
ously looked for a possible escape from the difficulties of the equipartition problem in
a fully classical context. Indeed, he was just suggesting that the lack of equipartition
could very simply be due to the fact that the system had not reached equilibrium
within the measurement time; a hint in this direction was even given by Maxwell in
the last page of his third memoir on kinetic theory, where he speaks of a relaxation
time of 675 years [2]. The main idea was that the relaxation rates to equilibrium
should be highly nonuniform with respect to frequency and temperature: for exam-
ple, in the case of polyatomic molecules equilibration should be quite rapid for the
“external” degrees of freedom such as those of the center of mass, but very slow
for the “internal” motions, i.e. rotations and especially vibrations. This is well
witnessed by a famous letter of Boltzmann to Nature (1895) [3], where he speaks
of times of the order of years. Here is the quotation: ” But how can the molecules
of a gas behave as rigid bodies? Are they not composed of smaller atoms? Probably
they are; but the vis viva of their internal vibrations is transformed into progressive
and rotatory motion so slowly that when a gas is brought to a lower temperature the
moleecules may retain for days, or even for years, the higher vis viva of their inter-
nal vibrations corresponding to the original temperature.” Even more interesting are
the sections 43, 44, 45 of his Lectures on Gas Theory, Vol II, where one finds [4]:
“The constituents of the molecule are by no means connected together as absolutely
undeformable bodies, but rather this connection is so intimate that during the time
of observation these constituents do not move noticeably with respect to each other,
and later on their thermal equilibrium with the progressive motion is established so
slowly that this process is not accessible to observation”; and finally, the most signif-
icant statement: “ The hypothesis proposed here would be confirmed experimentally
if it were to be shown that, for any gas for which k (the ratio C,/Cy of specific
heats) wvaries with temperature, observations ertended over a larger period of time
give a smaller value than for those of shorter duration”.

To this last remark we will come back below. For what concerns quantitative
estimates for the phenomenon predicted by Boltzmann, we could find no trace in his
works. However, estimates were soon provided by Jeans [5], who was able to prove
that the times needed to reach equilibrium were exponentially long with frequency
and (essentially) inverse temperature. This was obtained by showing that the energy
de exchanged between external and internal degrees of freedom through collisions
is exponentially small. As a prototype example consider the head—on collision of a



particle with a spring of frequency w; by extremely elementary considerations Jeans
shows that, in a first approximation, the exchanged energy de is nothing but the
square of the Fourier transform (evaluated at w) of the function F(t) expressing,
as a function of time, the force acting on the free end of the spring by interaction
with the impinging particle. Thus the exchanged energy de turns out to be expo-
nentially small with w, namely of the form de = Aexp(—7w), just in virtue of a
general property of the Fourier transform of an analytic function (the intermolecu-
lar potential having been assumed to be analytic). Here 7 is a characteristic time of
interaction, of the order [/v, where [ is the range of the potential and v the velocity
of the impinging particle. To have an idea of the relevance attributed by Jeans to
such considerations, here is a quotation from the incipit of his paper: “ A steel ball
dropped on a rigid steel plate will rebound perhaps half a dozen times before its energy
1s appreciably lessened; this is because of the great elasticity of steel. If the kinetic
theory of gases is true, a system of molecules must rebound from one another and
from rigid walls many billions of times before the total energy is appreciably lessened.
The aim of the present paper is to show that, in so far as the data available enable
us to judge, molecules will possess sufficient elasticity for this to occur.”

The point of view of Boltzmann and Jeans was amply discussed at the first Solvay
conference (1911), after the report of Jeans ([1], page 74) and after the reading of
a letter that Rayleigh had sent in support of the nonequilibrium point of view ([1],
page 51). Especially relevant was the opinion expressed by Nernst, who remarked:
“up to now it has never been observed that the measured values of the specific heat
increase” (with the time of measurement); in particular, he added, this was true
for gases not obeying the equipartition principle, for which there were available
experimental methods involving measurement times ranging from a millionth of a
second to several minutes. An even stronger argument was given by Nernst in
connection with the fusion temperature and the vapor tension. Indeed, as such
quantities are well known from thermodynamics to depend on the specific heat, he
pointed out that, if the specific heat were changing with time, a difference between
the fusion temperature of natural minerals and that of synthetic compounds should
have been observed, which was not the case. So the phenomenology appeared to
require that the equilibration times should be longer than millions of years for some
components of energy, while other components should equilibrate “immediately”,
and this, Nernst concluded, “is very little probable”. By the way, this seems not to
be so clear today, with the present popularity of the studies on glasses.

