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FROM QUBITS TO E7

BIANCA LETIZIA CERCHIAI AND BERT VAN GEEMEN

Abstract. There is a intriguing relation between quantum information theory and super
gravity, discovered by M.J. Duff and S. Ferrara. It relates entanglement measures for qubits to
black hole entropy, which in a certain case involves the quartic invariant on the 56-dimensional
representation of the Lie group E7. In this paper we recall the relatively straightforward manner
in which three-qubits lead to E7, or at least to the Weyl group of E7. We also show how the
Fano plane emerges in this context.

In this paper we consider some groups which come up naturally in the study of qubits and
their state space. We show that the case of three-qubits naturally leads to the Weyl group of E7.
The methods used to show this link also provide a very natural interpretation for the emergence
of the Fano plane when one restricts the 56-dimensional representation of the complex Lie group
E7(C) to seven (commuting) copies of SL(2,C).

We view the k-qubits as the non-zero elements of the finite abelian group Lk = (Z/2Z)k. The
state space, denoted by Hk, is a 2k-dimensional complex vector space and there is a natural
action of the qubits on this state space. This action can be extended to an action of the group
generated by the generalized Pauli matrices. This group is the Heisenberg group Hk. It is
non-abelian and has a quotient Vk := Hk/C

× which is in a natural way a symplectic vector
space of dimension 2k over the finite field F2 = Z/2Z.

The next actor to appear on stage is the normalizer Nk of the Heisenberg group, viewed as
a subgroup of GL(Hk). We will give explicit generators for this group. The quotient of Nk by
the subgroup C× ·Hk, consisting of scalar multiples of the identity and the Heisenberg group,
is the finite symplectic group Sp(2k,F2) (acting naturally on Vk).

In the case k = 3, there is a surjective homomorphism from the Weyl group W (E7) onto
Sp(6,F2), with kernel just ±I. We obtain this homomorphism in two ways, first by using
Coxeter relations and second by giving a surjective homomorphism π : Q(E7) → V3 where
Q(E7) is the root lattice of E7. This homomorphism is compatible with the scalar product on
Q(E7) and the symplectic form on V3. It maps the 63 pairs of roots ±α of E7 to the 26−1 = 63
non-zero elements of V3. Moreover, the reflections sα ∈ W (E7) defined by the roots of E7

correspond to the so-called transvections tv ∈ Sp(6,F2). These transvections are known to
generate Sp(6,F2).

Having arrived at W (E7), we consider Lie subgroups isomorphic to SL(2,C)7 of E7(C).
The choice of seven perpendicular roots of E7 defines such a subgroup. Under the map π,
this corresponds to giving 7 points in V3

∼= F6
2 which are the non-zero points in a Lagrangian

subspace L of V3. Thus L ∼= F3
2 is a three dimensional vector space over F2 and the associated

projective space is known as the Fano plane. At this point we felt we had to rederive, using the
standard theory of highest weights, an important result from [DF1]. It relates the restriction
to SL(2,C)7 of the 56-dimensional irreducible representation of E7(C) to the seven lines in the
Fano plane.
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To do so, we introduce the last actor: the Del Pezzo surface of degree two. These surfaces
already made their appearance in String theory. Here we only use their Picard group in order
to have a convenient notation for the roots and weights of E7 involved in the computation.

In the appendices we discuss various other aspects, like symmetric and alternating forms on
Hk, the action of the normalizer Nk on them and how this is related to quadratic forms on Vk.
It is here that links with Hopf maps (see section A.3), Clifford algebras (see section A.4) and
the transformation formulas for theta functions (see also the Appendix of [DG]) appear.

It is a pleasure to acknowledge stimulating discussions with Sergio Cacciatori and Alessio
Marrani. The latter in particular drew our attention to the paper [LSV] which also considers
(finite) group theory in relation to qubits and Supergravity, see also our section 2.5.

The first author’s research is in part funded by the European grant PIRG-GA-2008-239412.

1. From qubits to the Heisenberg group

1.1. Three-qubits. In this section, three-qubits are simply considered as the 8 elements of
the group L3 := (Z/2Z)3.

1.2. The three-qubit Hilbert space. Starting from the group L3 = (Z/2Z)3, we introduce
the vector space H3 of C-valued maps L3 → C. Notice that this vector space is isomorphic to
C8. A basis of H3 is given by the 8 delta functions

δx : L3 −→ C, δx(y) = 0 if x 6= y, δx(x) = 1,

for x, y ∈ L3.

1.3. The action of L3 on H3. There is an obvious representation of L3 on H3:

U : L3 −→ GL(H3), (Uxf)(y) := f(x+ y), (x, y ∈ L3, f ∈ H3).

In the basis of the δ-functions this action is

Uxδy = δx+y.

Rather than write the corresponding 8×8 matrices explicitly, we consider a similar construction
for Lk := (Z/2Z)k where k ∈ N.

For k = 1, the vector space H1 has dimension ♯L1 = 2. The matrices U0, U1 in the basis δ0, δ1
are, using the notation from [LSV], section 2, (3):

U0 = I =

(

1 0
0 1

)

, U1 = X :=

(

0 1
1 0

)

.

In the case k = 2 one easily verifies that H2 = C4 = C2 ⊗C2, with basis δ(a,b) = δa ⊗ δb, and
for k = 3 one has similarly H3 = C8 = C2 ⊗C2 ⊗C2 and an element x = (a, b, c) ∈ L3 will act
as Xa ⊗Xb ⊗Xc with a, b, c ∈ Z/2Z, with the usual realization Z/2Z = {0, 1}.

1.4. A group action on Hk. There is a natural way to extend this action to a bigger group:
let L∗

k be the dual group of Lk, that is, the group of homomorphisms

L∗
k := Hom(Lk, Z/2Z) (∼= Lk).

Any element x∗ ∈ L∗
k is given by a linear form

x∗(y) := x1y1 + . . .+ xkyk (y = (y1, . . . , yk) ∈ Lk)
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for a certain, uniquely determined, element (x1, . . . , xk) ∈ (Z/2Z)k, we will simply write x∗ =
(x1, . . . , xk).

The group L∗
k also acts naturally on Hk. For convenience we denote the action of x∗ ∈ L∗

k

on Hk by Ux∗ , so we abuse the definition of U given earlier:

U : L∗
k −→ GL(Hk), (Ux∗f)(y) := (−1)x

∗(y)f(y), (x∗ ∈ L∗
k, y ∈ Lk, f ∈ Hk).

On the basis of δ-functions of Hk one has Ux∗δy = x∗(y)δy and one obtains the matrices:

U1∗ = Z :=

(

1 0
0 −1

)

, Ux∗ = Za ⊗ Zb ⊗ Zc for x = (a, b, c) ∈ L3.

Now it is trivial to check that X and Z do not commute, in fact XZ = −ZX . Thus there
is no action of Lk × L∗

k on Hk. Rather a slightly bigger group acts, the Heisenberg group Hk,
which is just the subgroup of GL(Hk) generated by the Ux, Ux∗ with x ∈ Lk and x∗ ∈ L∗

k. This
group has order 2k+k+1 and contains also −I. As we will see later, it is convenient to include
also scalar multiplication by a fourth root of unity, i.e. the sI with s ∈ µ4 where µ4 is the
subgroup of fourth roots of unity

µ4 := {±1,±i} ⊂ C×

of the multiplicative group of non-zero complex numbers C×. We now abuse the notation once
more by defining:

U(s,x,x∗) = sUx∗ Ux = s(−1)x
∗(x)UxUx∗ ∈ GL(Hk), (s ∈ µ4, x ∈ Lk, x

∗ ∈ L∗
k).

Note that the Ux and Ux∗ do not commute in general, this follows directly from the fact that
XZ = −ZX .

