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Abstract

In this article, we propose a computational procedure for the efficient implementa-
tion of Dual Mixed Hybridized methods of arbitrary degree. Three main mathemat-
ical tools are used: i) hierarchical finite element bases to yield a vertical splitting
(completion) of each approximation space into a lower degree and a defect correc-
tion part; ii) the Helmholtz decomposition principle for the vector–valued variable
to yield an horizontal splitting of the defect correction part into solenoidal and
non–solenoidal subspaces; iii) fixed–point iterations to solve the two classes of ap-
proximate decoupled subproblems resulting from i) and ii), one of generalized dis-
placement type (upon static condensation) and the other of local saddle–point type.
Exploiting the equivalence between hierarchical completion and Variational Multi-
scale Modeling, we also devise and numerically validate a hierarchical a–posteriori
error estimator for Dual Mixed methods in hybridized form.
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1 Introduction

In this work, we are concerned with a computational procedure for dealing
with Dual Mixed Hybridized (DMH) methods applied to the numerical dis-
cretization of the following elliptic model problem:

Given f ∈ L2(Ω) and gD ∈ H1/2(Γ), find (q, u) such that

q + κ∇u = 0 in Ω,

div q + σu = f in Ω,

u = gD on Γ,

(1)

where Ω ⊂ R
2 is a polygonal domain with boundary Γ, κ(x) is a bounded

diffusion coefficient such that κ(x) ≥ κ0 > 0 a.e. in Ω, and σ(x) is a reaction
coefficient such that σ(x) ≥ 0 a.e. in Ω.

Dual Mixed (DM) methods provide an accurate representation of both pri-
mal and dual variables (this latter representing the flux). However, it is well
known that DM methods give rise to nondefinite linear algebraic systems of
large size, the solution of which is computationally expensive [4]. Resorting
to hybridization [2] yields a symmetric definite positive of reduced size for
the sole hybrid variable (Lagrange multiplier of the interelement continuity of
the normal flux), which exhibits superconvergence properties and provides a
more accurate representation of the solution. Despite such clear advantages,
only a few papers in the literature deal with DM methods in their hybridized
version. Two relevant, and recent, contributions are given in [9,10], where a
variational characterization of the hybridization procedure provides a system-
atic tool for the computation of local matrices and error analysis with respect
to approximations of arbitrary polynomial degree. Efficient multilevel itera-
tive solvers for DMH methods have been investigated in [16], where hybridized
Raviart–Thomas (RT) elements of lowest degree are analyzed by exploiting
their equivalence with the nonconforming displacement–based formulation of
Crouzeix–Raviart type [11,22]. Again in the context of multilevel approaches,
the theoretical foundation of DMH methods of [9] is exploited in [14] to de-
vise a uniformly well conditioned Schwarz preconditioner for approximations
of arbitrary polynomial degree. Eventually, in the area of a–posteriori error
estimators for DMH formulations, we mention the works [5,6,24], which deal,
using different approches, with the lowest order degree method, relying on the
connection with nonconforming approximations.

Here, we consider DMH methods of arbitrary degree for the numerical approx-
imation of (1). With this aim, we first decompose the finite element spaces for
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scalar and vector–valued variables “vertically” into a p–type hierarchy using
the completion approach of [19], which allows to generate a basis of degree k+1
as a defect correction to the basis of degree k. Then, as proposed in [15,17,24]
in the field of a–posteriori error estimators for DM formulations, we addition-
ally decompose “horizontally” the defect correction space for the flux variable
via a strategy based on the Helmholtz principle [13]. We notice that the com-
pletion concept of [19] has been previously applied in [1], where an a-posteriori
error estimator for DM methods is devised and an explicit computation of the
local hierarchical basis functions is carried out in the case of RT elements of
degree 1. In this article, instead, we apply the vertical–horizontal decompo-
sition strategy directly to compute the solution of the DMH problem. This
allows to single out a systematic substructuring which naturally lends itself to
an efficient approximate block iterative implementation. The above introduced
completion concept can be reinterpreted as an instance of Variational Multi-
scale Modeling [18], recently applied to the Discontinuous Petrov–Galerkin
setting in [3], and of Enrichment Methods [12]. This reinterpretation allows
to devise an a–posteriori error estimator for the DMH method, based on the
use of the defect correction part as an indicator of error with respect to the
lower degree approximation.

The remainder of the paper is organized as follows. In Sect. 2, the DM and
DMH methods are recalled along with the mathematical notation. In Sect. 3,
the hierarchical representation and Helmholtz decomposition of finite element
spaces are introduced. Details are provided for the construction of hierarchical
local basis functions for the flux variable in the case of RT finite element spaces
of arbitrary order k ≥ 0 and a practical example of computation is provided in
the case k = 1. In Sect. 4, the hierarchical basis functions are used in the DMH
problem and approximate versions of the flux mass matrix are investigated in
order to decouple the scales of the problem. A fixed point iterative procedure
is then proposed to efficiently implement the approximate DMH formulation.
In Sect. 5, the techniques of [9] are extended to obtain the entries of the
coefficient matrix and of the right–hand side of the condensed system of the
approximate DMH formulation. In Sect. 6, a hierarchical a-posteriori error
estimator, that can be cheaply implemented in the iterative procedure, is
introduced and numerically validated. In Sect. 7, some concluding remarks
are drawn and future perspectives are indicated.

2 Mixed and Mixed–Hybridized Discretizations

For S ⊆ Ω, we introduce the Hilbert ansatz space

H(div;S) :=
{
v ∈ (L2(S))2 | div v ∈ L2(S)

}
,
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equipped with the inner product

(v, q)H(div;S) := (v, q)0;S + (div v, div q)0;S ,

(·, ·)0;S being the standard L2 product on S. The associated graph norm is

||v||div;S = (v, v)
1/2
div;S. The mixed weak formulation of (1) reads:

Find (q, u) ∈ (H(div; Ω) × L2(Ω)) such that for all (v, w) ∈ (H(div; Ω) ×
L2(Ω))

a(q, v) + b(v, u) = G(v),

b(q, w) + d(u, w) = F(w),

(2)

where the bilinear forms a(·, ·), b(·, ·), c(·, ·) and the linear forms F(·) and G(·)
are defined as

a(q, v) =
∫

Ω
κ−1 q · v dx, q, v ∈ H(div; Ω),

b(v, w) = −
∫

Ω
w div v dx, v ∈ H(div; Ω), w ∈ L2(Ω),

d(u, w) = −
∫

Ω
σ uw dx, u, w ∈ L2(Ω),

F(w) = −
∫

Ω
f w dx, w ∈ L2(Ω),

G(v) = −
∫

Γ
gDv · n ds, v ∈ H(div; Ω).

