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Abstract

We show that the standard Fermi-Pasta—Ulam system, with a suit-
able choice for the inter particle potential, constitutes a model for
glasses, and indeed an extremely simple and manageable one. Indeed,
it allows one to describe the landscape of the minima of the poten-
tial energy and to deal concretely with any one of them, determining
the spectrum of frequencies and the normal modes. A relevant role is
played by the harmonic energy £ relative to a given minimum, i.e., the
expansion of the Hamiltonian about the minimum up to second order.
Indeed we find that there exists an energy threshold in £ such that
below it the harmonic energy £ appears to be an approximate integral
of motion for the whole observation time. Consequently, the system
remains trapped near the minimum, in what may be called a vitre-
ous or glassy state. Instead, for larger values of £ the system rather
quickly relaxes to a final equilibrium state. Moreover we find that the
vitreous states present peculiar statistical behaviors, still involving
the harmonic energy £. Indeed, the vitreous states are described by a
Gibbs distribution with an effective Hamiltonian close to £ and with
a suitable effective inverse temperature. The final equilibrium state
presents instead statistical properties which are in very good agree-
ment with the Gibbs distribution relative to the full Hamiltonian of
the system.
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1 Introduction

If one looks at the microscopic equations of motion, there is essentially no
difference between a glass and the corresponding crystal form. They live
in the same phase space and have the same Hamiltonian, with a potential
energy presenting a huge number of minima. In both cases the initial data lie
near one of the potential energy minima, the only peculiarity of the crystal
being that the corresponding minimum is the absolute one.

The glass and the corresponding crystal show different physical behaviors
just because they remain trapped for an extremely long time in two different
regions of phase space (two regions about two different minima, indeed). A
final relaxation to global equilibrium might perhaps occur, but only over time
scales of a huge magnitude, outside the experimental reach. One can thus
conjecture that there exist suitable effective integrals of motion, which forbid
the system from exploring the whole a priori available “energy surface”.

This analogy or some variant of it certainly is at the basis of the paper
[1] (see also [2]), in which for the first time the idea was advanced that an
analogy may exist between the standard Fermi—Pasta—Ulam system [3] and
glasses. Indeed it was suggested that the apparent paradox of lack of energy
equipartition observed in the FPU system for initial data of FPU type (long
wavelength excitations) might be interpreted as analogous to the glass-like
trapping of a system near a potential energy minimum. In both cases, a
final approach to equilibrium might occur over longer time scales. However,
apparently such analogy was no longer pursued.

In the present paper we make explicit such a qualitative analogy, through
numerical integrations of a FPU system, i.e., a linear chain of particles with
nearest—neighbor interaction. The only peculiarity of the present model is
that, for the interaction, a double-well quartic potential is chosen (Fig. 1).
This is easily seen to imply a property which is a characteristic feature of
the literature on glasses. Namely, that the system possesses a huge number
(increasing exponentially with the system size) of stable equilibrium points,
each corresponding to a disordered configuration of particles, which are usu-
ally said to constitute the “potential energy landscape” of the system.

Obviously, the program of understanding glassy dynamics in terms of the
potential energy landscape is an old one, which goes back at least to the
work of Goldstein [4] and was pursued more recently in several works (see
for example [5]). The advantage of the present model seems to be that in
principle it allows one to locate all the equilibrium points, ascertain their
stability, and compute for each of them the frequency spectrum (Fig. 2)
together with the corresponding normal modes of oscillation (Fig.3). So one
has an essentially complete information on the system, at variance with what



occurs with three-dimensional models.

Our aim is to exploit such information in studying the dynamics of our
model exactly in the spirit of the standard studies on the Fermi-Pasta—Ulam
system.

The numerical simulations show that the system admits glassy states:
if the initial conditions are chosen sufficiently “near” a local minimum, the
trajectory remains trapped in a region about that point for the duration of
the simulations. This implies that ergodicity is broken, at least on the times
scale of our simulations. In fact we find that there exists another function,
besides the total Hamiltonian, which remains practically constant during
the evolution. Such a practically constant value is orders of magnitudes
different from that of the corresponding phase average. This function is
nothing but the sum of the energies of the normal modes relative to the
considered equilibrium configuration. In the rest of the paper such a function
will be called the “total harmonic energy”, or simply the “harmonic energy”,
and denoted by £.

It appears that the harmonic energy £ determines whether the system
will be trapped or not: if its value is below a certain threshold the system
does not thermalize, analogously to what occurs in the familiar FPU system.
Instead, a transition to a behavior of ergodic type occurs if the value of & is
sufficiently raised (Figs. 6 and 7).