A very skeptical comment on the nonequilibrium interpretation was also made
by Poincaré after the report of Jeans. Actually, just under the influence of the dis-
cussions at the Solvay conference, Poincaré himself was very soon led to perform
a deep investigation which, in his opinion, constituted a proof of the necessity of
quantization; not only quantization produces Planck’s law, but conversely, Poincaré
claims, quantization necessarily follows if Planck’s law is assumed to hold at a phe-
nomenological level [6] (see also [7]). A similar argument had previously been given
by Ehrenfest [8]. This was the end of the story, because Poincaré’s paper made so
strong an impression on Jeans that he felt the need of making a public retractation.
This occurred on the occasion of the meeting of the British Association of Physics
of the year 1913, a report of which, published in Nature [9] (see also [10]), goes as



follows: “On Friday morning the most important discussion of Section A, if not of
the whole meeting, took place. The subject was radiation and it was opened by Mr.
J.H. Jeans in a masterly and concise manner. The discussion turned on the ques-
tion of the validity of the laws which have hitherto been believed to be the ultimate
laws of nature. The problem at its simplest occurs in the case of black body radia-
tion. Mr. Jeans regarded the work of Poincaré as conclusive: when starting with the
mean enerqy of each vibration of specified wave-length he deduces the quite definite
result that the exchange of energy must take place by finite jumps. This leads directly
to the quantum hypothesis which the opener assumed in its entirety.” Moreover a
few years later, in publishing the third edition of his Dynamical Theory of Gases,
he introduced a very drastic change by completely eliminating the chapter 16 of
the first two editions, by the title “The transfer of energy and the propagation of
sound’ [11], where the problem of the dependence of the specific heat on the time
of measurement was discussed in connection with the dispersion of sound. See also
[12].

3. — The second phase: from physics to chemistry; relaxation times in
sound dispersion

After the retractation of Jeans, the problem of the times of relaxation to equilib-
rium in polyatomic molecules disappeared from the domain of fundamental physics,
people being convinced that equilibrium was reached “immediately”. Typically, in
the case of gases such as air at ordinary conditions of pressure and temperature, by
“)mmediately” one meant just “after a time of the order of 1071° seconds”, namely
the mean time between two collisions, which gives the order of magnitude of the
equilibration time for the center—of-mass energy.

The problem then reappeared twelve years later, in the year 1925, but only as a
sectorial one within a particular subject, namely dispersion and absorption of ultra-
sound waves (see [13][14] [15], or the very concise review in sect. 4 of [16]). Indeed,
by using ultrasounds with frequencies of the order of the megahertz, which had
just become available, Pierce [17] discovered an anomalous absorption which could
not be explained in terms of the “classical” mechanisms of viscosity and thermal
conduction, already familiar from the times of Kirchhoff and Stokes. After a long
discussion of about five years, people finally became convinced that such an anoma-
lous absorption, which was intimately related with a corresponding phenomenon
of dispersion, should be explained as due to the existence of a retardation in the
equilibration of the internal degrees of freedom of polyatomic molecules with the
external (or translational) ones, more or less in the way conceived by Boltzmann,
Rayleigh and Jeans, although such authors and their foundational perspective es-
sentially were never mentioned. The corresponding relaxation times were found,
quite unexpectedly, to be of the order of 10~® or 10~3 seconds, namely about 5 or 7
orders of magnitude larger than “immediately” [18].