(3)

Associated with the bilinear form a(·, ·), we also define the energy norm

|||v|||div;S :=
(∫

S
κ−1v · v dx+

∫

S
div v · divv dx

)1/2

. (4)

In view of the finite element discretization of (2), we let Ω =
⋃
K be a regu-

lar [8] partition Th of the domain Ω into triangular elements K. We denote by
∂K and n the boundary of the element and its outward unit normal vector (ac-
cording to a counterclockwise orientation along ∂K), respectively. Moreover,
we denote by Eh the set of all the edges of Th, and by Eh,i the set of the internal
edges of Eh, and we denote by Ni the number of internal edges of the mesh.
For k ≥ 0, we let Pk(K) be the local space of polynomials in two variables
of total degree at most k on K, and by Wk(Ω ; Th) :=

∏
K∈Th

Pk(K) the corre-

sponding global space. Furthermore, we let RTk(K) be the Raviart–Thomas
finite element space [21] of degree k on K, defined as

RTk(K) := (Pk(K))2 ⊕ Pk(K) x, (5)

where x = (x, y)t and Pk(K) := span{xαyβ, α + β = k}. Notice that if a
function v|K belongs to RTk(K), then div v|K belongs to Pk(K) and v ·n|∂K
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belongs to Rk(∂K). We denote by Vk(Ω ; Th) :=
∏

K∈Th

RTk(K) the global space

corresponding to (5). Finally, we set

RTk(Ω ; Th) := {v ∈ H(div; Ω) | v|K ∈ RTk(K)} . (6)

Having introduced the above spaces, we can state the following DM finite el-
ement approximation of problem (1):
Find (qk, uk) ∈ (RTk(Ω; Th)×Wk(Ω; Th)) such that for all (v, w) ∈ (RTk(Ω; Th)×
Wk(Ω ; Th))

a(qk, v) + b(v, uk) = G(v),

b(qk, w) + d(uk, w) = F(w).

(7)

The hybridization procedure makes use in the previous system of an addi-
tional dependent variable to relax the interelement continuity for the normal
component of the flux [2]. The formulation is based on the introduction of the
space of single–valued functions on the internal edges of the triangulation

Lk(Eh,i) = {η ∈ L2(Eh,i) | η|∂K ∈ R(∂K), ∀K ∈ Th, ∂K ∩ Γ = ∅}, (8)

where we let Rk(∂K) be the space of polynomials in one variable of total
degree at most k on each edge of ∂K. Observe that functions belonging to
Rk(∂K) are not necessarily continuous at the vertices of K. Then, the DMH
formulation of (1) reads:
Find (qk, uk, λk) ∈ (Vk(Ω ; Th) × Wk(Ω ; Th) × Lk(Eh,i)) such that for all
(v, w, η) ∈ (Vk(Ω ; Th) ×Wk(Ω ; Th) × Lk(Eh,i))

∑

K∈Th

aK(qk, v) +
∑

K∈Th

bK(v, uk) +
∑

K∈Th

cK(v, λk) = G(v),

∑

K∈Th

bK(qk, w) +
∑

K∈Th

dK(uk, w) = F(w),

∑

K∈Th

cK(qk, η) = 0,

(9)

where the bilinear forms aK(·, ·), bK(·, ·), dK(·, ·) are the localization on K of
the corresponding bilinear forms of (3) and where we have introduced the
bilinear form

cK(v, η) =
∫

∂K
η v · n ds, v ∈ RTk(K), η ∈ Rk(∂K), ∂K ∩ Γ = ∅.

Equation (9)3 expresses the fact that functions in Vk(Ω; Th), that a–priori have
discontinuous normal components over Eh,i, satisfy in weak form an interele-
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ment compatibility condition, which physically corresponds to the action-
reaction principle. Problem (9) admits a unique solution (see [4] for a proof).

Let us define now the operators A : Vk(Ω; Th) 7→ Vk(Ω; Th)
′, B : Vk(Ω; Th) 7→

Wk(Ω ; Th)
′, C : Vk(Ω ; Th) 7→ Lk(Eh,i)

′, D : Wk(Ω ; Th) 7→Wk(Ω ; Th)
′ by

(Aqk, vk)Vk(Ω ;Th) = a(qk, vk),

(Bvk, wk)Wk(Ω ;Th) = b(vk, wk),

(Cvk, ηk)Lk(Eh,i) = c(vk, ηk),

(Duk, wk)Wk(Ω ;Th) = d(uk, wk).

(10)

Then, the DMH problem can be stated as




A Bt Ct

B D 0

C 0 0







qk

uk

λk




=




G
F
0



, (11)

where, with a slight abuse of notation, G and F denote here functionals on
Vk(Ω ; Th) and Wk(Ω ; Th), respectively. The variables qk and uk can be stati-
cally eliminated from (11) to yield an equation in the sole hybrid variable λk

A−1(A + Bt(D − BA−1Bt)−1B)A−1Ctλk =

CA−1(A +Bt(D − BA−1Bt)−1B)A−1G − CA−1Bt(D − BA−1Bt)−1F .
(12)

Let Nλ = (k + 1)Ni and {λi
k}Nλ

i=1 be a basis for Lk(Eh,i), in such a way that

λk =
Nλ∑
i=1
αiλ

i
k. Then, relation (12) can be written in matrix form as

EΛ = H, (13)

where Λ = (αi)i=1,...,Nλ
is the unknown vector, and the stiffness matrix E and

the right–hand side H are computed from the matrices associated with the
operators A,B, C,D and G,F , respectively. The expression of the entries of E
and H is given in Sect. 5.

3 Hierarchical–Helmholtz Decomposition of Approximation Spaces

In this section, we introduce the two following mathematical tools:
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i) the hierarchical splitting of all the finite element spaces into lower order
and defect correction contributions;

ii) the Helmholtz decomposition of the defect correction space for the flux
variable.

