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THE PICARD-FUCHS EQUATION OF A FAMILY OF CALABI-YAU

THREEFOLDS WITHOUT MAXIMAL UNIPOTENT MONODROMY

ALICE GARBAGNATI AND BERT VAN GEEMEN

Abstract. Recently J.C. Rohde constructed families of Calabi-Yau threefolds parametrised
by Shimura varieties. The points corresponding to threefolds with CM are dense in the Shimura
variety and, moreover, the families do not have boundary points with maximal unipotent mon-
odromy. Both aspects are of interest for Mirror Symmetry. In this paper we discuss one
of Rohde’s examples in detail and we explicitly give the Picard-Fuchs equation for this one
dimensional family.

In this note we work out an example of J.C. Rohde of a one dimensional family of Calabi-Yau
threefolds Xλ (with h2,1(Xλ) = 1), parametrised by a Shimura variety, such that the associated
Picard-Fuchs equation has no maximal unipotent monodromy. Actually, as already pointed
out by Rohde, the Picard-Fuchs equation of degree four reduces to two differential equations of
degree two. In section 2.5 we give these two equations, which are hypergeometric differential
equations, explicitly.

This is of some interest for Mirror Symmetry, which suggests that a family like the Xλ

should be the Mirror of another family of Calabi-Yau threefolds Yµ. A particular solution of
the Picard-Fuchs equation, chosen using the maximal unipotent monodromy, should have a
Taylor expansion whose d-th coefficient is related to the number of rational curves of degree
d on a general Yµ (more precisely, it is related to a certain Gromow-Witten invariant of Yµ).
In the absence of maximal unipotent monodromy, the recipe for identifying the solution of the
Picard-Fuchs equation should be modified. It might however be the case that the family Xλ is
not the Mirror of any family of Calabi-Yau’s, which would also be of some interest.

We follow the approach indicated by Rohde in [R]. The main point is a good understanding
of a family of K3 surfaces which is used in the construction of the Xλ’s. This leads to an explicit
description of H3(Xλ,Q) in terms of H1(Cλ,Q) for a genus two curve Cλ. The only thing to
do then is to recall a classical result on the Picard-Fuchs equations of the Cλ.

In section 2.4 we briefly comment on the Calabi-Yau threefolds Xλ with complex multipli-
cation (CM), in particular we observe that these are related to elliptic curves with CM. It is
conjectured that Calabi-Yau threefolds with CM are related to Rational Conformal Field The-
ories (RCFT) and these should be easier to understand then the more general Conformal Field
Theories (cf. [GV]).

1. The one parameter family of Calabi-Yau threefolds.
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1.1. Rohde’s construction. The construction of Rohde ([R], section 4) starts with a K3
surface S with an automorphism α which acts by ξ on H2,0(S) ∼= C, where ξ = e2πi/3 is a
primitive cube of unity. To get from such a K3 surface to a Calabi-Yau threefold, one assumes
that the fixed point locus of α consists of k disjoint smooth rational curves and k + 3 isolated
fixed points. These K3 surfaces are parametrised by the r-ball Br

∼= SU(1, r)/S(U(1)×U(r)),
where r = 6 − k, see [AS], [R] and also [DK] and the references given there for more results of
this kind.

Let E ∼= C/Z + Zξ be the elliptic curve with j-invariant zero, so E is isomorphic to the
Fermat cubic curve and has Weierstrass equation y2 = x3 + 1. We define an automorphism of
E by

αE : E −→ E, (x, y) 7−→ (ξx, y), (E : y2 = x3 + 1)

it acts as multiplication by ξ on H1,0(E) = Cdx/y. Then the product S × E has the au-
tomorphism (α, αE) which is trivial on H2,0(S) ⊗ H1,0(E). Rohde shows that the quotient
(S × E)/(α, αE) is birationally isomorphic to a Calabi-Yau threefold X with

h2,1(X) = r = 6 − k, h1,1(X) = 18 + 11k.

These Calabi-Yau varieties are then parametrised by the ball Br and their moduli space is a
quotient of the ball by an arithmetic subgroup of SU(1, r).