Obviously, a trajectory might remain trapped about a local potential
minimum because of a trivial reason, i.e.. just in virtue of conservation of
the Hamiltonian. But this is not what happens in the case of glasses because,
in the thermodynamic limit, there is plenty of energy available for a particle
to leap over a potential barrier. It is just in order to insure that this happens
also in our model that the double well potential was chosen with a very
low barrier between the two minima (Fig. 1). Thus, in all cases in which
the system appears to be trapped near a vitreous equilibrium point, the total
energy is much larger (by factors of order ten or a hundred, depending on the
system size) than the one needed for a particle to leap over the barrier. So,
conservation of the Hamiltonian alone cannot explain the trapping. Instead,
the trapping is apparently due to the fact that the total harmonic energy
& relative to the considered minimum is practically a constant of motion
in a neighborhood about it, whereas this no longer occurs for initial data
sufficiently far away from the stable equilibrium point, i.e., above a certain
threshold in £.

This is the first result of our paper. A second one pertains to the distri-
bution of the normal mode energies. Indeed, if computed in the equilibrium
Gibbs state (through a Montecarlo simulation), such distribution displays a
very distinctive character (Fig. 5). We find that the empirical distribution
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observed in the final equilibrium state above threshold agrees very well with
the theoretical equilibrium one (see Fig. 8). This is completely at variance
with what occurs in the glassy state (below threshold). Indeed in such a
case the empirical distribution (see Fig. 9) follows an exponential law of
the type exp(—fsrF), This suggests that in the glassy state there exists a
(quasi-equilibrium) measure, actually a Gibbs measure exp(—/f.; fﬁ ), with a
suitable effective Hamiltonian H close to the total harmonic energy & (rela-
tive to the considered minimum), and a suitable effective temperature. This
reminds us of what occurs in the description of the different phases met in
phase transitions, as was particularly stressed by Frenkel [6].

The paper is organized as follows. In Section 2 we describe the model, de-
termine an equilibrium point and compute the corresponding normal modes
of oscillation together with the related spectrum of frequencies. In Section 3
we discuss the statistical features of the equilibrium state. In Section 4 we
illustrate the results of our numerical computations, which exhibit the ex-
istence of a glassy state in our model. Some final remarks are reported in
Section 5.

2 The model, the local minima and the cor-
responding normal modes

If one considers a linear chain of N + 2 equal point particles with a nearest
neighbor interaction and fixed ends, one gets the following Hamiltonian

N N

H= o S+ Vi =) )

j=1 §=0

with xo = 0, xy41 = L, where L is the total length of the chain. A trivial
equilibrium point is obtained by taking x;41 — z; = L/(N + 1), which cor-
responds to a crystal structure. A more general equilibrium is obtained by
imposing that
V'(xj41 — x)) o F(zjy1 —z;)=0b forall j,

so that the two forces acting on each particle balance. Now, if V'(r) is
monotonic, then the crystal equilibrium is the only possible one. Otherwise,
if F71(b) (the inverse image of b under the application of the function F')
contains m > 1 points ai,...,am,, then one gets m" different equilibrium

points, which are obtained by choosing in all possible ways the “distances”

T; oot xj11 — ; between adjacent particles, taking them from the values a;.
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Figure 1: Plot of the two body potential as a function of particle “distance”.

As in the ordered crystal case, b is determined by imposing

Z?”j:L.

Expanding the potential energy about one of these equilibria up to second
order one gets

Vi = S V() + 5 SV (5) gz — 4+ - &)

where ¢; is the displacement of the j—th particle from its equilibrium position.
This shows that if the values r; are such that V”(r;) > 0 for all j, then the
considered equilibrium point is a local minimum, and so is stable. We do
not discuss here the general case, and in the present paper we consider only
equilibrium points for which the above condition is satisfied. For example,
this certainly occurs if the two-body potential V(r) presents two minima,
i.e., is a double well potential, and one takes as r; one of them.

Clearly each of such equilibrium points corresponds to a disordered struc-
ture. Moreover, one meets here in a natural way with a random frame, be-
cause each of such equilibria can be obtained by choosing at random the
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Figure 2: Frequency spectra, i.e., frequencies of the normal modes, about a
minimum of the potential energy. Left panel: a glass case (local minimum).
Right panel: the crystal case (absolute minimum). In the glassy case the
frequencies are reported in ascending order as a function of the index j/N.
System size is N = 512.

distances r;, among the m possible values a;. So one obtains a “landscape”
of local minima, whose number is exponentially increasing with the number
of particles.