Then, for a given nonnegative integer k, we let Xk be a polynomial space of
degree ≤ k, and we construct the space of higher degreeXk+1 as the completion
ofXk, i.e., by hierarchically enriching Xk with the defect correction space X̃k+1

as

Xk+1 = Xk ⊕ X̃k+1. (14)

Relation (14) represents a vertical decomposition of the considered finite ele-
ment space, and corresponds to the splitting i). In the case where X is a space
of vector–valued functions, we also consider the Helmholtz decomposition

X = X0 ⊕X⊥, (15)

where (·)0 indicates the divergence–free subset of (·) and (·)⊥ indicates its com-
plement. Relation (15) represents a horizontal decomposition of the considered
finite element space, and, setting X = X̃k+1, corresponds to the splitting ii).

3.1 Hierarchical Basis Functions

In this section, we construct the hierarchical representation of basis functions.
The procedure for the scalar one–dimensional and two–dimensional spaces is
an L2 orthogonalization of basis functions in the defect space with respect
to functions in the lower order space. The treatment of the Raviart–Thomas
functions is more delicate. The theory developed in [19] allows to build a cor-
rection space of degree k+1, relying on the already existing bases of degree k.
This same representation will be shown to provide also a straightforward char-
acterization of the solenoidal part and of its complement in the defect space.

Applying (14) to Xk+1 = Rk+1(∂K) yields the scalar edge hierarchical splitting

Rk+1(∂K) = Rk(∂K) ⊕ R̃k+1(∂K), (16)

where

R̃k+1(∂K) = {η̃ ∈ Rk+1(∂K) and
∫

∂K

η̃ ξ ds = 0, ∀ ξ ∈ Rk(∂K), K ∈ Th}.

(17)
It is easy to check that the restriction of R̃k+1(∂K) on each edge of K consists
of the Legendre polynomial of degree k + 1 [23]. Applying (14) to Xk+1 =
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k space dim. completion dimΣA dimΣB dimΣC

0 RT1 5 3 2 -

1 RT2 7 3 3 1

2 RT3 9 3 4 2

3 RT4 11 3 5 3

4 RT5 13 3 6 4

Table 1
Summary of the degrees of freedom of RTk+1(K), k = 0, . . . , 4, according to (20).

Pk+1(K) yields the scalar hierarchical splitting

Pk+1(K) = Pk(K) ⊕ P̃k+1(K), (18)

where

P̃k+1(K) = {w̃ ∈ Pk+1(K) and
∫

K

w̃ ϕ dx = 0, ∀ϕ ∈ Pk(K), K ∈ Th}. (19)

Applying (14) to Xk+1 = RTk+1(K) yields the vector hierarchical splitting

RTk+1(K) = RTk(K) ⊕ R̃Tk+1(K).

We propose to characterize the completion space R̃Tk+1(K) by the following
set Σ of degrees of freedom:

Type A (edge modes, ΣA):
∫

∂K

v · n η̃ ds, η̃ ∈ R̃k+1(∂K), k ≥ 0,

Type B (internal modes, ΣB):
∫

K

div v ϕ̃ dx, ϕ̃ ∈ P̃k+1(K), k ≥ 0,

Type C (internal modes, ΣC):
∫

K

curl v α̃ dx, α̃ ∈ P̃k−1(K), k ≥ 1,

(20)
where v ∈ R̃Tk+1(K), and, for any P ∈ (H1(K))2, we define curl P := (∂px

∂y
−

∂py

∂x
). Notice that dim ΣA = 3, dim ΣB = k + 2 and dim ΣC = k, from which

it follows that dim Σ = dim ΣA + dim ΣB + dim ΣC = 2k + 5, which coincides
with dim R̃Tk+1(K) = dim RTk+1(K) − dim RTk(K) (see Tab. 1).

Proposition 3.1 The finite element defined by the set Σ is unisolvent.

Proof. Assume that the quantities (20)1–(20)3 are equal to zero, and prove
that v ≡ 0. Since v · n|∂K ∈ R̃k+1(∂K), the fact that (20)1 is equal to zero
implies that v · n = 0 on each edge of ∂K. Similarly, as div v ∈ P̃k+1(K), the
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fact that (20)2 is equal to zero implies that div v = 0, so that we can write [4,
Corollary 3.1]

v = curlφ :=

(
− ∂φ

∂y
,
∂φ

∂x

)t

, φ ∈ P̃k+2(K). (21)

Let now e ∈ ∂K be the edge connecting vertex a to vertex b (oriented from a
to b). Since

0 =
∫

e

v · n ds = φ(b) − φ(a),

we have that φ(a) = φ(b). This implies that φ attains the same value φ at
each vertex of K. Without loss of generality, we set φ = 0, and using (21) we
get

0 =
∫

e

v · n η̃(s) ds = −
∫

e

φ
dη̃(s)

ds
ds, η̃ ∈ P̃k+1(e). (22)

The k + 1 conditions of Eq. (22), together with the two conditions φ(a) =
φ(b) = 0, imply that φ = 0 on e, and, as a consequence, φ|∂K = 0. This latter
property and the fact that (20)3 is equal to zero gives

∫
K 4φ α̃ dx = 0 for all

α̃ ∈ P̃k−1(K), which implies that φ ≡ 0 in K [19]. �

3.2 Helmholtz Decomposition of Defect Correction Spaces

Applying (15) to X = R̃Tk+1(K) yields the Helmholtz splitting

R̃Tk+1(K) = R̃T
0

k+1(K) ⊕ R̃T
⊥

k+1(K). (23)

The following result holds (see also the analysis of [24, Sect.2] in the case
k = 0).

Proposition 3.2 Let vk+1 ∈ RTk+1(K) be uniquely decomposed as

vk+1 = v0
k+1 ⊕ v⊥

k+1(K). (24)

The following structure can be identified

v0
k+1 = v0

0 ⊕
k∑

l=0

ṽ0
l+1, v⊥

k+1 = v⊥

0 ⊕
k∑

l=0

ṽ⊥

l+1, (25)

where ṽl+1 ∈ R̃Tl+1(K) is uniquely decomposed as

ṽl+1 = ṽ0
l+1 ⊕ ṽ⊥

l+1.
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Proof. Set k = 0 and let v0
1 ∈ RT

0
1(K). Setting X = RT

0
1(K), relation (14)

yields
v0

1 = v0
0 ⊕ ṽ0

1,

where v0
0 ∈ RT

0
0(K) and ṽ0

1 ∈ R̃T
0

1(K). Set now k = 1 and let v0
1 ∈ RT

0
2(K).