1.2. The case r = 1. We consider the family of K3 surfaces Sf , which have an elliptic fibration
π : Sf → P1

t with Weierstrass model

Y 2 = X3 + f(t)2, f := gh2, deg(g) = deg(h) = 2,

and we assume that g(t)h(t) has 4 distinct zeroes in C ⊂ P1
t . Each surface Sf has an automor-

phism αf of order three defined by

αf : Sf −→ Sf , (X, Y, t) 7−→ (ξX, Y, t)

which acts as ξ on H2,0(Sf) = Cdt ∧ dX/Y . This automorphism fixes the section at infinity
s∞, a smooth rational curve, and maps each fiber of π into itself. The elliptic fibration has
two other sections, s±(t) := (0,±f(t), t), of order three in the Mordell-Weil group, which are
fixed under αf . There are four singular fibers over the zeroes of f . As the j-invariant of the
smooth fibers is j = 0 and the discriminant of the Weierstrass model has zeroes of order four
resp. eight in the zeroes of g, h resp., Table 4.1 in [S] determines their type. The two fibers
over g = 0 are of type IV . Such a fiber consists of three smooth rational curves meeting in
one point, moreover each of these curves meets one of the sections. As the fixed point locus of
αf is smooth and the sections are pointwise fixed, the components of such a fiber are mapped
into themselves by αf and αf induces a non-trivial automorphism on each of these. Thus their
point of intersection is a fixed point of αf in S. The two fibers over h = 0 are of type IV ∗,
so they consist of 7 smooth rational curves with intersection graph (which is the affine Dynkin
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diagram of type Ẽ6):

❝ ❝ ❝ ❝ ❝

❝

❝

D1 D4 D0 D5 D2

D6

D3

Each of the three sections meets one of the curves D1, D2, D3, so these curves, and hence all
seven curves in the IV ∗ fiber, are mapped into themselves under αf . Moreover, αf is non-
trivial on D1, D2, D3, and thus has two fixed points on D1, D2, D3 where these meet a section
and another component of the fiber. The three points D4 ∩D0, D5 ∩D0 and D6 ∩D0 on D0 are
fixed by αf , hence D0 is pointwise fixed by αf . Then αf is non-trivial on D4, D5, D6 and the
three intersection points Di ∩ Di+3, i = 1, 2, 3 are isolated fixed points. Thus αf has one fixed
curve and three fixed points in each IV ∗ fiber. Therefore the fixed point locus of αf consists
of 3 + 2 · 1 = 5 smooth rational curves and 2 · 1 + 2 · 3 = 8 points, so k = 5 and the number of
moduli is r = 1.

The Néron Severi group of Sf contains the classes of a fiber, s∞, two of the three rational
curves in each type IV fiber and six of the seven rational curves in each type IV ∗ fiber. These
classes span a lattice of rank 1 + 1 + 2 · 2 + 2 · 6 = 18 and thus the transcendental lattice
NS(Sf )

⊥ (⊂ H2(Sf ,Z)) has rank at most 4. Since all the Sf have an automorphism of order
three and one modulus, the Néron Severi group of the general Sf has rank 18 and the eigenvalues

of αf on the orthogonal complement of this rank 18 lattice must be ξ, ξ, each with multiplicity
2. The decomposition of H2(Sf ,Q) into eigenspaces for αf is thus as follows:

H2(Sf ,Q) = H2(Sf ,Q)1 ⊕ Tf , Tf := (H2(Sf ,Q)1)
⊥, dim H2(Sf ,Q)1 = 18,

and the complexification of Tf decomposes into αf -eigenspaces:

Tf ⊗Q C = Ta,ξ ⊕ Ta,ξ = T 2,0

a,ξ
⊕ T 1,1

a,ξ
⊕ T 1,1

a,ξ ⊕ T 0,2
a,ξ ,

each of these four spaces is one dimensional.

1.3. Remark. A general Weierstrass model as above with f = t(t − 1)(t − a1)(t − a2) defines
for general a1, a2 an elliptic fibration on a K3 surface with 4 fibers of type IV and one of type
IV ∗ (over t = ∞). Thus the fixed point locus of αf consists of 4 smooth rational curves and 7
points, hence k = 4 and the number of moduli is r = 2.

A Weierstrass model as above with f a general polynomial of degree six in t defines an elliptic
fibration on a K3 surface with 6 fibers of type IV . Thus the fixed point locus of αf consists of
3 smooth rational curves and 6 points, hence k = 3 and the number of moduli is r = 3.
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In case the two zeroes of g coincide, so f has three double zeroes, the elliptic fibration
has three fibers of type IV ∗ and r = 0. This surface is birational to the quotient surface
(E × E)/(αE, α−1

E ), cf. the next section and [SI], Lemma 5.1.