The matrices X,Z and Y := ZX = −XZ appear also in [LSV], where they are called Pauli
matrices.

1.5. The Heisenberg group Hk. The linear maps U(s,x,x∗) which we just introduced can be
seen as the representation matrices of an abstract group, the Heisenberg group Hk.

The Heisenberg group is defined as the set

Hk = µ4 × Lk × L∗
k

and the group operation is given by:

(s, x, x∗)(t, y, y∗) := (st(−1)y
∗(x), x+ y, x∗ + y∗) for s, t ∈ µ4, x, y ∈ Lk, x

∗, y∗ ∈ L∗
k.

One easily verifies that

(s, x, x∗)−1 = (s−1(−1)x
∗(x), x, x∗)

(note that x+ x = 0(!)) and thus the commutator of two elements in Hk is given by:

(s, x, x∗)(t, y, y∗)(s, x, x∗)−1(t, y, y∗)−1 = ((−1)x
∗(y)−y∗(x), 0, 0).
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1.6. The Schrödinger representation. There is a (faithful) representation of the finite group
Hk on the vector space Hk, called the Schrödinger representation, defined, by abusing notation
again, as follows:

U : Hk −→ GL(Hk), h = (s, x, x∗) 7−→ Uh := U(s,x,x∗).

That U is indeed an injective homomorphism follows easily from the fact that UxUx∗ =
(−1)x

∗(x)Ux∗Ux. More intrinsically, the Schrödinger representation can be defined as:
(

U(s,x,x∗)f
)

(z) := s(−1)x
∗(z)f(x+ z) (f ∈ Hk).

In the basis described by the δ-functions, this yields:

U(s,x,x∗)δa := s(−1)x
∗(x+a)δx+a.

Thus we recover the linear maps on Hk introduced in section 1.4.

1.7. A symplectic structure on Vk = Lk × L∗
k. The abelian group Lk × L∗

k
∼= (Z/2Z)2k can

be recovered as the quotient of the Heisenberg group Hk by its center, which coincides with µ4:

0 −→ µ4 −→ Hk −→ Lk × L∗
k −→ 0.

Note that Lk × L∗
k is a vector space over the field of two elements F2 = Z/2Z. This 2k-

dimensional F2-vector space will be denoted by Vk:

Vk := Lk × L∗
k.

There is a natural symplectic form E on Vk, by this we mean a bilinear form E which satisfies
E(v, v) = 0 for all v ∈ Vk and which is non-degenerate (so for any non-zero v there is a w such
that E(v, w) 6= 0). It is defined by:

E : (Lk × L∗
k) × (Lk × L∗

k) −→ F2, E((x, x∗), (y, y∗)) = y∗(x)− x∗(y).

This symplectic form is closely related to the group structure of the Heisenberg group. In
fact, if we write (by another abuse of notation)

(s, v) := (s, x, x∗), (t, w) := (t, y, y∗) with v = (x, x∗), w = (y, y∗) ∈ Vk, s, t ∈ µ4,

then the commutator in Hk can be written as:

(s, v)(t, w)(s, v)−1(t, w)−1 = (−1E(v,w), 0).

In the Schrödinger representation we thus obtain:

U(s,v)U(t,w) = (−1)E(v,w)U(t,w)U(s,v).

2. The normalizer of the Heisenberg Group

2.1. We have already seen how the qubits naturally lead to the Heisenberg group Hk and its
Schrödinger representation on the vector space Hk. In this section we study a much bigger
group Nk, the normalizer of Hk, which acts on Hk. We show that the normalizer maps to
the finite symplectic group Sp(2k,F2) and we discuss various examples of elements in Nk. In
particular, we show that the CNOT operators are elements of N3 in section 2.5 and we briefly
discuss the subgroups SL(3,F2) ∼= PSL(2,F7) and G2(2) of Sp(6,F2). In section 2.6 we recall
that N1 is related to the theory of codes. In the case k = 3 we relate N3 to the Weyl group of
E7 in section 4.4.
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2.2. The normalizer of Hk. For convenience, we will now identify the abstract group Hk with
its image under U in GL(Hk). The normalizer Nk in GL(Hk) of the subgroup Hk of GL(Hk),
is defined as:

Nk := {M ∈ GL(Hk) : MHkM
−1 = Hk }.

An element M ∈ Nk thus has the property that it maps an element Uh ∈ Hk to another element
Uh′ ∈ Hk, we denote this map also by M ,

M : Hk −→ Hk, Uh 7−→ Uh′ if MUhM
−1 = Uh′ .

Obviously, this map is an isomorphism of groups, that is, it is an automorphism of Hk:

M(Uh1Uh2)M
−1 =

(

MUh1M
−1
)(

MUh2M
−1
)

, (h1, h2 ∈ Hk, M ∈ Nk).

Note that each element of the center µ4 is mapped to itself (M(sI)M−1 = sI). A final obser-
vation is that if M ∈ Nk then also tM ∈ Nk, for any t ∈ C×, but M and tM obviously give
the same automorphism of Hk.

The action of M can be written as (with Uv = U(1,x,x∗) and v = (x, x∗) ∈ Vk):

MUvM
−1 = ifM (v)UφM (v), (v ∈ Vk)

for some fM(v) ∈ Z/4Z and some map φM : Vk → Vk. We will discuss φM in section 2.3, but
fM will not be of further interest. As M is an automorphism, we have in particular:

MU−1
v M−1 = i−fM (v)U−1

φM (v).

It should be emphasized that in the definition of Hk it is essential that the center of Hk is
taken to be µ4, else the groupNk will be smaller. In fact, sinceM ∈ Nk defines an automorphism
of Hk, it permutes the elements of a given order. As Uv has order two if v = (x, x∗) 6= 0 and
x∗(x) = 0, whereas it has order four if x∗(x) = 1, there is no element M ∈ Nk which maps the
elements of one type to those of the other type. However, there are elements M ∈ Nk such that
MUvM

−1 = ±iUw where U2
v = I and U2

w = −I.

2.3. The normalizer Nk and the finite symplectic group. AsM ∈ Nk is an automorphism
of Hk, the induced map φM on Vk = Hk/µ4 is also an automorphism, that is, it is a linear map
on this vector space. The remarkable thing is that φM ∈ Sp(2k,F2), the group of matrices
preserving the symplectic form E on Vk (cf. section 1.7). This follows easily from the fact that
M is an automorphism of Hk which acts as the identity on µ4:

UvUwU
−1
v U−1

w = (−1)E(v,w)

= M
(

(−1)E(v,w)
)

M−1

= MUvUwU
−1
v U−1

w M−1

=
(

MUvM
−1
)(

MUwM
−1
)(

MU−1
v M−1

)(

MU−1
w M−1

)

= UφM (v)UφM (w)U
−1
φM (v)U

−1
φM (w)

= (−1)E(φM (v),φM (w)).
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It is well-known that the homomorphism

Nk −→ Sp(2k,F2), M 7−→ φM

is surjective, in fact this is true not only for the case of Lk but for any locally compact abelian
group, cf. [W]. We will construct explicit lifts of particular generators of Sp(2k,F2) to Nk in
section 3.3 below.

Any element Uw ∈ Hk is an element of Nk since UwUvU
−1
w = (−1)E(v,w)Uv, for all v ∈ V . In

particular, if M = Uw ∈ Nk then φM = I. The homomorphism above fits in an exact sequence:

0 −→ C× ·Hk −→ Nk −→ Sp(2k,F2) −→ 0.

2.4. Example: the case k = 1. It is worth getting more familiar with the normalizer in the
simplest case k = 1. Observe that Sp(2,F2) is isomorphic to SL(2,F2) and is generated by the
two elements

S =

(

0 1
1 0

)

and T =

(

1 1
0 1

)

.