Applying again (14), yields

v0
2 = v0

1 ⊕ ṽ0
2 = v0

0 ⊕
1∑

l=0

ṽ0
l+1,

where v0
0 ∈ RT

0
0(K) and ṽ0

l+1 ∈ R̃T
0

l+1(K). Induction on k gives (25)1. Set
again k = 0 and let v ∈ RT1(K). Using (14) and then (23), yields

v1 = v0 ⊕ ṽ1 = (v0
0 ⊕ v⊥

0 ) ⊕ (ṽ0
1 ⊕ ṽ⊥

1 )

= (v0
0 ⊕ ṽ0

1) ⊕ (v⊥
0 ⊕ ṽ⊥

1 ).

Since, from (25)1 (with k = 0) we have that the term (v0
0 ⊕ ṽ0

1) belongs to
RT

0
1(K), this leads to recognize the following decomposition

v⊥

1 = ṽ⊥

0 ⊕ ṽ⊥

1 .

Induction on k yields relation (25)2. �

Proposition 3.2 has the practically relevant consequence that the hierarchical
construction discussed in the previous section can be exploited also to obtain
the solenoidal subspace of degree k+1 and its complement as completion of the
corresponding subspaces of degree k. With this purpose, we start determining

the dimensions of R̃T
0

k+1(K) and R̃T
⊥

k+1(K). From (21), we have

dim(R̃T
0

k+1(K)) = dim(Pk+2(K)) − dim(Pk+1(K)) = k + 3, (26)

and

dim(R̃T
⊥

k+1(K)) = (dim(RTk+1(K)) − dim(RTk(K))) − dim(R̃T
0

k+1(K))

= (2k + 5) − (k + 3) = k + 2.

(27)
Tab. 2 summarizes the dimensions of the subspaces involved in the Helmholtz
decomposition of the Raviart–Thomas finite element space of degree k. Notice
that the table can be accessed in two different ways. Reading the table in a
rwo–wise fashion informs about the dimension of the solenoidal subspace and
of its complement for a given degree k (e.g., dimRT2(K) = 15 = dimRT

0
2(K)+

RT
⊥

2 (K) = 9+6). Reading the table in a “zig–zag” fashion informs about the
dimension of the solenoidal subspace and of its complement viewed as the
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Solenoidal subspace Non–Solenoidal subspace

k space completion completion completion

- RT0 3 - 2 - 1 -

0 RT1 8 5 5 3 3 2

1 RT2 15 7 9 4 6 3

2 RT3 24 9 14 5 10 4

3 RT4 35 11 20 6 15 5

4 RT5 48 13 27 7 21 6

Table 2
Dimensions of the subspaces involved in the Helmholtz decomposition applied to
the hierarchical representation of RTk+1(K), k = 0, . . . , 4. Dimensions of the re-
spective defect corrections spaces are reported as well. Accessing the table in a
row–wise fashion informs about the dimension of the full space, of its solenoidal
and non–solenoidal parts. Accessing the table in a “zig-zag” fashion informs about
the dimension of the solenoidal and non–solenoidal subspaces composed by the sum
of the lower degree and defect correction parts.

sum of a lower degree part and of a defect correction. (e.g., dimRT
0
2(K) =

9 = dimRT
0
0(K) + dimR̃T

0

1(K) + dimR̃T
0

2(K) = 2 + 3 + 4).

It is interesting to observe that there exists a one-to-one correspondance
between the alternative degrees of freedom (20) for the representation of
ṽ ∈ R̃Tk+1(K) and the Helmholtz decomposition (15) of such space [13, The-
orem 3.2], given by

ṽ = ∇ψ̃ + curl φ̃, ψ̃, φ̃ ∈ P̃k+2(K).

Precisely, denoting by LA(v), LB(v) and LC(v) the linear functionals express-
ing the degrees of freedom in ΣA, ΣB and ΣC , respectively, we have

∇ψ̃ =
k+2∑

i=1

LB
i (v)τB

i ,

curl φ̃ =
3∑

i=1

LA
i (v)τA

i +
k∑

i=1

LC
i (v)τC

i ,

τA
i , τB

i and τC
i being the basis functions related to ΣA, ΣB and ΣC .

The degrees of freedom of the hierarchical–Helmholtz decomposition are de-
picted in Fig. 1 in the cases k = 0, 1, 2, 3. Notice that in the special case k = 0,
the hierarchical strategy does not apply, while an Helmholtz decomposition
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RT1(K)

RT2(K)

RT3(K)

RT
0

0
(K) RT

⊥

0
(K)

RT
⊥

1
(K)

RT
⊥

2
(K)

RT
⊥

3
(K)

RT
0

1
(K)

RT
0

2
(K)

RT
0

3
(K)

Figure 1. Construction of the space RTk(K) for k = 1, 2, 3. In the leftmost column,
the solenoidal defect correction degrees of freedom are shown, in the rightmost
column the non-solenoidal defect correction degrees of freedom are shown. Contri-
butions from the lower degree subspace are represented by the vertical arrows. The
two central columns show the solenoidal (left) and non–solenoidal (right) subspaces
of the RTk(K) space.

can be carried out (cf. Sect.3.3 for details).

3.3 An Example of Computation of Basis Functions

In this section, we carry out the computation of the basis functions for the
finite element spaces RT1(K)×P1(K)×R1(∂K). With this aim, it is useful to
refer to the half unit–square triangle K̂ (reference element), this approach be-
ing the most efficient and flexible for coding the method on the computer. Let
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x̂ = (x̂, ŷ)t be the coordinate vector in K̂. We define the affine transformation

FK : K̂ → K,

FK(x̂) = bK +BKx̂, with bK =



x1

y1


 , BK =



x2 − x1 x3 − x1

y2 − y1 y3 − y1


 ,

which maps the reference triangle into the element K ∈ Th of vertices (xi, yi), i =
1, 2, 3, labelled with a counterclockwise orientation. Accordingly, for a scalar–
valued function w and a vector–valued function τ defined on K, we set

w(x) = ŵ(x̂), τ (x) = PK τ̂ (x̂), (28)

where PK is the Piola transformation (cf. [4], Sect. III.1.3) such that

PK : (L2(K̂))2 → (L2(K))2,

PK τ̂ (x̂) =
1

mK

BK τ̂ (x̂), with mK := |detBK|.