2. The Picard-Fuchs equation

2.1. The middle cohomology. The construction of Rohde (cf. section 1.1) applied to a K3
surface Sf from section 1.2 defines a Calabi-Yau threefold Xf . To determine the Picard-Fuchs
equation of this family, we first observe that the cohomology group H3(Xf ,Q) is obtained by
an elementary construction from the cohomology group H1(Cf ,Q) of a curve Cf .

This curve Cf is the smooth, projective, genus two curve defined by the equation

Cf : v3 = f(t), f = gh2,

with g, h as in section 1.2. This equation exhibits Cf as a cyclic degree three cover of P1
t . The

covering automorphism is

βf : Cf −→ Cf , (t, v) 7−→ (t, ξv).

Let Hp,q(Cf)ξ, H
p,q(Cf)ξ be the subspaces of Hp,q(Cf) on which βf acts as ξ, ξ respectively. Then

we have the following decomposition of H1(Cf ,C) into in four one-dimensional eigenspaces:

H1(Cf ,C) = H1,0(Cf)ξ ⊕ H1,0(Cf)ξ ⊕ H0,1(Cf)ξ ⊕ H0,1(Cf)ξ.

Note that Hp,q(Cf)ξ = Hq,p(Cf)ξ. To be explicit, one has

H1,0(Cf)ξ = Cgdt/v2, H1,0(Cf )ξ = Cdt/v, .

2.2. Proposition. Let Xf be the Calabi-Yau threefold which is birational to (Sf×E)/(αf , αE).
Then there is an isomorphism

φ : H1(Cf ,Q)
∼=

−→ H3(Xf ,Q)

such that

φ(H1,0(Cf)ξ) = H3,0(Xf), φ(H0,1(Cf)ξ) = H2,1(Xf).

Proof. All smooth fibers of the elliptic fibration π : Sf → P1
t are isomorphic to E. Pulling

back this fibration along the degree three cover Cf → P1
t one obtains an elliptic fibration over

Cf with Weierstrass model Y 2 = X3 + v6. This fibration over Cf is birational to the product
Cf × E (via (X, Y, t) 7→ ((t, v), (x, y)) := ((t, v), (v−2X, v−3Y ))).

Moreover, the rational map

Cf × E −→ Sf , ((t, v), (x, y)) 7−→ (X, Y, t) = (v2x, v3y, t)

identifies Sf with the minimal model of the quotient surface (Cf ×E)/(βf , αE). The automor-
phism αf of Sf is induced by the automorphism (1, α−1

E ) of Cf × E.
4



As H2,0(Sf ) ⊂ T 2,0
f , one obtains an isomorphism

Tf
∼=

(

H1(Cf ,Q) ⊗ H1(E,Q)
)(βf ,αE)

(⊂ H2(Sf ,Q)).

Rohde showed that (cf. the proof of Proposition 4.5 in [R]):

H3(Xf ,Q) ∼= (H2(Sf ,Q) ⊗ H1(E,Q))(αf ,αE) ∼= (Tf ⊗ H1(E,Q))(αf ,αE),

where one uses that αE has no eigenvalue 1 in H1(E,Q). Combining this with the description
of Tf , this leads to

H3(Xf ,Q) ∼=
(

H1(Cf ,Q) ⊗ H1(E,Q) ⊗ H1(E,Q)
)G

, G := 〈(1, αE, α−1
E ), (βf , αE , 1)〉.

In particular, the variation of the Hodge structures on {H3(Xf ,Q)}f comes from the one on
{H1(Cf ,Q)}f .

Now we determine the G-invariants by first considering the last two tensor factors. Let

TE :=
(

H1(E,Q) ⊗ H1(E,Q)
)(αE ,α−1

E
)
,

this Hodge substructure has dimension two and the automorphism (αE , 1) induces an automor-
phism βE of TE of order three. We have the eigenspace decomposition for βE :

TE ⊗Q C = T 2,0
E,ξ ⊕ T 0,2

E,ξ
, dim T 2,0

E,ξ = dim T 0,2

E,ξ
= 1.

Thus H3(Xf ,Q) is the Hodge substructure of (βf , βE)-invariants in H1(Cf ,Q) ⊗ TE . In par-

ticular, H3,0(Xf) = H1,0(Cf)ξ ⊗ T 2,0
E,ξ

∼= H1,0(Cf)ξ etc. To get the map φ, one observes that the

Q-vector space H1(Cf ,Q) ⊗ TE has the decomposition into (βf , βE)-stable subspaces:

H1(Cf ,Q) ⊗ TE =
(

H1(Cf ,Q) ⊗ TE

)(βf ,βE)
⊕ V ∼= H3(Xf ,Q) ⊕ V

where V ⊗C is the direct sum of the ξ, ξ eigenspaces of (βf , βE). Fix a non-zero element t ∈ TE .
Then one defines φ to be the composition of H1(Cf ,Q) → H1(Cf ,Q)⊗TE, x 7→ x⊗ t with the
projection onto the summand H3(Xf ,Q). �

2.3. Remarks. Generalisations of tensoring with H1(E,Q) and taking invariants, as we used
repeatedly in the proof of the proposition above, are considered in [G] and [DK], section 13.