As S(10) = (01) and S(01) = (10), to find the matrix (unique up to scalar multiple) MS, it suffices
to find a 2× 2 matrix MS such that

MSU1 = U1∗MS, MSU1∗ = U1MS

(in fact, U1 = U(1,1,0) and U1∗ = U(1,0,1)). Similarly, to find MT one can impose :

MTU1 = U1MT , MTU1∗ = −iU(1,1,1∗)MT ,

note that U2
1∗ = I and U2

(1,1,1∗) = −I. These are linear equations for the coefficients of MS ,MT

and one easily finds:

MS =
1− i

2

(

1 1
1 −1

)

, MT =
1− i

2

(

1 i
i 1

)

.

The matrices MS,MT are normalized in such a way that |detM | = 1 and that the matrices
have coefficients in the field Q(i), that is, each coefficient is of the form a + bi with a, b ∈ Q.

2.5. CNOT operators. The CNOT-operators are linear maps onH3, an example is (cf. [LSV]
(19)):

C12 :=









I 0 0 0
0 I 0 0
0 0 0 I
0 0 I 0









∈ GL(H3)

where the entries are 2 × 2 blocks. It is straightforward to check that for all v ∈ V3 we have
C12UvC

−1
12 ∈ H3, it suffices to check this for the 6 basis elements of Vk of course. In particular,

C12 ∈ N3. While checking, one finds for these basis elements that C12UvC
−1
12 = if12(v)Uφ12(v),

where φ12 ∈ Sp(6,F2) is given by:

φ12 :=

(

A 0
0 tA−1

)

, with A :=





1 0 0
0 1 0
0 1 1



 (∈ GL(3,F2)).

Using the matrix with blocks A, 0, 0, tA−1 in Sp(6,F2) as above, for general A ∈ GL(3,F2), we
get an injective homomorphism GL(3,F2) → Sp(6,F2). Its image is the subgroup of Sp(6,F2)
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which preserves the two subspaces L3 := L3×{0} and L∗
3 := {0}×L∗

3 of V3 and thus this group
is of particular interest for the qubits. It is easy to check that GL(3,F2) has 168 = 7 · 6 · 4
elements (for the first column we can take any non-zero element v1 of F

3
2, for the second column

any element v2 not on the line < v1 >= {0, v1} and for the last column any element v3 not in the
subspace < v1, v2 >= {0, v1, v2, v1 + v2}). It is well known that GL(3,F2) ∼= PSL2(F7). This
latter group was considered in Section 5 of the paper [LSV]. Note that GL(n,F2) = SL(n,F2).

The finite Chevalley group G2(2) of order 12096 is a (maximal) subgroup of Sp(6,F2), of
index 120. In section 4 of [LSV] a geometric configuration of points and lines in PV3 =
V3 − {0}, the hexagon, is described which is invariant under the action of this group. There is
an isomorphism Sp(2k,F2) ∼= O(2k + 1,F2) (cf. [C], section 1.6), the latter group has already
made its appearance in the link between quantum information and supergravity.

We would like to emphasize that the normalizer N3 of the Heisenberg group H3 and its
quotient, the full group Sp(6,F2), are the ‘natural’ symmetry groups of the qubits.

2.6. Linear codes and weight polynomials. As a minor digression, we show that the group
N1 is closely related to weight polynomials of codes. First of all, we renormalize the element
MS with a factor 1/

√
2 instead of (1− i)/2, to obtain the matrix M ′

S which satisfies (M ′
S)

2 = I:

M ′ = M ′
S :=

1√
2

(

1 1
1 −1

)

, M ′′ := M ′
SMTM

′
S =

1− i

2

(

1 0
0 −i

)

.

Note that (M ′′)2 = diag(1,−1) and, cf. [E] p. 1385, the matrices M ′, (M ′′)2 generate the
dihedral group D16 of order 16. Moreover, the group G1 generated by M ′,M ′′ is a group of
order 8 · 4! = 192 which maps onto S4 with kernel the subgroup of diagonal matrices λI, where
λ ∈ µ8, the group of 8-th roots of unity ([E], p. 1386). Note that G1 ⊂ N1, in fact C×G1 = N1.

The group G1 acts naturally on polynomials in two variables X, Y . The weight enumerator
WH8 of the Hamming code H8 is the polynomial given by:

2WH8 := 2(X8 + 14X4Y 4 + Y 8)

= (X2 + Y 2)4 + (2XY )4 + (X2 − Y 2)4

= Q[00]
4 +Q[10]

4 +Q[01]
4,

with polynomialsQ[ǫǫ′] as in section A.2. This polynomial is aG1-invariant. Thus the normalizer
of the Heisenberg group is related to coding theory. A natural explanation for this is via theta
functions, see [E], p. 1388 and [DG].

3. Transvections

3.1. We consider again the surjective homomorphism Nk → Sp(2k,F2), where Nk is the
normalizer of the Heisenberg group. We introduce the transvections tv ∈ Sp(2k,F2), where
v ∈ Vk. Such transvections in the symplectic group are similar to reflections in orthogonal
groups. The symplectic group is generated by these transvections ([J], § 6.9). For v ∈ Vk we
give an explicit formula for an element Mv of Nk such that Mv 7→ tv.
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3.2. Transvections. The transvection tv, for v ∈ Vk, is the linear map:

tv : Vk −→ Vk, w 7−→ w + E(w, v)v.

It is easy to verify that transvections are indeed symplectic

E(tv(w), tv(z)) = E(w, z), for v, w, z ∈ Vk

using the bilinearity of E and the fact that E(v, v) = 0.

3.3. Lifting transvections. Given v ∈ Vk, there is a remarkably simple formula for a matrix
Mv ∈ Nk such that Mv induces the transvection tv, that is,

φ : Nk −→ Sp(2k,F2), Mv 7−→ φMv
= tv, (v ∈ Vk).

For v ∈ Vk we define:

Mv =







1−i
2

(I + iUv) if U2
v = I equiv., x∗(x) = 0,

1−i
2

(I + Uv) if U2
v = −I equiv., x∗(x) = 1.

Now assume that U2
v = −I, to verify that indeed MvUwM

−1
v = ifM (w)Utv(w) we use that

M−1
v = 1+i

2
(I − Uv) and UvUw = (−1)E(v,w)UwUv.

Therefore we get:

MvUwM
−1
v = 1

2
(Uw + UvUw − UwUv − UvUwUv) =

=







1
2
(Uw + 0− U2

vUw) = Uw = Utv(w) if E(v, w) = 0,

1
2
(Uw + 2UvUw + U2

vUw) = (−1)y
∗(x))Uv+w = (−1)y

∗(x)Utv(w) if E(v, w) = 1.

The case U2
v = I can be handled similarly. It is easy to check that M2

v = ilUv for some integer
l, depending on v. Together with C×, the Mv thus generate the normalizer Nk.

3.4. Examples of lifts. To clarify how this construction works at the practical level, we give
some examples in the case k = 1. For v = (1, 0) we are in the case x∗(x) = 0 and

Uv = U(1,1,0) = U1 =

(

0 1
1 0

)

, U2
1 = I, hence M1 =

1− i

2

(

1 i
i 1

)

.

Thus M1 = MT (cf. section 2.4), this is not really surprising as

tv(w) = t(1,0)(x, y) = (x, y) + y(1, 0) = (x+ y, y) = T (x, y)

that is, tv = T ∈ Sp(2,F2). Analogously for v = (0, 1):

U(1,0,1) = U1∗ =

(

1 0
0 −1

)

, U2
1∗ = I hence M1∗ =

(

1 0
0 −i

)

.