Enforcing L2 orthogonality on the 1D reference element ê = (−1, 1), we get
P0(ê) = span{1} and P̃1(ê) = span{s}, s being the curvilinear abscissa on ê.
Enforcing L2 orthogonality on K̂, we get P0(K̂) = span{1}, and P̃1(K̂) =
span{x̂ − 1/3, ŷ − 1/3}. We come now to the vector–valued finite element
space. The standard basis functions associated with the lower degree space
RT0(K̂) are

τ̂ 1 =



x̂

ŷ


 , τ̂ 2 =




x̂

ŷ − 1


 , τ̂ 3 =



x̂− 1

ŷ


 .

The basis functions of the defect correction space can be constructed from
the degrees of freedom (20). Namely, the basis functions associated with the
degrees of freedom of Type–A (edge modes) are

τ̂ 4 =



−3

√
2x̂

3
√

2ŷ


 , τ̂ 5 =



−6 + 6x̂+ 12ŷ

−6ŷ


 , τ̂ 6 =




6x̂

6 − 12x̂− 6ŷ


 ,

while the basis functions associated with the degrees of freedom of Type–B
(internal modes) are

τ̂ 7 =



−2x̂ + 2x̂2 + x̂ŷ

−ŷ + 2x̂ŷ + ŷ2


 , τ̂ 8 =



−x̂ + x̂2 + 2x̂ŷ

−2ŷ + x̂ŷ + 2ŷ2


 .
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In the present case, k = 0, there are no degrees of freedom of Type–C. Summa-

rizing, we have that RT0(K̂) = span{τ̂ 1, τ̂ 2, τ̂ 3}, R̃T
0

1(K̂) = span{τ̂ 4, τ̂ 5, τ̂ 6}
and R̃T

⊥

1 (K̂) = span{τ̂ 7, τ̂ 8}. Fig. 2 depicts the basis functions τ̂1, . . . , τ̂8.

Remark 3.1 For each e ∈ ∂K̂, the following properties hold

i)
∫

e

τ̂ i · n̂ dŝ = 0, i = 4, 5, 6,

ii) τ̂ i · n̂|e = 0,
∫

K̂

div τ̂ idx̂ = 0, i = 7, 8.

We notice that the basis functions τ̂4, . . . , τ̂8 were computed also in [1], produc-
ing a different result which does not satisfy properties i) and ii). Moreover, if
we use the present basis functions to compute on the reference triangle the con-
stant γ1K of the Strengthened Cauchy-Buniakowskii-Schwarz (CBS) inequality
as in [1, Sect.3.2], we obtain the value γ1K = 0.8185 (to be compared with the
value 0.9486 found in [1]).

Remark 3.2 Applying the Helmholtz decomposition also to the space RT0(K̂)
yields

τ̂ 1 =



1

0


 , τ̂ 2 =



0

1


 , τ̂ 3 =



x̂− 1/3

ŷ − 1/3


 ,

from which we have the alternative representation

RT
0
0(K̂) = span{τ̂ 1, τ̂ 2}, RT

⊥

0 (K̂) = span{τ̂ 3}.

4 Decoupled DMH Problem with Approximate Flux Mass Matrix

In this section, we discuss the structure of problem (9) when the basis functions
introduced in Sect. 3 are used and we propose a computational procedure for
the effective solution of the resulting system. We assume in the following that σ
is a piecewise constant nonnegative function on Th.

Given a generic operator X , we denote by XK its restriction to each K ∈ Th.
We associate with the index 1 the finite element spaces of lower degree in the
hierarchical decomposition (for both scalar and vector–valued functions), while
the index 2 denotes the defect correction space (for scalar–valued functions) or
its divergence–free part (for vector–valued functions) and the index 3 denotes
the remaining part of the defect correction space (for vector–valued functions).
Then, with the notation XK

µ,ν, µ, ν = 1, 2, 3, we denote the operator acting
between the space labelled with µ and the dual of the space labelled with ν.

14
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Figure 2. Basis functions τ̂1, . . . , τ̂8. Functions in the first row span the space
RT0(K̂), functions in the second row span the defect correction space R̃T1(K̂).
Functions τ̂4, τ̂5, τ̂6 are solenoidal edge modes, functions τ̂7, τ̂8 are non–solenoidal
internal modes. Notice that τ̂4, τ̂5, τ̂6 have null flux on each edge of ∂K̂, while τ̂7, τ̂8

have null normal component on each edge of ∂K̂.

Let us consider problem (9) written -with a simple shift of indices- for the
degree k+1, k ≥ 0, and let us assume that each set of variables is represented
using the decompositions (14)–(15) and is labelled according to the above
mentioned convention. Due to the properties of the hierarchical–Helmholtz
decomposition, we have that, if µ 6= ν,

(BK
µ,νvν , wµ)Pµ(K) = 0,

(CK
µ,νvν , ηµ)Rµ(∂K) = 0,

(DK
µ,νuν, wµ)Pµ(K) = 0.

(29)

Moreover,

(BK
µ,νvν, wµ)Pµ(K) = 0 if ν = 2,

(CK
µ,νvν, ηµ)Rµ(∂K) = 0 if ν = 3.

(30)

Relations (29) imply a complete separation between subspaces in the bilin-
ear forms b, c and d. Relation (30)1 implies that the divergence-free part of
the defect correction space cannot contribute to lift any given load f , while
relation (30)2 implies a complete localization of problems arising from the
non–solenoidal part of the defect correction subspace. As a matter of fact,

coupling occurs because the spaces RTk(K), R̃T
0

k+1(K) and R̃T
⊥

k+1(K) are
not orthogonal with respect to the bilinear form a, so that some form of diag-
onalization may be envisaged to reduce the computational effort, ending up
with an approximate flux mass matrix. In order to study the effect of oper-
ating a diagonalization of AK, we analyze more in detail its structure. We
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have

(AKqk+1, vk+1)Vk+1(Ω;Th) =







A1,1 A1,2 A1,3

At
1,2 A2,2 A2,3

At
1,3 At

2,3 A3,3







qk

q̃0
k+1

q̃⊥
k+1



,




vk

ṽ0
k+1

ṽ⊥
k+1






, (31)

where A acts on q in the standard form of a matrix–vector product. Care
must be paid to ensure that the modified operator preserves the theoretical
convergence order of the DMH method of degree k + 1 [4]. This issue is the
subject of the forthcoming section.