The proposition can be easily generalised to the other cases considered in Remark 1.3.
Note that the proposition shows that Xf is birationally isomorphic to (Cf × E × E)/G

and that the G-invariant holomorphic three form (dt/v) ∧ (dx1/y1) ∧ (dx2/y2) descends to the
holomorphic three form on Xf , where (xi, yi) are the coordinates on the i-th copy of E. As the
elliptic curve E is fixed, the variation of the genus two curves Cf determines the variation of
the CY threefolds Xf .
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2.4. CM. A Calabi-Yau threefold X is said to have CM if the Mumford Tate group of the
Hodge structure on H3(X,Q) is abelian (cf. [R], section 6). As the Mumford-Tate group
of H1(E,Q) is abelian, Xf has CM if and only if H1(Cf ,Q) has an abelian Mumford-Tate
group. It is well-known that the Jacobian of Cf is isogenous a product of two (isogenous)
elliptic curves. In fact, the genus two curves Cf also admit a Weierstrass equation of the form
y2 = (x3−a)(x3 − b) and scaling x suitably one finds the equation y2 = (x3−c)(x3 −c−1). This
shows that (x, y) 7→ (1/x, y/x3) is an involution of the curve and its eigenspaces in the tangent
space of the Jacobian define two elliptic curves in the Jacobian. Using the automorphism of
order three one finds that these curves are isogenous. This implies that H1(Cf ,Q) has an
abelian Mumford Tate group if and only if these elliptic curves have CM in the classical sense,
that is, that their endomorphism algebra is an order in an imaginary quadratic field. As these
elliptic curves are also isogenous to the quotient of the genus two curve by the involution, this
allows one to find explicit Calabi-Yau threefolds with CM.

2.5. Hypergeometric differential equations. It follows from Proposition 2.2 that the varia-
tion of Hodge structures given by the H3(Xf ,Q) is the same as the variation of Hodge structures
of the H1(Cf ,Q). This latter variation has been extensively studied (starting with Euler(!))
and we recall the main result. (We found the results below in the unpublished PhD thesis by
B. van der Marel, see also [L], section 4). First of all, we assume that one of the four branch
points of the cyclic degree three cover Cf → P1

t is the point ∞ ∈ P1. Then the curve Cf is
isomorphic to the curve defined by

Cλ : yN = xA(x − 1)B(x − λ)C

for some λ ∈ C with N = 3 and one can assume that A = B = 1 and C = 2. The holomorphic
one forms on this curve are ω(0, 0, 0; 1) and ω(0, 0, 1; 2) where

ω(α, β, γ; l) :=
xα(x − 1)β(x − λ)γ

yl
dx.

To find the Picard-Fuchs equations, let:

a := −α + (lA/N), b := −β + (lB/N), c := −γ + (lC/N).

Then we have

ω(α, β, γ; l) = x−a(x − 1)−b(x − λ)−cdx,
∂

∂λ
ω(α, β, γ; l) =

c

(x − λ)
ω(α, β, γ; l)

etc. An explicit computation shows that
(

λ(1 − λ)
∂2

∂λ2
+ (a + c − λ(a + b + 2c))

∂

∂λ
− c(a + b + c − 1)

)

ω(α, β, γ; l) = cdh

where h is the rational function

h :=
xα+1(x − 1)β+1(x − λ)γ−1

yl
= x1−a(x − 1)1−b(x − λ)−1−c.
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As already explained in [R], the fact that one obtains two degree two equations rather than
one degree four equation follows from the fact that ∂/∂λ commutes with the automorphism
(x, y) 7→ (x, ξy) of Cλ. In particular, the monodromy of the Picard-Fuchs equation of the
variation of Hodge structures {H1(Cλ,Z)}λ is, up to conjugation, contained in the subgroup of
matrices with diagonal 2× 2 blocks in Sp(4,C) and thus there is no point in P1 with maximal
unipotent monodromy. It would be interesting to see if the family is the Mirror of a family of
Calabi-Yau threefolds, these threefolds would have h1,1 = 1 and h2,1 = 73.
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