Thus M1∗ = (M ′′)−1 with M ′′ ∈ N1 as in section 2.6.
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3.5. The normalizer N1 and symmetric groups S3, S4. The group N1 maps onto
Sp(2,F2) = SL(2,F2). As F2

2 has three non-zero elements and any A ∈ SL(2,F2) permutes
these, we get a surjective homomorphism

SL(2,F2) −→ S3,

(if we number the elements of F2
2 − {0} by 1 = (1, 0), 2 = (0, 1) and 3 = (1, 1) then, with the

notation as in 2.4, we get

S 7−→ (12), T 7−→ (23) (∈ S3)

and these elements generate S3). The kernel of this homomorphism isC×H1. The groupN1/C
×

still maps onto S3 with kernel H1/µ4
∼= (Z/2Z)2. Using the methods from [E] it is not hard

to show that N1/C
× ∼= S4, a symmetric group, and that the subgroup H1/µ4 corresponds to

{e, (12)(34), (13)(24), (14)(23)}.

4. Qubits and E7

4.1. In this section we recall that Sp(6,F2) is a quotient of the Weyl group W (E7). Thus we
went all the way from three-qubits and the associated Heisenberg group H3 with its normalizer
N3 and quotient N3/(C

× ·H3) ∼= Sp(6,F2) to W (E7).
Since we had to discuss the root system E7 in the first part of this section, we decided to recall

also the results of Duff and Ferrara on the restriction of the 56-dimensional representation V (ω7)
of the complex Lie group E7(C) to SL(2,C)7. There is also a nice finite geometric description
of this which unfortunately is a bit long, so we only give it in Appendix D.

4.2. The root system E7. As usual, we fix a real vector space of dimension 7, denoted simply
by R7, with a positive definite inner product (−,−). The set of 126 roots of E7 is then a subset
of R7. An explicit description of these roots is given in section 5.2. The Dynkin diagram for
E7, reproduced in the section 4.4, codes the scalar products of the simple roots α1, . . . , α7 ∈ R7

in the usual way: (αi, αj) is 2 if i = j, −1 if αi, αj are connected by an edge and (αi, αj) = 0
otherwise.

4.3. Coxeter relations for transvections. The transvections tv, with v ∈ Vk, satisfy the
following, easy to verify, relations:

t2v = 1, tvtw = twtv if E(v, w) = 0, tvtwtv = tv+w if E(v, w) = 1

for w ∈ V . Note that if E(v, w) = 1 then (tvtw)
3 = (tvtwtv)(twtvtw) = t2v+w = I whereas

(tvtw)
2 = I if E(v, w) = 0.

4.4. The normalizer N3 and Weyl group W (E7). Using the Coxeter relations, it is easy to
establish a relation between Sp(6,F2) and W (E7). In the diagram below, the simple roots αi

are numbered as in [B], p.264. Above the simple root αi we wrote an element vi ∈ V3, not at
random, but, as the reader should verify, in such a way that

(αi, αj) ≡ E(vi, vj) mod 2 (1 ≤ i, j ≤ 7).

This relation between the inner product on the roots system E7 and the symplectic form on
V3 implies in particular that E(v, w) = 0 for points v, w in the diagram except when they are
connected by an edge (or the dotted edge), in which case E(v, w) = 1. The Weyl group W (E7)
is isomorphic to the group generated by seven elements si, with Coxeter relations: s2i = I,
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sisj = sjsi if (αi, αj) = 0 and (sisj)
3 = I if (αi, αj) = −1. As the tvi ∈ Sp(6,F2) satisfy

the same Coxeter relations, there is a surjective homomorphism from W (E7) to Sp(6,F2).
Comparing orders of the groups, one finds that the kernel has two elements and one can verify
(see also below) that the kernel is {±I} ⊂ W (E7). The homomorphism W (E7) → Sp(6,F2)
can also be obtained by a natural map from the root lattice of E7 to V3 which we will give in
section 4.6 and Appendix D.

c . . . c c c c c c

c

(100111) (101100) (111111) (101001) (001111) (101011) (010111)

α̃ α1 α3 α4 α5 α6 α7

(011000), α2

In the diagram above, α̃ indicates the longest root (w.r.t. to the basis of simple roots) of E7.
It is also the highest weight of the adjoint representation of E7 and α̃ is characterized by the
scalar products

(α̃, α1) = 1, (α̃, αi) = 0, (i = 2, . . . , 7).

One easily verifies that

α̃ = 2α1 + 2α2 + 3α3 + 4α4 + 3α5 + 2α6 + α7.

4.5. The Weyl group W (E7). The Weyl group of E7 is the subgroup of R7 generated by the
reflections in the hyperplanes perpendicular to the roots of E7. We will recall below that −I is
in W (E7). The group W (E7)/ < −I > is known to be simple and is isomorphic to Sp(6,F2),
so one has an exact sequence:

0 −→ µ2 −→ W (E7) −→ Sp(6,F2) −→ 0.

From the diagram one can see that the orthogonal complement of the highest root α̃⊥ contains
a root system of type D6, which is spanned by the six roots α2, α3, . . . , α7. This root system can
be realized as the set of vectors ±(ei±ej) in R6 with the standard inner product. In particular,
there are 6 mutually perpendicular vectors in D6 (for example e1+e2, e1−e2, e3+e4, . . . , e5−e6).
Therefore there are 7 perpendicular roots α̃ = β1, . . . , β7 in E7.

One immediate consequence of the existence of 7 perpendicular roots in E7 is the fact that
−I : R7 → R7 is in the Weyl group of E7. Indeed, the product of the seven reflections sβi

in
W (E7) defined by the 7 roots β1, . . . , β7, which form an R-basis of R7, is obviously −I.

4.6. The root lattice Q(E7) and V3. We now discuss another way to obtain the surjective
homomorphism from W (E7) to Sp(6,F2).

The root lattice of E7 is denoted by Q(E7) (∼= Z7 ⊂ R7):

Q(E7) := {n1α1 + . . .+ n7α7 ∈ R7 : ni ∈ Z }.
We define a group homomorphism

π : Q(E7) −→ V3
∼= F6

2, π(αi) := vi.
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Thus, for a general element in Q(E7) we have:

π(n1α1 + . . .+ n7α7) = n1v1 + . . .+ n7v7.

For example, since α̃ = 2α1 + 2α2 + 3α3 + 4α4 + 3α5 + 2α6 + α7 we get:

π(α̃) = π(α3) + π(α5) + π(α7) = (111111) + (001111) + (010111) = (100111).

As (αi, αj) ≡ E(vi, vj) mod 2 for all i, j, the map π is compatible with scalar product on the
roots and the symplectic form on F6

2:

(α, β) ≡ E(π(α), π(β)) mod 2 (α, β ∈ Q(E7)).

The images of the 126 roots of E7 are exactly the 63 non-zero elements of V3
∼= F6

2 (note that
π(α) = π(−α)). The reflection defined by a root α is the linear map (we use (α, α) = 2)

sα : R7 −→ R7, x 7−→ x− (x, α)α.

If follows that this reflection induces the transvection tw in w := π(α) because tw(v) = v +
E(v, w)w. As W (E7) is generated by the reflections sα and Sp(6,F2) is generated by the
transvections, the map π induces a surjective homomorphism W (E7) → Sp(6,F2). Comparing
the orders of the groups, one finds that the kernel has two elements, and it is obvious that −I
is in the kernel, because it acts trivially on V3. Thus W (E7)/{±I} ∼= Sp(6,F2).

We refer to Appendix C for a more intrinsic description of the map π.

4.7. Copies of SL(2,C)7 in E7(C). We illustrate that the map π is quite useful in under-
standing Lie subgroups isomorphic to SL(2,C)7 of the complex Lie group E7(C).