Such a phenomenon of a slow relaxation to equilibrium for the internal motions
was then investigated from a macroscopic point of view, in the frame of continuum
mechanics. A good survey containing a detailed historical part can be found in
Kneser [14] (see also [19]). Quite relevant are the work of Mandelstam and Leon-



tovich, a summary of which is reported by Landau and Lifshitz in connection with
the “second viscosity” [20], and the standard reference book of Herzfeld and Litovitz
[21] (see also [22] and [23]).

Many works were also performed from a microscopic point of view, namely with
the aim of determining the relaxation rate by estimating the exchange of energy
between external and internal degrees of freedom through molecular collisions. The
fundamental reference here is the paper of Landau and Teller of the year 1936
[24]. They consider the problem of the exchange of energy, according to quantum
mechanics, in a collision between a harmonic oscillator and an impinging particle,
interacting through a smooth potential; they claim that the result can be estimated
classically, and give a classical estimate which is essentially equivalent to the one
given 33 years before by Jeans, though apparently unaware of it. The only difference
is that they take into account the Maxwell-Boltzmann distribution of the velocities
of the impinging particle, which entails that only the collisions with particles of
extremely high energy are relevant; this by the way is the reason why the calcula-
tion can be performed classically. In such a way Landau and Teller find that the
exchanged energy is exponentially small with w/kT (actually, a suitable power of
it), but refrain from giving any quantitative estimates.

Quantitative theoretical estimates for the relaxation times, to be confronted with
the experimental ones for several kinds of diatomic molecules, were later given by
many people. An almost complete review up to the year 1969 can be found in Rapp
and Kassal [25]. The essential conclusion of all such works is that everything is ap-
parently in order, because the theoretical estimates are found to be in a more or less
good agreement with the experimental data. Things are however more complicated,
as we will try to illustrate below; a hint can be found in a standard book such as
that of Lambert [15], where one finds the sentence: “Fuven if a completely satisfac-
tory theory were available, its quantitative application would be severely limited by
the lack of accurate and realistic interatomic potentials.”

4. — The third phase: back to physics; Fermi Pasta Ulam and the theory
of dynamical systems; Einstein’s interpretation of Planck’s law

In the meantime, the problem of the relaxation times to equilibrium had emerged
again, as a problem of a general interest, with the work of Fermi-Pasta-Ulam (FPU,
1954) [26]. Such authors were making a numerical investigation of the relaxation
to equilibrium in a one-dimensional model of a nonlinear crystal, namely a chain of
a certain number N of equal mass points on a line, with a coupling due to nonlin-
ear springs: taking initial data with the energy concentrated on the low—frequency
modes, they found by numerical integration of the equations of motion that energy
did not flow to the high-frequency modes within the times they could attain. As
Ulam reports in his preface to the work of FPU, reprinted in Vol. 2 of Fermi’s col-
lected papers (N. 266): “The results of the calculations ... were interesting and quite
surprising to Fermi. He expressed to us the opinion that they really constitute a little
discovery, in providing intimations that the prevalent beliefs in the universality of
maxing and thermalization in nonlinear systems may not be always satisfied.”

We don’t have time to enter here a discussion of the many works written on



the FPU problem (see for example [27][28][29][30]), mostly with the intent of under-
standing whether classical mechanics really predicts extremely long relaxation times
or not. It is just in this connection that many studies in the mathematical theory of
dynamical systems were performed, in the spirit of modern perturbation theory, with
reference to KAM theory and to the notion of weak stability in Nekhoroshev’s sense
[31][32]. Thus the works of Boltzmann and Jeans were rediscovered (see [33][34]
[35]), and the analogy with glasses was first mentioned [36].

There still remained a fundamental problem, namely how could one give a ther-
modynamic description for systems being in a state of metaequilibrium, such as
glasses. Indeed, on the one hand it is found that, due to te exponentially small
exchanges of energy, the high—frequency oscillators give an exponentially small con-
tribution to the specific heat, which seems to be in a qualitative agreement with the
description given by Planck’s law; on the other hand, the dynamical laws describing
the exponentially small exchanges of energy turn out to contain a dependence on the
molecular parameters, which is not the case for the laws of themodynamics. A first
step towards the solution of this fundamental problem was accomplished quite re-
cently in the work [37](see also [38][39][40]), where it was shown that the elementary
mechanical laws governing molecular collisions entail a functional relation between
mean exchanged energy and energy flluctuations, which has exactly the analytic
from corresponding to Planck’s formula, in a way pointed out by Einstein in his
contribution to the Solvay conference.