4.1 Error Analysis for the Approximate DMH Formulation: Numerical Val-
idation

In the following, we consider two numerical examples for which the exact so-
lution is available and we monitor the convergence rates obtained for different
choices of the diagonalization procedure in the case of RT elements of degree 1.
In both examples, Ω = (0, 1)2, gD = 0 and f is such that the exact solution
is the function u = 16xy(x− 1)(y − 1).

– Test 1: we solve problem (1) setting κ = 1 and σ = 1.
– Test 2: we solve problem (1) setting κ = 1 + αe−β((x−1/2)2+(y−1/2)2), with
α = 1, β = 10, and σ = 0.

Notice that, despite the fact that Test 1 and Test 2 have the same exact solu-
tion u, in Test 1, κ and σ are constant functions, but the non–null reaction term
strongly couples the primal and the dual variable. In Test 2, κ is instead a func-
tion of the position, and this introduces a strong coupling in the flux mass ma-
trix. In Figs. 3 and. 4 we show the convergence rates corresponding to setting
to zero the extra–diagonal blocks of AK

µ,ν, µ 6= ν, as specified in the respective
legends, using right–angled meshes with size h = [1/2, 1/5, 1/20, 1/40, 1/80].
Given the corresponding discrete solutions (qh, uh, λh), we plot the quantities
|||q−qh|||div;Ω, ||u−uh||0;Ω and ||Pu−λh||−1/2,h, this latter norm being defined
as [4]

||η||−1/2,h :=

(∑

e∈Eh

|e|||η||20;e
)1/2

,

where P is the L2 projection onto Pk(e), e ∈ Eh. The same legend is used in all
figures: RT0 (red): ’◦’, RT1 (blue): ’�’, A12,A13,A23 = 0 (green): ’O’, A23 = 0
(magenta): ’×’, A12,A23 = 0 (cyan): ’/’, A13,A23 = 0 (dark yellow): ’.’.

Both sets of computations indicate that the optimal rate of convergence of
the plain DMH method using RT elements of degree 1 is retained only in the
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Figure 3. Convergence rates for Test 1 obtained for different choices of the approxi-
mate flux mass matrix. Top: |||q−qh|||div;Ω. Bottom left: ||u−uh||0;Ω, bottom right:
||Pu− λh||−1/2,h. The same legend is used in all figures: RT0 (red): ’◦’, RT1 (blue):
’�’, A12,A13,A23 = 0 (green): ’O’, A23 = 0 (magenta): ’×’, A12,A23 = 0 (cyan):
’/’, A13,A23 = 0 (dark yellow): ’.’.

case where the sole A23 coupling term is neglected. This is supported by the
fact that in all figures the error curves associated with the choice A23 = 0
are superposed or parallel to the corresponding error curve in the case of the
plain DMH method. We also notice that a complete block diagonalization
A12,A13,A23 = 0 spoils the accuracy of the method with particular effect on
the convergence of the hybrid variable. This latter effect is a direct consequence
of the lack of accuracy in the approximation of the internal variables (cf. the
error estimates for the hybrid variable proved in [2] in the case of Galerkin
formulations and in [7] in the case of Petrov-Galerkin formulations). However,
the full block diagonalization of A can still be profitably used in the context of
a–posteriori error estimation, because in this application the solution obtained
from the approximation of degree 1 is sufficient to produce a consistent error
estimator for the solution of degree 0 (see [24] for a discussion of this topic
and [17] for the generalization to an approximation of arbitrary degree).

We conclude this section by pointing out that an extensive numerical valida-
tion, carried out on several other test problems also employing unstructured
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Figure 4. Convergence rates for Test 2 obtained for different choices of the approxi-
mate flux mass matrix. Top: |||q−qh|||div;Ω. Bottom left: ||u−uh||0;Ω, bottom right:
||Pu− λh||−1/2,h. The same legend is used in all figures: RT0 (red): ’◦’, RT1 (blue):
’�’, A12,A13,A23 = 0 (green): ’O’, A23 = 0 (magenta): ’×’, A12,A23 = 0 (cyan):
’/’, A13,A23 = 0 (dark yellow): ’.’.

grids, yields completely analogous results.

4.2 Fixed–Point Iteration

The general trend suggested by the discussion in Sect. 4.1 indicates that a
complete decoupling between different scales in the hierarchical approxima-
tion spoils the accuracy of the method. In order to take advantage of the hi-
erarchical structure without a degradation of the optimal rate of convergence,
we consider a fixed–point iteration based on the successive choice in (9) of the
sets of test functions (vk, wk, ηk), (ṽ0

k+1, w̃k+1, 0) and (ṽ⊥
k+1, 0, η̃k+1).

Given the initial guess solution (qk+1, uk+1, λk+1)
(0) and an input tolerance

tol, the iterative procedure consists of the following steps, for ` ≥ 0:
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– Step S1. Solve the lower degree problem:




A1,1 Bt
1,1 Ct

1,1

B1,1 D1,1 0

C1,1 0 0







qk

uk

λk




(`+1)

=




−A1,2q̃
0
k+1 −A1,3q̃

⊥
k+1

0

0




(`)

+




G1

F1

0




(32)

– Step S2. Solve the solenoidal defect correction problem:



A2,2 Ct

2,2

C2,2 0







q̃0
k+1

λ̃k+1




(`+1)

=



−At

1,2qk

0




(∗)

+



G2

0


 (33)

– Step S3. Solve on each K ∈ Th the non–solenoidal defect correction problem:



AK

3,3 (BK
3,3)

t

BK
3,3 DK

2,2







q̃⊥
k+1

ũk+1




(`+1)

=



−(AK

1,3)
tqk

0




(∗)

+




0

FK
2


 (34)

– Step S4. If |||q(`+1)
k+1 −q

(`)
k |||H(div;Ω) ≥ tol, then ` := `+1 and go to Step S1,

otherwise stop.

The well–posedness of the saddle–point defect correction problems (33) and
(34) can be proved by a proper adaptation of [4, Lemma V.I.2] and of [20,
Lemma 7.2.1], respectively.