A positive root α of E7 determines a subalgebra isomorphic to sl(2) of the simple Lie algebra
g of type E7. Usually its standard generators are denoted by Xα, X−α, Hα. We will write sl(2)α
for this subalgebra:

sl(2)α = 〈Xα, X−α, Hα 〉 (⊂ g = E7).

Recall that X±α are a basis of the 1-dimensional root spaces g±α, and that Hα := [Xα, X−α]
lies in the Cartan algebra h ∼= C7 of g.

Given two positive roots α, β, the subalgebras

sl(2)α, sl(2)β commute ⇐⇒ (α, β) = 0.

In fact, as (α, α) = 2 for all roots of E7, we have [Hα, Xβ] = (α, β)Xβ, so this condition is
necessary. Conversely, let (α, β) = 0. Then, as we just observed, [Hα, X±β] = 0 = [Hβ, X±α].
Moreover, ±α± β cannot be a root since (±α± β,±α± β) = 4, whereas (α, β) ∈ {±2,±1, 0}
for any roots α, β of E7. Therefore g±α±β = 0 and as [X±α, X±β] ∈ g±α±β, we conclude that
the subalgebras commute.

The root system of E7 spans R
7, so there cannot be more than 7 mutually orthogonal roots.

We already observed that there are indeed sets of seven orthogonal roots in section 4.5. Thus
there are subalgebras isomorphic to sl(2)7 in g such that the direct sum of their Cartan algebras
is the (chosen) Cartan algebra h of g. Equivalently, there is a (reducible) root subsystem of
type A⊕7

1 contained in the root system E7.
Using the map π : Q(E7) → V3, which induces a bijection between the set of 63 pairs of roots

±α and the non-zero points in V3, it is easy to find all seven element subsets of perpendicular
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roots of E7. In fact, since for roots α and β 6= ±α, we have (α, β) ∈ {±1, 0}, the roots α, β are
perpendicular, that is,

(α, β) = 0 ⇐⇒ E(π(α), π(β)) = 0 (α, β ∈ E7, β 6= ±α).

Note that given two such perpendicular roots, we immediately find a third root which is per-
pendicular to both, it is the root in E7 which maps to π(α) + π(β).

A subspace W of V3 which is spanned by mutually orthogonal roots is therefore an isotropic
subspace: E(v, w) = 0 for all v, w ∈ W . As the symplectic form E is non-degenerate, we must
have dimW ≤ 3 and dimW = 3 iff ♯(W −{0}) = 23 − 1 = 7. Thus we conclude that there is a
bijection between the sets of 7 perpendicular roots (up to sign) ±β1, . . . ,±β7 and the (non-zero
points in a) Lagrangian (i.e. maximally isotropic) subspaces W = {0, π(β1), . . . , π(β7)} ∼= F3

2

in V3.
There are 135 Lagrangian subspaces in V3 and thus there are 135 such sets of roots, equiv-

alently there are 135 root subsystems A⊕7
1 ⊂ E7. An elementary way to find this number is

to notice that to find a basis of a Lagrangian subspace, one first chooses an arbitrary non-zero
element v1 ∈ V3, next an element v2 ∈ v⊥1 ⊂ V3, that is, E(v1, v2) = 0, with v2 6∈< 0, v1 > and
finally a v3 ∈ v⊥1 ∩ v⊥2 with v3 6∈< 0, v1, v2, v1 + v2 >, this gives (64 − 1)(32 − 2)(16 − 4) such
bases. As GL(3,F2), which permutes the bases of a given subspace, has 168 elements one finds
that the number of Lagrangian subspaces is

(64− 1)(32− 2)(16− 4)

168
=

(9 · 7)(5 · 6)(4 · 3)
7 · 6 · 4 = 9 · 5 · 3 = 135.

4.8. The Fano plane. We drew a figure of such a Lagrangian subspace L ∼= F3
2, actually we

only show the 7 non-zero points. We also drew the codimension 1 subspaces as lines. Such
a subspace consists of the points {0, a, b, a + b}, and any two distinct points a, b determine a
unique line. Each such a line contains three non-zero points, note that one line is drawn as a
circle. We also give the labels A, . . . , G for the points as in [DF1].

The knowledgeable reader will recognize this as the projective plane P(L) over the field F2,
this projective plane is known as the Fano plane. Like for the real and complex numbers, it is
defined as

P(L) := (L− {0})/F×
2 = L− {0},

where we used that F2 = {0, 1}, so its multiplicative group F×
2 = {1} is trivial.

4.9. The restriction of V (ω7) to SL(2,C)7. After briefly recalling some basic facts of rep-
resentations of Lie groups and Lie algebras, we discuss the restriction of the E7-representation
V (ω7) to SL(2)7 (cf. [DF1]).

Recall that the weight lattice of E7 is defined as

P (E7) := {ω ∈ R7 : (ω, α) ∈ Z ∀α ∈ Q(E7) } = {ω ∈ R7 : (ω, αi) ∈ Z, i = 1, . . . , 7 }.
A weight ω is called dominant if (ω, αi) ≥ 0 for all i. There is a bijection ω 7→ V (ω) between
the set of dominant weights of E7 and the irreducible (finite dimensional) representations of
the Lie algebra of E7 (and of the complex Lie group E7(C)).

The (fundamental) dominant weight ω7 is defined by the scalar products:

(ω7, α7) = 1, (ω7, αi) = 0, (i = 1, . . . , 6).
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E=(0,0,1) F=(1,0,1) A=(1,0,0)

B=(0,1,1) G=(1,1,0)

D (1,1,1)

C=(0,1,0)

One easily verifies that:

ω7 = (2α1 + 3α2 + 4α3 + 6α4 + 5α5 + 4α6 + 3α7)/2.

Note that ω7 6∈ Q(E7) due to the division by 2. The irreducible representation V (ω7) of the Lie
algebra g of type E7 is known to have dimension 56. It has a decomposition into weight spaces
Vλ with λ ∈ P (E7), so Hv = λ(H)v for each v ∈ Vλ where H ∈ h, the (chosen) Cartan algebra
whose dual is R7 ⊗C. Let Π(ω7) be the set of λ ∈ P (E7) for which Vλ 6= 0. It is known that
for each λ ∈ Π(ω7) the weight space Vλ is one dimensional and that the 56 weights λ ∈ Π(ω7)
are all in the W (E7)-orbit of ω7. In particular, Π(ω7) consists of 28 pairs of weights ±λ.

V (ω7) = ⊕λ∈Π(ω7) Vλ, dimVλ = 1, ♯Π(ω7) = 56.

Let α be a positive root of E7 and let sl(2)α = 〈Xα, X−α, Hα〉 be the corresponding copy
of sl(2) as in section 4.7. The action of Hα on the weight space V (ω)λ is (using again that
(α, α) = 2 for any root α of E7):

Hαv = (λ, α)v, ∀v ∈ Vλ.

To find the integers (λ, α), that is the sl(2)α-weights, it is convenient to use the description of
the roots and of the weights in Π(ω7) given in sections 5.3,5.4.

The main result is that (λ, α) ∈ {1, 0,−1}, cf. section 5.5. Moreover for any positive root
α there are exactly 32 weights in Π(ω7) with (λ, α) = 0 whereas there are 12 weights with
(λ, α) = 1 (and thus also 56 − 32 − 12 = 12 weights with (λ, α) = −1). The irreducible
representations of sl(2) are the V (m), with m ∈ Z≥0 with dimV (m) = m+ 1. The weights of
V (m) are m,m− 2, . . . ,−m.