For the purpose of discussing such vitreous states, it is of interest to
determine the normal modes of a given equilibrium point. In the disordered
case this can be obtained only by numerical means, computing the change—
of-basis matrix U which diagonalizes the dynamical matrix. This forces us
to make a definite choice for the two-body potential V'(r), which we take
within the Fermi-Pasta—Ulam family V (r) = 72/2+ ar3/3 + Br*/4, by fixing
a = —b5 and 8 = 4, namely,

5.

V(r)—2—3r + 7. (3)
The graph of the potential is displayed in Fig. 1. As one sees, this is an
asymmetric double-well potential, with the ratio between the heights of the
two barriers equal to =~ 0.05, and the distance between the minima equal
to 1. With a potential of such a type, one might guess that a jump from
the higher minimum to the lower one easily occurs. However, our numerical
simulations will show that this is not the case.
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Figure 3: Shapes of the normal modes, namely, of the oscillation amplitudes
of the particles as a function of the particle number normalized to 1, for a
disordered equilibrium point. System size is N = 512. Left panel: the three
normal modes of lowest frequencies. The shapes are virtually the same as
for the crystal. Right panel: three normal modes in the higher part of the
frequency spectrum (with frequencies wy, = 1.93,2.89, 3.34). The localization
phenomenon is clearly exhibited.

Having chosen the potential, we determine one among the equilibrium
configurations by choosing at random the distances between adjacent par-
ticles. We take r; = 1 with probability 0.64 and r; = 0 with probability
0.36, in order to insure that the total length be L. We then compute the
change—of-basis matrix U and determine the normal modes together with
their frequencies. In Fig.2 we report the spectrum of the disordered sys-
tem (left panel). As the wave number k does not exist in this case, we sort
the frequencies in ascending order, i.e., in such a way that w;;; > w;. For
comparison, we also report in the figure (right panel) the spectrum of the
crystalline system, i.e., of the system for which all 7;’s are equal to 1. One
sees that the spectra are alike for the first part of the spectrum, while quali-
tative differences show up in the second part, where the disordered spectrum
presents some discontinuities.

For what concerns the shapes of the normal modes, some examples are
shown in Fig. 3. The low—frequencies modes are delocalized and quite similar
to the crystalline case (left panel). Instead, the modes become localized as
the frequency increases, and finally, in the upper part of the spectrum, they
are localized on only a very few sites (right panel). This is in agreement with
the analytical results reported in [7].



3 The statistical approach

We will show in a moment that the vitreous state is not at all typical, i.e.,
that, if the initial data are taken at random, then the system is far from
any equilibrium point. Here "random” means as usual that the data are
extracted according to the Gibbs measure

e~ BH(p1,-TN)
Z(B)

Care should be taken in choosing a suitable value of 3, if one wants that the
mean energy U falls in a range in which an exponentially large number of
equilibrium points are present. With our choice of the two-body potential,
this occurs if one takes for example § = 6, which is the value we used in
all our numerical computations. For such a value of § we also computed
the average length of the chain with free ends, and fixed the actual length L
to such an average value. The value L, in turn, determines also the values
assigned to the probabilities needed to build up the glass in the way described
in the previous section.

So, having fixed [, one can extract some data, and construct the his-
togram of the distances 7; between adjacent particles. The result is shown
in Fig. 4. As one sees, the dispersion is very large. In particular, one has a
maximum at r = 1 and a relative maximum about » = 0. The large disper-
sion clearly shows that, in a generic configuration, the particles are not close
to any minimum of the potential, so that a vitreous state in non generic.

A different way of describing this situation is by looking at other quanti-
ties. In particular one can look at the distribution of the energy of the normal
modes relative to a given minimum. This is shown in Fig. 5. One finds a
characteristic decay, as the histogram is well approximated by a distribution
of the type exp(—yE?3), with 4 = 7.6). This means that the distribution
has a heavy tail, which in turn means that many modes have a big energy,
i.e., the point in phase space is "far” (in the energy norm) from the consid-
ered equilibrium point. The shape of the histogram is also useful in deciding
whether the system did thermalize or not, as will be better explained below.

Thus a vitreous state can only be constructed by hands in the way ex-
plained in Section 2, and not by extracting it at random with the Gibbs
measure. In other terms, the vitreous states do not belong to the so—called
Boltzmann sea (i.e., the set of points of phase space which are ”typical” with
respect to the Gibbs measure). Thus, vitreous states can show up only if the
dynamics is not ergodic, i.e., only if, placing initially the system near a local
equilibrium point, it later remains “frozen” there for a long time without

dp = dpy ... dzy . (4)
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Figure 4: The probability distribution function for the distance between
adjacent particles, for a canonical distribution with 5 = 6.

entering into the ”Boltzmann sea”. It is in this sense that ergodicity is, as
one often says, “broken”.