Let us briefly illustrate this point. It is known since its original derivation that
Planck’s law can be regarded as a solution of the differential equation

% = —(eU +U?/N),
with € = fw. On the other hand it was pointed out by Einstein (see [1]) that such
an equation should be better read as split up into the two relations
% =03, 0p=€eU+U?/N,

where 0% is the variance of energy; indeed the first one should be considered as
a relation of a general thermodynamic character, while the second one should be
looked at as having a dynamical character and might in principle be deducible
from a microscopic dynamics. In his very words: these two relations “exhaust the
thermodynamic content of Planck’s” formula; and: “a mechanics compatible with the
energy fluctuation 0% = €U +U? /N must then necessasily lead to Planck’s” formula.

Now, in the paper [37] it was shown that the mechanics that leads to such a
functional relation is nothing but the ordinary Newtonian mechanics. Indeed, con-
sidering for example the prototype model mentioned above, of a particle impinging
on a spring, one easily shows (at least in a first approximation) that the equations
of motion produce for the energy exchanged during a collision a certain expression,
which in turn, by averaging over the collisions, leads exactly to the Einstein’s func-
tional relation between the mean exchanged energy and the corresponding variance.
In such a way, one obtains for the mean exchanged energy an expression having the
analytical form of Planck’s law; the way in which Planck’s constant should enter
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is not yet clear, although it might be worth mentioning that Planck’s constant is
known to be contained in the values of the actual molecular potentials.

5. — Perspectives: analogy with glasses and with stellar dynamics, Ein-
stein versus Poincaré

Which conclusions can then be drawn from a complicated situation as the one
described above? The first one seems to be that one of the main effects predicted by
Boltzmann really exists. We refer to the prediction that “observations extended over
a larger period of time (for the specific heat should) give a smaller value than for
those of shorter duration”. Indeed it is just this phenomenon that constitutes sound
dispersion. Moreover, it is also commonly observed in polymers, where it is described
under the name of “time—dependent specific heat” [41][23]; by the way, we are
ourselves trying to observe the analogous phenomenon in crystals, in collaboration
with G. Carini and F. Ragusa. There remains however the problem that the observed
relaxation times are still somehow microscopic, being of the order of 10~ or 1075
seconds instead of the ones that would be needed to account for the actual lack of
equipartition; for example, times of the order of billions of years as mentioned by
Jeans would make the job.

This is the main problem with which we are presently confronted. In this con-
nection, we are now trying to produce analytical and numerical estimates for the
energy exchanges, in correspondence with realistic interatomic potential, and we
are meeting with an apparently paradoxical situation. Indeed, in agreement with
the sentence of Lambert quoted above [15], we find that the estimates turn out to
depend in an incredibly strong way on the values of the parameters used, extremely
small variations of the parameters leading to sharp changes in the order of magni-
tude of the exhanged energy. We might perhaps describe such a situation by saying
that a principle of unpredictability of the thermalization rate seems to hold. The
minimum we can say at present is that the agreement between theory and experi-
mental data which is allegedly found in the literature might just be due to the fact
that the relevant parameters are actually fitted to the data rather than taken as
given in advance.

What we hope is that the relaxation times of classical mechanics, accurately
calculated using realistic interatomic potentials without free parameters, can be
proven to be extremely long, entailing extremely large time-scales as those occurring
in glassy systems. But in such a case one would be confronted with the further
problem of explaining the much shorter times which are actually observed, namely,
as mentioned above, of the order of 1072 or 10™° seconds. Our conjecture is that
according to classical mechanics one meets with two time-scales. The first is a short
one, which leads to the reaching a state of metaequilibrium described by a quasi—
thermodynamics in qualitative agreement with Planck’s law, through a dynamical
mechanism as the one conceived by Einstein and illustrated above. The second time—
scale, which might be extremely large as in glassy systems, would instead lead to
equipartition. An analogous situation seems to occur in stellar dynamics, where one
meets with a rapid, violent, relaxation to a Fermi-like distribution, i.e. the Lynden—
Bell distribution (see [42] and the review [43]); this is obtained in the approximation



in which the collisions are neglected, while an extremely slow relaxation to a classical
equilibrium occurs later, under the action of the interstellar collisions.