It follows that the only irreducible representations of sl(2)α which occur in the restriction
of V (ω7) are V (0), the trivial one-dimensional representation, and V (1), the standard two
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dimensional representation. Moreover,

V (ω7)|sl(2)α = V (0)n0 ⊕ V (1)n1,

{

n0 = ♯{ω ∈ Π(ω7) : (ω, α) = 0 } = 32,
n1 = ♯{ω ∈ Π(ω7) : (ω, α) = 1 } = 12.

This determines the restriction of V ω7) to an sl(2)α. Now let L ⊂ V3 be the Lagrangian
subspace corresponding to SL(2,C)7. To avoid confusion with the simple roots αi we write

L = {0, π(β1), . . . , π(β7) }, (βi ∈ E+
7 , (βi, βj) = 0 if i 6= j).

The Lie algebra of SL(2,C)7 will be denoted by

ß := ⊕β∈L−{0} sl(2)β = ⊕7
i=1sl(2)βi

.

The restriction of V (ω7) must be a direct sum of tensor products

V (ω7)|ß = ⊕w

(

V (w1)⊠ . . .⊠ V (w7)
)nw

(w = (w1, . . . , w7) ∈ {0, 1}7).

By explicit computation (see section 5.7) or by using the finite geometry (see Appendix D,
D.5), one obtains the following. Let M ⊂ L be a codimension one subspace, so M ∼= F2

2 and
has three non-zero elements. We’ll write

M := {0, π(βi), π(βj), π(βk) = π(βi) + π(βj) } ⊂ L.

Then, for each of the eight elements in {±1}3, there is exactly one weight λ ∈ Π(ω7) such that

(λ, βi) = ±1, (λ, βj) = ±1, (λ, βk) = ±1, (λ, βl) = 0, l 6∈ {i, j, k}.

This implies that there is a summand V (w1) ⊠ . . .⊠ V (w7) which has wi = wj = wk = 1 and
wl = 0 for l 6∈ {i, j, k}. The dimension of this summand is 23 · 14 = 8.

As there are 7 such lines P(M) in the Fano plane and as dimV (ω7) = 56 = 8 ·7, we conclude
that

V (ω7)|ß = ⊕P(M)⊂P(L)VM , VM := V (w1)⊠. . .⊠V (w7) with wi =

{

1 if π(βi) ∈ M,
0 if π(βi) 6∈ M,

where the sum is over the seven lines P(M) of the Fano plane P(L). This decomposition is
written as

56 = (ABD) + (BCE) + (CDF ) + (DEG) + (EFA) + (FGB) + (GAC)

in [DF1], (5.1), where A,B, . . . , G denote the points and (ABD),. . .,(GAC) are the seven lines
in the Fano plane.

5. Degree two Del Pezzo surfaces and E7

5.1. We briefly recall the relation between the root system E7 and the Del Pezzo surfaces of
degree two. This leads to a convenient way to enumerate the roots of E7 and the set of weights
Π(ω7) of the 56-dimensional representation of E7(C). In particular, we get a very explicit
description of the restriction of V (ω7) to SL(2,C)7. A reference for the Algebraic Geometry
described here is [DO], in particular VII.4, p.120–123.
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5.2. The degree two Del Pezzo surfaces. Any degree two Del Pezzo surface S can be
realized as the blow up of the complex projective plane P2(C) in 7 points p1, . . . , p7 in general
position. Its second cohomology group is also its Picard group: H2(S,Z) = Pic(S) ∼= Z8. The
intersection form on H2(S,Z) is a bilinear form whose associated quadratic form has signature
(1+, 7−), changing the sign we get a bilinear form on Pic(S) which we will denote by [−,−].
A basis of Pic(S) is provided by the classes e0, e1, . . . , e7 where e0 is the pull-back of the class
of a line in P2 and the ei are the classes of the exceptional divisors over the pi,

Pic(S) = Ze0 ⊕ Ze1 ⊕ . . . ⊕ Ze7.

This basis is orthogonal for the symmetric bilinear form [−,−], one has:

[e0, e0] = −1, [ei, ei] = 1 (1 ≤ i ≤ 7), [ei, ej] = 0 0 ≤ i < j ≤ 7.

The canonical divisor class is given by

KS = −3e0 + e1 + . . .+ e7, [KS, KS] = −2.

5.3. The roots of E7. The interesting thing for us is the orthogonal complement of KS in
Pic(S). This is a lattice of rank 7 which has a basis d1, . . . , d7 such that the matrix [di, dj] has
determinant −[KS , KS] = 2, in fact it is the root lattice Q(E7). Thus we find the roots of E7

in an euclidean R7 which lies in an R8 (= Pic(S)⊗R) with a Minkowski metric.

c. . . . . .c c c c c c

c

e1 − e2 e2 − e3 e3 − e4 e4 − e5 e5 − e6 e6 − e7 Ω78

ω7α1 α3 α4 α5 α6 α7

e0 − e1 − e2 − e3
α2

It is easy to verify that the seven elements di written on top of the αi are a Z-basis of K⊥
S

and that they satisfy, for 1 ≤ i, j ≤ 7:

[di, dj] = (αi, αj), d1 := e1 − e2, d2 := e0 − e1 − e2 − e3, . . . , d7 = e6 − e7.

Thus K⊥
S
∼= Q(E7). The full list of the 63 = 21+35+7 positive roots, with a convenient name,

is:

Rij = ei − ej 1 ≤ i < j ≤ 7,

Rijk8 = e0 − ei − ej − ek 1 ≤ i < j < k ≤ 7,

Ri8 = 2e0 − (e1 + . . .+ e7) + ei 1 ≤ i ≤ 7.

With this notation, one has following property: if I, J ⊂ {1, . . . , 8} are subsets with two or
four elements, and RI , RJ denote the corresponding roots, then

[RI , RJ ] = ±1 ⇐⇒ ♯ (I ∩ J) = 1, 3

and [RI , RJ ] ∈ {0, 2} else.
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5.4. The weights in Π(Ω7). The 56 weights in Π(ω7) correspond to the 56 exceptional curves
of the first kind on S (these are smooth, rational curves E on S with E ·E = −1 and E ·KS =
−1). The classes of these 56 = 7 + 21 + 21 + 7 curves in Pic(S), with a name, are given by

−Ωi8 = ei 1 ≤ i ≤ 7,

−Ωij = e0 − ei − ej 1 ≤ i < j ≤ 7,

Ωij = 2e0 − (e1 + . . .+ e7) + ei + ej 1 ≤ i < j ≤ 7,

Ωi8 = 3e0 − (e1 + . . .+ e7)− ei 1 ≤ i ≤ 7.

The first thing to notice is that −Ωij + Ωij = KS, and thus the classes −Ωij ,Ωij do map
to opposite elements in K⊥

S . One can verify that these are all the classes l ∈ Pic(S) with
[l, KS] = +1 and [l, l] = 1. Note that these classes do not lie in K⊥

S , but we do have:

[d7,Ω78] = 1, [di,Ω78] = 0 (1 ≤ i ≤ 6), with Ω78 := 3e0 − (e1 + . . .+ e6)− 2e7

thus Ω78 projects onto ω7 ∈ P (E7).

5.5. Scalar products. The scalar product between weights and roots is as follows: for subsets
S, J ⊂ {1, . . . , 8}, with ♯S = 2 and ♯J = 2, 4, we have

[ΩS , RJ ] = ±1 ⇐⇒ ♯ (S ∪ J) − ♯(S ∩ J) ≡ 2 mod 4.

It is now easy to verify that indeed (cf. section 4.9)

[ΩS, RJ ] ∈ {1, 0,−1} ∀ΩS ∈ Π(ω7), RJ ∈ Φ(E7)
+.