We suggest two possible ways to check that the system remains outside
the Boltzmann sea. The first is statistical in nature. One chooses an initial
datum near the equilibrium point representing the glass, computes the orbit
for a certain time, and also computes the histogram of the energies of the
single normal modes, at the final time. If such histogram agrees well with the
one computed according to the Gibbs distribution, in particular by showing
heavy tails, then the system did thermalize, leaving the neighborhood of the
equilibrium point. Otherwise the system is still frozen in the glassy state.

A more geometrical approach to control whether the point remains in a
neighborhood of the equilibrium point is the following. Starting again from
an initial datum near the equilibrium point, one computes the trajectory,
and looks at the total harmonic energy &, i.e., at the sum of the energies of
the normal modes, as a function of time. The set defined by £ < 9, with
0 much smaller than the phase average (£), is a (small) ellipsoid centered
at the equilibrium point. If the total harmonic energy £ approaches its
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Figure 5: For a canonical distribution with 5 = 6, plot of the probability
distribution function for the energy of the normal modes, versus E?/3, in
semi logarithmic scale. The continuous line is the function exp(—yE?3),
with v = 7.6. System size is N = 512.

phase average, then the system leaves the neighborhood and (possibly) does
thermalize.

If instead, during the evolution, the total harmonic energy remains almost
constant, close to its initial value, then the motion is confined in such an
ellipsoid, and so remains close to the equilibrium point. This shows that the
system remains a “glass”. At the same time this shows that ergodicity is
broken in the standard sense of dynamical system theory, i.e., there exists a
function, independent of the total energy of the system, whose time average
does not converge to its phase average.

As said in the Introduction, the aim of this paper is to show, through
numerical integrations of the equation of motion, that this actually happens,
i.e., that there exists a threshold of the total harmonic energy £ such that, if
one starts with a smaller value of £ the system remains “frozen” in the glassy
state without thermalizing, up to the times for which we can numerically
follow the system. In this sense we recover, in the present setting, the classical
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Figure 6: Total harmonic energy per particle £/N as a function of time, in
logarithmic scale. The curves correspond to a system of N = 512 particles
with initial values of £/N equal to 0.0002, 0.0003, 0.00035, 0.0004, 0.0005,
0.0008, 0.002 and 0.006.

results of the standard Fermi-Pasta—Ulam system.

4 Numerical results

As explained above, we integrated (by the standard leap—frog method) the
equations of motions corresponding to the Hamiltonian (1), with a potential
V (r) given by (3). The time step was chosen equal to 0.005, so as to insure an
energy conservation better than a part over a thousand in all the performed
computations. The total time of each integration was equal to 10°.

We integrated the system for two different numbers N of particles, namely,
N =512 and N = 4096. For each of such two values of N we constructed a
vitreous equilibrium point as described earlier in Section 2. Then the initial
data near it were chosen in the familiar way used in the Fermi-Pasta—Ulam
model, i.e., by assigning energies and phases to the normal modes pertaining
to that equilibrium.
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Figure 7: Total harmonic energy per particle £/N as a function of time, in
logarithmic scale. The curves correspond to a system of N = 4096 particles
with initial values of £/N equal to 0.0002, 0.000275, 0.0003, 0.0004, 0.0005,
0.0008, 0.002 and 0.006.
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Figure 8: Histogram of the distribution of the normal mode energies (dia-
monds), at the end of the numerical integration, in semi logarithmic scale.
Initial value of £/N equal to 0.0008, a case above threshold. The values are
reported versus E%?, as for the theoretical equilibrium p.d.f. reported in
Fig. 5. The agreement is evident. The continuous line is the graph of the
function exp (—yE?3), with v = 2.54.

In fact, we chose to excite only low—frequency packets of modes, as done
in many numerical studies of the Fermi-Pasta—Ulam system (see [8] or the
recent work [9]). More precisely, in the case N = 512 we excited only the
three lowest frequency modes, giving them an equal share of energy, while
choosing the phases at random. In the case N = 4096, we excited only the
twenty four lowest—frequency modes, so that the packet had the same relative
width as for V = 512. Again the initial energies were the same for all the
excited modes, with the phases chosen at random.