Notice that a block Gauss–Seidel iteration is obtained if (·)∗ = (·)(`+1), while
a completely parallelizable block Jacobi iteration is recovered if (·)∗ = (·)`.
Our computational tests indicate that at most 6–7 Gauss–Seidel iterations
are required to obtain an accuracy of the order of 10−7 for the increment
(q`+1

1 − q`
1) measured in the maximum vector norm, with a decreasing trend

as the mesh size goes to zero (see also the comments at the end of Sect. 6).

4.2.1 Remarks on the Implementation

Step S1 requires solving a saddle point problem in the lower degree variables,
that can be treated by static condensation (see Sect. 5), yielding a symmetric
definite positive system of the form (13) for the sole hybrid variable. Since
the coefficient matrix does not depend on `, it can be factorized once for all,
in such a way that a lower and a triangular system must be solved at each
iteration. The same holds for Step S2. Observe that the system associated
with Step S2 written in condensed form has dimension Ni irrespective of the
approximation degree k, because Ni is the number of degrees of freedom of
the defect correction space of degree k + 1 of the Lagrange multiplier. Step
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Figure 5. Ratio Tplain/Tapprox as a function of the mesh size h.

S3 requires solving Ne local saddle-point problems. If σ = 0, the variable q̃⊥
k+1

can be uniquely determined from (34)2, the matrix associated with BK
3,3 being

square and invertible. Such a computation can be carried out once for all at
the beginning of the fixed point iteration. The quantity ũk+1, that does not
enter the iterations as well, can be computed, if required, at the end of the
process. Observe that in Steps S2 and S3 the coupling between the defect
correction spaces can be neglected, according to the observations of Sect. 4.1.

If the computer code is to be implemented in MATLAB, attention must be
paid also to Step S3, that apparently is the cheapest one. As a matter of fact,
looping on mesh elements for the construction of local matrices introduces
a severe bottleneck, even when an appropriate and massive vectorization of
operations is carried out. This step may indeed be critical with respect to the
time required to solve linear systems using the efficient built–in MATLAB
functions (as in Steps S1 and S2). However, since the coefficient matrices
do not change from iteration to iteration in the algorithm proposed above,
an advantageous strategy is to store them at the beginning of the iterative
procedure, an obvious trade–off being needed, for very large meshes, between
memory requirements and efficiency of computation.

In order to assess the efficiency of the proposed approximate DMH formu-
lation, we compare the execution time Tplain of the plain hybridized method
and the execution time Tapprox of the present approach in the solution of
Test 1 (described in Sect. 4.1) on four uniform triangulations of size h =
[1/20, 1/40, 1/80, 1/160]. Fig 5 shows the ratio Tplain/Tapprox as a function
of the mesh size h, and clearly demonstrates the substantial improvement in
reducing the computational effort provided by the approximate formulation
compared to the plain DMH method.
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4.2.2 Properties of DMH approximations of different degree

In this section, we illustrate the properties that a solution of the DMH method

of degree k + 1 inherits from a solution of degree k, k ≥ 0. Let q [s] =
s∑

l=0
q̃

[s]

l ,

u[s] =
s∑

l=0
ũ [s]

l , λ[s] =
s∑

l=0
λ̃ [s]

l be the solution of the DMH problem obtained using

finite element spaces of degree s ≥ 0, with (q̃, ũ, λ̃)[s]

0 := (q, u, λ)[s]

0 . Notice that
superscripts are added here for clarity to highlight the fact that each solution
component refers to the approximation space of degree s. Moreover, we set
osc0(f) := Π0f and for s ≥ 1, we let oscs(f) := Πsf −Πs−1f , where Πk is the
L2 projection onto Pk(K). Then, the following properties hold:

– Property P1 (Self–equilibrium):

div q
[k]

k (x) = Πkf(x) − σ|Kuk(x), x ∈ K.

Moerover, if σ|K = 0

div q̃
[k+1]

l (x) = div q̃
[k]

l (x) = oscl(f)(x), l = 0, . . . , k,

div q̃
[k+1]

k+1 (x) = osck(f)(x).

– Property P2 (Flux conservation):

∫

∂K
(q [k+1] − q [k]) · n ds =

∫

∂K
(q [k+1]

0 − q
[k]

0 ) · n ds = σK

∫

K
(u[k+1]

0 − u[k]

0 ) dx

– Property P3 (Interelement reciprocity of normal fluxes):

∫

e
[[q̃ [k+1]

l ]] η̃l ds =
∫

e
[[q̃ [k]

l ]] η̃l ds, l = 0, . . . , k,

where [[q]] = q · n|∂K1
+ q · n|∂K2

, e = ∂K1 ∩ ∂K2, e ∈ Eh,i, is the jump of
the normal component of the flux across e.

5 Solution of Approximate DMH Problems in Condensed Form

In order to efficiently solve the systems appearing in Steps S1 and S2 of the
previous section, it is useful to employ the approach of [9] for obtaining the
matrix E and the vector H of the condensed system (13). The solution of
problem in Step S1 follows the same lines as in [9] with just a minor change
due to the presence of an additional right–hand side in (32)1. As for the system
in Step S2, we proceed considering the local lifting of λ̃k+1 as if this latter
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quantity were a given boundary variable on ∂K. Then, for all K ∈ Th, we

seek q̃0

k+1,λ̃
∈ R̃T

0

k+1(K) such that

aK(q̃0

k+1,λ̃
, ṽ0

k+1) = −
∫

∂K

λ̃k+1 ṽ0
k+1 · n ds ∀ ṽ0

k+1 ∈ R̃T
0

k+1(K). (35)

We have the following result.

Proposition 5.1 The Lagrange multiplier component of the solution of the
defect correction DMH problem in Step S2 is the unique solution of

ah(λ̃k+1, η̃) = bh(η̃) ∀ η̃ ∈ L̃k+1(Eh,i), (36)

where

ah(ζ̃, η̃) = ah(q̃ζ̃
, q̃η̃),

bh(η̃) =
∫

Γ

gDq̃η̃ · n ds.
(37)

Proof. The proof is analogous to [9, Lemma 2.2]. The uniqueness of the
solution of (36) is a direct consequence of the properties of problem (33). �

The matrix E and the right–hand side H of (13) turn out to be the stiff-
ness matrix associated with the bilinear form ah(·, ·) and the linear form bh(·)
of (37), respectively.