It is also easy to see that the weights λ = ±ΩS ∈ Π(ω7) with [±ΩS , R12] = 0 are:

[±ΩS , R12] = 0 =⇒ S = {i, j}, 3 ≤ i < j ≤ 7; {i, 8}, 3 ≤ i ≤ 7; {12};
so we find 2(10 + 5 + 1) = 32 such weights.

5.6. The action of W (E7). The action of a reflection sα in the Weyl group is induced by the
reflections sd on Pic(S), where as usual sd(e) := e − [e, d]d for an element d ∈ Pic(S) with
[d, d] = 2. This leads to the simple (and easily verified) formulas:

sei−ej :















e0 7−→ e0,
ei 7−→ ej ,
ej 7−→ ei,
ek 7−→ ek if k 6= i, j,

thus these reflections induce permutations of the indices. The reflection in the simple root α2

is only slightly more complicated:

se0−e1−e2−e3 :







e0 7−→ 2e0 − e1 − e2 − e3,
ei 7−→ e0 − ej − ek if k ∈ {1, 2, 3} and {i, j, k} = {1, 2, 3},
ek 7−→ ek if k 6∈ {1, 2, 3}.
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5.7. The restriction of V (ω7). In the table below, we give both the labels A, . . . , G from
[DF1], Figure 2 and from our figure of the Fano plane in section 4.8 (to be precise, we wrote
(abc000) for (a, b, c)). We also give the corresponding root RJ of E7, that is, π(RJ) = (abc000).

For example, one writes R2568 as a linear combination of α1 = e1 − e2, . . ., α7 = e6 − e7:

e0 − e2 − e5 − e6 = (e0 − e1 − e2 − e3) + (e1− e2) + (e2 − e3) + 2(e3− e4) + 2(e4− e5) + (e5 − e6)

that is, in the notation of section 5.3:

R2568 = α2 + α1 + α3 + 2α4 + 2α5 + α6.

Using the map π from section 4.6, which maps αi 7→ vi, we then have:

π(R2568) = (011000) + (101100) + (111111) + (101011) = (100000).

A C E G B F D

(100000) (010000) (001000) (110000) (011000) (101000) (111000)

R2568 R3468 R3578 R1678 R1238 R1458 R2478

The next table gives, for each line in this Fano plane, the four weights ΩS of the representation
V (ω7) such that ±ΩS has inner product ±1 with the roots corresponding to the three points
on the line and which are perpendicular to the other four roots.

In this table one should observe that the three roots RI , RJ , RK which correspond to points
on a line P(M) in the Fano plane P(L) have index sets of the type

I = {a, p, q, 8}, J = {a, r, s, 8}, K = {a, u, v, 8}, {a, p, q, r, s, u, v} = {1, . . . , 7},

so the common index a labels the lines. The four pairs of weights ±ΩS which have scalar
product ±1 with each of these three roots have S = {p, q}, {r, s}, {u, v}, {a, 8}. Indeed, one
has ♯(S ∪ I)− ♯(S ∩ I) = 6− 0 = 6 or 4− 2 = 2 hence [ΩS, RI ] = ±1.

P (M) a roots in M weights

FGB 1 R1678, R1238, R1458 Ω23,Ω45,Ω67,Ω18

ABD 2 R2568, R1238, R2478 Ω13,Ω47,Ω56,Ω28

BCE 3 R3468, R3578, R1238 Ω12,Ω46,Ω57,Ω38

CDF 4 R3468, R2478, R1458 Ω15,Ω27,Ω36,Ω48

EFA 5 R2568, R3578, R1458 Ω14,Ω26,Ω37,Ω58

GAC 6 R2568, R3468, R1678 Ω17,Ω25,Ω34,Ω68

DEG 7 R3578, R1678, R2478 Ω16,Ω24,Ω35,Ω78
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6. Concluding remarks

6.1. The Weyl group. The Weyl group of E7(C) can also be defined as the quotient group

W (E7) = N(T )/T

where T ⊂ E7(C) is a maximal torus and N(T ) is the normalizer of T :

N(T ) := {A ∈ E7(C) : ATA−1 = T }, T ∼= (C×)7 ⊂ E7(C).

There seems to be a close relation between N(T ) and the image of N3, the normalizer of the
Heisenberg group, in GL(V (ω7)) ∼= GL(∧2H⊕∧2H∗).

6.2. The Del Pezzo surfaces. A rather deep link between Del Pezzo surfaces of degree two
and the algebraic variety defined by quartic invariant on V (ω7), involving the Cox ring of the
Del Pezzo surfaces, was recently established by Derenthal [D].

6.3. Qutrits and E6. A variant of the qubits are the k-qutrits, which are elements of Fk
3 (here

F3 is the field with three elements, F3
∼= Z/3Z). In [DF2], the restriction of the 27-dimensional

representation of E6(C) to a subgroup SL3(C)3 was considered in this context. An inclusion
of three perpendicular copies of the root system A2 into the root system E6 determines such a
subgroup.

It may be of interest to know that there are 40 such inclusions (similar to the 135 choices
of seven orthogonal copies of A1 in E7). These subsystems actually have come up in the
description of the moduli space of marked cubic surface (i.e. Del Pezzo surfaces of degree
three). This moduli space has 40 cusps (special boundary points, they can be blown up to give
the so-called cusp divisors), which correspond to such root subsystems of E6, see for example
[CG]. That paper (section 7.4) uses a well-known surjective map Q(E6) → (Z/3Z)5 which
might be useful for the study of the link between qutrits and E6.

Appendix A.

A.1. In this appendix we consider symmetric and antisymmetric bilinear forms on the state
space H. The action of the Heisenberg group singles out particular forms which are of interest
for example for the Hopf maps.

A.2. The action of Hk on tensors. The Schrödinger representation U : Hk → GL(Hk)
defines representations

U<n> : Hk −→ GL(H⊗n
k )

on the n-fold tensor product of Hk with itself. As the commutator of two elements in Hk is
±1, the action of Hk on H⊗n

k factors over the abelian group (Z/2Z)2k in the case n is even.
In the case n = 2, this representation splits into the representations on the symmetric and

anti-symmetric tensors, which will be of particular interest to us:

H⊗2
k = S2(Hk) ⊕ ∧2(Hk), dimS2(Hk) = 2k−1(2k + 1), dim∧2(Hk) = 2k−1(2k − 1).

This case is particularly nice, as dimHk ⊗ Hk = 22k and each one dimensional irreducible
representation of (Z/2Z)2k occurs once in this space. We now give the explicit decomposition
of S2(Hk) and ∧2(Hk) into irreducible subrepresentations.
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The symmetric tensors can be written more conveniently as polynomials in variables Xσ,
σ ∈ Lk, where Xσ = δσ. The elements of Sn(Hk) are then homogeneous polynomials of degree
n in these variables. We have:

S2(Hk) = ⊕(ǫ,ǫ′), ǫ′(ǫ)=0 CQ[ǫǫ′],

with

Q[ǫǫ′] :=
∑

σ∈Lk

(−1)ǫ
′(σ)XσXσ+ǫ,

where (ǫ, ǫ′) ∈ Lk × L∗
k and the Xσ = δσ are the delta functions.

Here are some concrete examples of these polynomials: in the case k = 1 one has the three
polynomials:

Q[00] := X2
0 + X2

1 , Q[01] := X2
0 − X2

1 , Q[10] := 2X0X1,

while for k = 2 one has the 10 polynomials:

Q[0000] := X2
00 + X2

01 + X2
10 + X2

11, Q[0100] := 2 (X00X01 + X10X11) ,
Q[0011] := X2

00 − X2
01 − X2

10 + X2
11, Q[1100] := 2 (X00X11 + X01X10)

Q[0010] := X2
00 + X2

01 − X2
10 − X2

11, Q[0110] := 2 (X00X01 − X11X10) ,
Q[0001] := X2

00 − X2
01 + X2

10 − X2
11 Q[1001] := 2 (X00X10 − X11X01) ,

Q[1000] := 2 (X00X10 + X11X01) , Q[1111] := 2 (X00X11 − X10X01) .