Of the two time—scales mentioned above as possibly predicted by classical me-
chanics, only the first, rapid one, would be predicted by quantun mechanics, ac-
cording to which Planck’s law is the final equilibrium distribution. If the scenario
illustrated above as possibly predicted by classical mechanics is correct, namely if
Planck’s law describes a metaequilibrium situation evolving at an extremely slow
pace towards equipartition, one would then meet with an observable effect, which
we like to call the Jeans effect (see [44], quoted in [45]; see also [46]): in the low
frequency region of the energy spectrum there would exist a plateau of equipartition,
which advances, at an extremeley slow pace, towards the high frequency region. In-
deed, the exponentially long relaxation times causing the exponential smallness of
the thermodynamic energy are expected to occur only for frequencies above a cer-
tain threshold, below which equipartition should hold; on the other hand such an
“equipartition front” has to advance at all, if a global equipartition has eventually to
occur. Actually it seems to us that such an effect might already be visible in certain
experimental data available for plasmas [47]. In conclusion, classical and quantum
mechanics would agree in predicting the first rapid relaxation to a Planck distribu-
tion; whether the possible later slow relaxation to equipartition really occurs is a
problem which was never seriously considered, and in our opinion is an interesting
one.

In closing the present review, we would like to mention two quotations from
Einstein and Poincaré, concerning the possibility of obtaining Planck’s law without
introducing quantization, i.e. a discretization of energy. For what concerns Einstein,
we have already recalled how, since his contribution to the Solvay conference, he was
striving to obtain a classical understanding. We show now that his attitude did not
change up to his last years. This is witnessed by the following quotations from his
scientific autobiography, which was written a few years before his death [48]. Indeed,
he first recalls how, by inventing the photon, he had given some concreteness to the
discretization of energy, previously introduced by Planck at a purely formal level. In
his very words (see [48]): “This way of considering the problem showed in a definitive
and direct way that it is necessary to attribute a certain immediate concreteness to
Planck’s quanta and that, under the energetic aspect, radiation possesses a sort of
molecular structure”. But after a few lines he adds: “This interpretation, that almost
all contemporary physicists consider as essentially definitive, to me appears instead
as a simple provisional way out’. A further very impressive quotation concerning a
classical understanding of the photon, still taken from his contribution to the Solvay
conference, is reported in [39].

For what concerns Poincaré, we have already recalled how in his fundamental
paper [6] he claimed that quantization should be necessary if Planck’s law is as-
sumed to hold. Actually, it is well known that he had a general negative attitude
towards the metastability scenario of Boltzmann and Jeans, as is witnessed by the
following quotation from a paper of a less technical type [49], written just after the
one mentioned above: “Jeans tried to reconcile things, by supposing that what we
observe is not a statistical equilibrium, but a kind of provisional equilibrium. It is
difficult to take this point of view; his theory, being unable to foresee anything, is



not contradicted by experience, but leaves without explanation all known laws ... ”.

However, curiously enough, the final words of the same paper have the following
tone: “Will discontinuity reign over the physical universe and will its triumph be
definitive? Or rather will it be recognised that such a discontinuity is only an ap-
pearence and that it dissimulates a series of continuous processes? The first person
that saw a collision believed to be observing a discontinuous phenomenon, although
we know today that the person was actually seeing the effect of very rapid changes
of velocity, yet continuous ones’, with the conclusion: “To try to express today an
opinion about these problems would mean to be wasting one’s ink.”

Now, our admiration for Poincaré is unlimited, but our personal feeling, or rather
hope, is that perhaps on this point Einstein was seeing farther than him.
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