We made different runs in both cases, with the initial total harmonic
energies chosen in such a way that the total harmonic energies per particle
E/N were essentially the same for the two values of N. The results are
summarized in the Figures 6-9.

In Figure 6, we report the total harmonic energy per particle £/N as a
function of time in logarithmic scale, for the case N = 512. We report eight
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runs with different initial values of £/N in the range 0.0001 + 0.006. One
sees that if the initial value of £/N is above a threshold (laying between
0.0003 = 0.0004), the total harmonic energy £ soon starts increasing, and
then reaches, after some time, an asymptotic value which agrees rather well
with the corresponding phase average computed through the Gibbs measure
(with 8 = 6). In this case the system did thermalize. Below threshold things
are different: the total harmonic energy £ remains constant, just fluctuating
a bit about its initial value. So below threshold the system is frozen in a
glassy state up to the total integration time, and ergodicity is broken, at
least on such a time scale. Perhaps the system might thermalize on a longer
time scale, but in any case such time scale has to increase sharply, below the
threshold.

Things are the same also in the case N = 4096, as one sees in Figure 7.
Even in this case the total harmonic energy &£ goes asymptotically to its
phase average if the initial value of £/N is above a threshold (laying now
between 0.00025 =+ 0.0003) while remaining essentially constant below such
a threshold. Notice that the threshold of £/N appears to depend on the
number N of particles, even if not in a quite strong way. However, as the
threshold could also exhibit a dependence on the chosen local minimum,
the dependence of the threshold on the number N of particles needs to be
more carefully investigated. We leave this task for future studies, and in this
paper we content ourselves with indicating that the values of the threshold
(expressed in terms of energy per particle) have roughly the same order of
magnitude in the two cases.

A very interesting fact shows up if one investigates the distribution of the
energies of the single normal modes. This is shown in Figure 8-9, which give
the histograms for the values of the energies at the final time of integration,
The figure refers to N = 512 (the case N = 4096 gives the same results,
and so the histograms are not reported here). The first figure refers to an
initial value of £/N equal to 0.0008, a case above threshold. Here the system
did thermalize, and in fact one sees that the histogram decays as a stretched
exponential, with the same power E%/® as the one computed at equilibrium.
Things, instead, are completely different below threshold. This is shown
in Figure 9, which corresponds to an initial value of £/N equal to 0.0001.
Now one sees that the distribution is of the type exp(—pS.ssE), i.e., of Gibbs
type. However, one has now an effective (quadratic) Hamiltonian instead
of the true Hamiltonian, and moreover an effective inverse temperature B,y
with 1/5.; = £/N, as might have been expected. So it appears as if the
glassy state could be described by a measure of Gibbs type with an effective
Hamiltonian and an effective temperature. Such a measure is different from
the Gibbs one relative to the true Hamiltonian, which instead describes the
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final equilibrium state very far from the glassy state.

5 Final comments

We have shown that, in our Fermi—Pasta—Ulam model with a double-well
inter particle potential, it is possible to build a vitreous state which is stable
for a very long time. Thus the system fails to exhibit an ergodic behavior
on large time scales, in very close analogy with what observed in the original
FPU paper.

Now, perhaps this might have been forecast on the basis of the present
theoretical understanding of the FPU model, particularly (see for example
[10]) for what concerns the slowing down of relaxation to equilibrium. How-
ever, the same can not be said concerning the other main result found here
for the glassy states, which came as a surprise. Namely, the Gibbs—like form
of the histogram of the distribution of the mode energies. This seems to in-
dicate that the measure which describes the glassy state has first of all to be
of Gibbs type, with however both an effective Hamiltonian and an effective
inverse temperature ¢, in place of the true Hamiltonian and the true (.
Actually, a phenomenological approach of this type was taken in the physical
literature (see for example [11]). However, a clear theoretical understanding
of this point is apparently lacking at the moment.

Another interesting point is that, below threshold, the total harmonic en-
ergy £ appears to be a conserved quantity, independent of the total Hamilto-
nian H. Now, in the standard studies on the FPU model, i.e., those concerned
with the crystal state, it is usually assumed that £ is conserved because of
conservation of the Hamiltonian H, the two quantities being very close to
each other in that case. So the present results cast some doubts on that
belief. The interesting point is that, if £ corresponds to a conserved quantity
independent of H, then the criterion usually employed for checking thermal-
ization in the FPU system (namely, the occurring or not of equipartition of
the normal mode energies) should be reconsidered. Indeed in the case of
glasses such a criterion would lead to estimates of the relaxation times much
lower than those found here.
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