Remark 5.1 When a Neumann part of the boundary exists, that is q·nΓ = jN
on ΓN , with jN ∈ H−1/2(ΓN) and Γ = ΓD ∪ ΓN , such a condition is weakly
enforced in the DMH method by adding corresponding terms at the right–hand
side of (9)3, this simply reflecting into an additional contribution to the right–
hand side of (13).

6 A Hierarchical A–Posteriori Error Estimator

The completion concept expressed in the representation (14) can be reinter-
preted as an instance of Variational Multiscale Modeling [18], recently ap-
plied to the Discontinuous Petrov–Galerkin setting in [3], and of Enrichment
Methods [12]. This reinterpretation allows to devise an explicitly computable
a–posteriori hierarchical estimator for the discretization errors q − qk and
u− uk. Following [18], we assume that a decomposition of the exact solution
u, q in terms of coarse and fine scales can be performed in the same spirit as
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in (14), in such a way that

u := u+ uunr, q := q + qunr,

where (·) and (·)unr denote the resolved and unresolved parts of the solution,
respectively. According to the relative weight of coarse and fine scales, the
quantities uunr and qunr provide important information on the local behavior
of the exact solution u, q. In practice, the resolved part of the solution is
approximated here by uk, qk, while the unresolved part of the solution is dealt
with by introducing for all K ∈ Th the following saturation assumption

||u− uk+1||0;K ≤ βu||u− uk||0;K,

|||q − qk+1|||div;K ≤ βq|||q − qk|||div;K,

(H)

where 0 ≤ βu, βq < 1. If we thus replace uunr and qunr with their approxi-
mations ũk and q̃k, it is immediate to check that assumption (H) implies the
following upper and lower bound for the local error

1

1 + βu
||uk+1 − uk||0;K ≤ ||u− uk||0;K ≤ 1

1 − βu
||uk+1 − uk||0;K,

1

1 + βq

|||qk+1 − qk|||div;K ≤ |||q − qk|||div;K ≤ 1

1 − βq

|||qk+1 − qk|||div;K.

The above relations provide the mathematical foundation for the following
simple error indicator ηH to drive the grid adaptation process

η2
H :=

∑

K∈Th

η2
H,K,

η2
H,K = ||ũk+1||20;K + |||q̃k+1|||2div;K.

(38)

Remark 6.1 The present hierarchical a–posteriori error estimator for the
DMH formulation is applicable to an RT approximation of arbitrary degree k
and is connected with the hierarchical estimators for DM methods proposed
in [1] and, in particular, to the estimator ηL of [24, Eq.(2.15)].

We provide a validation of the proposed a posteriori error estimator (38) for
the solution of problem (9), with κ = 1, σ = 0 on Ω = (0, 1)2 and f such that
the exact solution is

u = xy(x− 1)(y − 1)
(
e−100((x−0.5)2+(y−0.1)2) + e−100((x−0.5)2+(y−0.9)2)

+e−100((x−0.1)2+(y−0.5)2) + e−100((x−0.9)2+(y−0.5)2)
)
.

The solution has four distinct peaks, each approximately equal to 1, localized
respectively at (0.5, 0.1), (0.5, 0.9), (0.1, 0.5) and (0.9, 0.5). Starting from the
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Figure 6. Left: initial triangulation T0. Right: triangulation T9.

coarse triangulation T0 shown in Fig. 6 (left) and given a tolerance tol, the
refinement process is executed according to the following algorithm, for ` ≥ 0:

– Step A1. Solve the discrete problem (9) on the mesh T` using the fixed point
iteration described in Sect. 4.2.

– Step A2. Compute η
(`)
H using (38), corresponding to the mesh T`. Then,

terminate the algorithm if

η
(`)
H ≤ tol η

(0)
H ,

otherwise go to Step A3 of the algorithm.

– Step A3. Mark the element K for further refinement if η
(`)
H,K ≥ 1

2
max
K′∈T`

η
(`)
H,K′.

– Step A4. Perform red-green-blue refinement on all the marked elements and
run a closure algorithm to avoid hanging nodes.

– Step A5. Generate the new mesh T`+1, set ` := `+ 1, and go to Step A1.

Fig. 6 (right) shows the mesh obtained after 9 refinement steps. Notice the
presence of highly refined zones corresponding to the localized peaks of the
solution. Fig. 7 shows the contour lines of the computed scalar field superposed
to the flux vector field on mesh T9 (left) and the convergence history for the
error estimator (dashed line) and for the discretization error measured in the
graph norm for H(div; Ω) × L2(Ω) (solid line) as a function of the average
mesh size (right). The results indicate that the error estimator is reliable and
accurate, as the mesh size goes to zero. We observe that, in the limit of a very
refined discretization, the fine scales eventually disappear, in agreement with
the fact that in such a case all scales are coarse, i.e. visible. The reasoning
explains why a progressively reduced number of iterations is required for the
fixed–point procedure to converge as the grid becomes more refined.
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Figure 7. Left: contour lines of uh and field plot of qh on mesh T9. Right: convergence
history for the error estimator (dashed line) and the discretization error (solid line)
as a function of the average mesh size.

7 Conclusions and Future Perspectives

In this article, we have proposed a computational procedure for the efficient
implementation of Dual–Mixed Hybridized methods of arbitrary degree.

This procedure relies on three main mathematical tools: i) the use of hierarchi-
cal finite element bases which yields a vertical splitting of each approximation
space into a lower degree and a defect correction part (completion); ii) the
use of the Helmholtz decomposition principle for the vector–valued variable
which yields an horizontal splitting of the defect correction into solenoidal
and non–solenoidal subspaces; iii) the use of a fixed–point iteration to solve
the approximate decoupled local subproblems stemming from i) and ii). The
resulting scheme can be implemented by solving global condensed problems
or local problems of reduced size. In doing this, one can benefit from the fact
that the associated coefficient matrices can be factorized once for all during
the iteration.

Exploiting the equivalence between hierarchical completion and Variational
Multiscale Modeling, we have also devised and numerically validated a hierar-
chical a–posteriori error estimator for Dual Mixed methods in hybridized form.
Again, the overall efficiency of the algorithm benefits from the fact that the
computation of the error estimator is a by–product of the iteration procedure.

Further research activity will be devoted to:

- a deeper analysis of the connection between the present formulation and
Variational Multiscale Theory, to deal with problems including possibly
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dominating advective terms;
- an application of the completion-based DMH method in the framework of

variable degree formulations [10].
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