First hang-gliding rule:
to take off, run against the wind
to take off, run against the wind
B. Cordani, Universitá degli Studi, Milan, Italy
Geography of Order and Chaos in Mechanics
Investigations of Quasi-Integrable Systems with Analytical, Numerical, and Graphical Tools
2013, XVIII, 332 p. 75 illus., 27 in color.
▶ Offers a unique approach to the dynamics of quasi-integrable Hamiltonian systems
▶ Provides a rare opportunity for readers to experiment with and fully conceptualize recent numerical tools via customized MATLAB applications (free download: see below). In case the reader does not have access to a MATLAB installation, a compiled stand-alone version is furnished.
▶ Gives a rigorous but clean and uncluttered presentation of perturbaton theory, including clear proofs of the KAM and Nekhoroshev theorems
▶ Fully describes new, sophisticated techniques for reducing two paradigmatic problems to normal forms
This original monograph aims to explore the dynamics in the particular but very important and significant case of quasi-integrable Hamiltonian systems, or integrable systems slightly perturbed by other forces. With both analytic and numerical methods, the book studies several of these systems—including for example the hydrogen atom in electric and magnetic field or the solar system, with the associated Arnold web—through modern tools such as the frequency-modified fourier transform, wavelets, and the frequency-modulation indicator. Meanwhile, it draws heavily on the more standard KAM and Nekhoroshev theorems.
Geography of Order and Chaos in Mechanics contains many figures that illuminate its concepts in novel ways, but perhaps its most useful feature is its inclusion of software to reproduce the various numerical experiments. The graphical user interface of five supplied MATLAB programs allows readers without any knowledge of computer programming to visualize and experiment with the distribution of order, chaos and resonances in various Hamiltonian systems. This monograph will be a valuable resource for professional researchers and certain advanced undergraduate students in mathematics and physics, but mostly will be an exceptional reference for Ph.D. students with an interest in perturbation theory.
Content Level » Research
Keywords » KAM theory - MATLAB programs - Nekhoroshev theorem - normal forms - numerical integration - perturbation theory.
- Download Table of contents (pdf)
- Download Preface (pdf)
- Download Sample pages (pdf)
- Download Back Matter with GUI examples (pdf)
- Download updated MATLAB programs (zip) (Jun 20, 2013)
- Download updated MATLAB programs (zip) (Nov 16, 2014)
- Download updated MATLAB programs (zip) (May 27, 2015)
- Download updated MATLAB programs (zip) (Jul 7, 2021)
- Download EULER (MAPLE program)
B. Cordani, Universitá degli Studi, Milan, Italy
The Kepler Problem
Group Theoretical Aspects, Regularization and Quantization, with Application to the Study of Perturbations
2003, XVII, 439 p. 52 illus.
The book is a comprehensive treatment of the Kepler problem, i.e. the two body problem. It is divided into four parts. In the first part the arguments are exposed elementarily and the properties of the problem are recovered in a purely computational way; this part is written at an undergraduate student level. In the second part a unifying point of view, originally due to the author, is presented which centers the exposition on the intrinsic group-geometrical aspects. This part requires more mathematical background which is presented in the fourth part, where we review the basic tools of differential geometry and analytical mechanics used in the book. The third part exploits some results of the second part to give a geometrical description of the perturbation theory of the Kepler problem. Each of the four parts, which are to some extent independent, could form the basis for a one-semester course.
Content Level » Research
Keywords » Kepler problem - two body problem - analytical mechanics - group theory - geometric quantization - perturbation theory.
Bruno Cordani
I Cieli in una Stanza
Una storia della meccanica celeste
dagli epicicli di Tolomeo ai tori di Kolmogorov
2016, X, 188 p.
Se la contemplazione del cielo stellato è da sempre fonte di fascino e meraviglia, uno stupore ancora più profondo nasce dalla constatazione che il moto dei corpi celesti è spiegabile con due semplici leggi fisiche. Nel Settecento e nell’Ottocento, i secoli d’oro della meccanica celeste, alcuni grandi matematici, come Lagrange e Laplace, hanno sviluppato strumenti di calcolo che promettevano di raggiungere l’esattezza assoluta nella previsione del movimento dei cieli. Ma la scoperta, ad opera di Poincaré, dell’esistenza dei fenomeni caotici, ha bruscamente posto fine a questa speranza. E infatti il sistema solare appare oggi sempre meno simile a un meccanismo a orologeria, perfetto ed eternamente immutabile, come si dava per scontato in passato. Esso invece sempre più si mostra soggetto a caos diffuso, anche se ben mascherato: la speranza di poter dominare per l’eternità la sua evoluzione è così perduta per sempre.
I prerequisiti per leggere questo libro sono, tutto sommato, abbastanza limitati e l'aver completato un buon liceo dovrebbe permettere al lettore di seguire almeno il filo logico dell'esposizione. I primi due anni del corso di una laurea scientifica sono poi sicuramente più che sufficienti per una completa comprensione. Nelle quattro Appendici vengono esposti alcuni argomenti a un livello matematico superiore; seppure non esaustive, le dimostrazioni ivi contenute possono servire come introduzione allo studio approfondito della letteratura scientifica pertinente. Si tenga in ogni caso presente che i dettagli tecnici vengono omessi per non appesantire l'esposizione e che il lettore desideroso di approfondire l'argomento può consultare le due monografie dell'autore stesso, ove troverà una abbondante bibliografia.
Scarica la PrefazioneDownload english PrefaceAcquista la versione a stampaAcquista versione e-book