To verify that we do have a decomposition of S2(Hk) into Hk-representations, the crucial
observation is that these spaces are invariant under the action of Hk:

U(s,x,x∗)Q[ǫǫ′] = (−1)x
∗(ǫ)+ǫ′(x)Q[ǫǫ′].

The alternating tensors decompose similarly:

∧2(Hk) = ⊕(ǫ,ǫ′), ǫ′(ǫ)=1 CA[ǫǫ′ ], U(s,x,x∗)A[
ǫ
ǫ′] = (−1)x

∗(ǫ)+ǫ′(x)A[ǫǫ′],

where we have alternating forms (in the variables Xσ, Yσ):

A[ǫǫ′] :=
∑

σ

(−1)ǫ
′(σ)XσYσ+ǫ.

For example:

A[11] := X0Y1 − X1Y0,

while for k = 2:
A[1010] := X00Y10 − X10Y00 +X01Y11 − X11Y01,
A[1110] := X00Y11 − X10Y01 +X01Y10 − X11Y00,
A[1011] := X00Y10 − X10Y00 −X01Y11 + X11Y01,
A[0101] := X00Y01 + X10Y11 −X01Y00 − X11Y10,
A[1101] := X00Y11 + X10Y01 −X01Y10 − X11Y00,
A[0111] := X00Y01 − X10Y11 −X01Y00 + X11Y10.

In particular, for k = 3 the 28 A[ǫǫ′]’s are a natural basis (of H3-eigenfunctions) of ∧2(H3). Note
that the Pfaffian (a square root of the determinant of the corresponding alternating matrix)
pfaf(A[ǫǫ′]) is non-zero for these forms.
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A.3. The Hopf maps. It was observed in [LSV], section 7, that there is a relation with the
Hopf maps of spheres

hk : S2k−1 −→ S2k−1

, k = 2, 3, 4.

It is instructive to explicitly see how this comes about in the case k = 2. One way to construct
the Hopf fibration is to embed S3 in the space of quaternions H, a four dimensional real vector
space:

S3 = {q ∈ H : qq̄ = 1}.
We then identify

R3 = {h ∈ H : h̄ = −h}, S2 = {h ∈ R3 : hh̄ = 1}.
With this notation a Hopf map can be defined as:

h2 : S3 −→ S2, q 7−→ qiq̄

which is well defined because q̄iq = −q̄iq is imaginary and because q̄q = 1 implies qiq̄qiq̄ = 1.
Recall the explicit expression for a quaternion q = a + bi + cj + dk where i, j, k are the three
imaginary units (which satisfy i2 = j2 = k2 = ijk = −1). Then the Hopf map is:

q = a + bi+ cj + dk 7−→ q̄iq =
(

a2 + b2 − c2 − d2
)

i+ 2 (ad+ bc) j + 2 (bd − ac) k.

It is easily verified that the image of S3 is indeed contained in S2 because:
(

a2 + b2 − c2 − d2
)2

+ (2ad+ 2bc)2 + (−2ac + 2bd)2 =
(

a2 + b2 + c2 + d2
)2

.

On the other hand, one easily recognizes the four quadratic polynomials in a, b, c, d in this
formula as certain Q[ǫǫ′]’s, in fact the formula is equivalent to (with a = X00, b = X01, c =
X10, d = X11):

Q[0010]
2 + Q[1100]

2 + Q[1001]
2 = Q[0000]

2.

Thus the Hopf map is given by:

S3 −→ S2, x 7−→ (Q[0010](x), Q[1100](x), −Q[1001](x)).

There exist many such quadratic relations, for example one also has:

Q[0000]
2 = Q[0001]

2 + Q[0100]
2 + Q[1111]

2,

in fact, the vector space spanned by the squares of the ten Q[ǫǫ′ ]’s is only 5 dimensional. The
action of the group Nk from section 2.2 on the set of the Q[ǫǫ′]

2, which permutes them up to
sign, allows one to find many relations from any given relation.

For k = 1 there is an essentially unique relation:

Q[00]
2 = Q[01]

2 +Q[10]
2

The same construction extends to k = 3 (and according to [LSV] to k = 4, which would be the
case k = 3 for them).

In the case k = 3 one has the following relation:

Q[000000]
2 = Q[000100]

2 +Q[100000]
2 +Q[101101]

2 +Q[110111]
2 +Q[111110]

2.

This relation does imply that there is a map

S7 −→ S4 ⊂ R5, x 7−→ (Q[000100](x), Q[100000](x), Q[101101](x), Q[110111](x), Q[111110](x))
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but we don’t know if it is the Hopf map. Similarly, for k = 4 we have:

Q[00000000]
2 =

9
∑

i=1

Q[ǫi
ǫ′i
]2, [ǫi

ǫ′i
] = [00001000], [

1000
0000], [

1001
1001], [

1010
1011], [

1011
1110], [

1100
1111], [

1101
1100], [

1110
1101], [

1111
1010],

this relation defines a map S15 −→ S8 (⊂ R9).

A.4. The Clifford algebra of SO(2k + 2). The two half-spin representations of SO(2k + 2)
have dimension 2k and there is in fact a close relation between these representations and the
Heisenberg group. A key point is that the orthogonal group of the quadratic form

∑2k+2
i=1 x2

i

has a finite subgroup H , isomorphic to (Z/2Z)2k+1, of elements which change the signs of an
even number of the coordinates x1, . . . , x2k+2. The inverse image H̃ of this finite group in the
spin group Spin(2k+2) is not abelian. In fact, the image of H̃ in the half-spin representations
of the spin group is isomorphic to the Heisenberg group in its Schrödinger representation (cf.
[vG]). Another nice feature is that the group of even permutations of the coordinates, again a
subgroup of SO(2k + 2), will act as a subgroup of the normalizer Nk of the Heisenberg group
(cf. section 2.2 for Nk). See also [LSV], section 3, where a relation between the 2k dimensional
vector space Hk and a half-spin representation of SO(2k+ 2) is considered for k = 3 (actually,
due to triality, they consider the standard representation of SO(8)).

Appendix B.

B.1. We consider the action of the elements Mv in the normalizer of the Heisenberg group on
symmetric and antisymmetric tensors. This naturally leads to the introduction of quadratic
forms qw on the finite vector space Vk. In the case k = 3 some of these forms, the ‘odd’ ones,
are quite useful in understanding the root subsystems of type E6 in E7 and for the study of the
56-dimensional irreducible representation of E7.

B.2. The action of the transvections on tensors. We determine the action of Mv on a
quadric Q[ǫǫ′ ] (with ǫ′(ǫ) = 0) and on an alternating tensor A[ǫǫ′] (with ǫ′(ǫ) = 1), cf. section A.2.
The obvious guess, that if v = (x, x∗) ∈ Vk then Mv(Q[ǫǫ′]) = Q[x+ǫ

x∗+ǫ′] cannot be true since one

needs (x∗ + ǫ′)(x+ ǫ) = 0, else the polynomial Q[x+ǫ
x∗+ǫ′] is identically zero.

One way to find the correct transformations is to use the explicit formula for the action of Uv

on Xσ and the one for Mv given above. Instead we observe that the Heisenberg group matrices
are either symmetric or antisymmetric

tUv = (−1)x
∗(x)Uv, v = (x, x∗) ∈ Vk.

Comparing this with the formula for the group law in the Heisenberg group (section 1.5) one
finds:

(tUv)Uv = Uv(
tUv) = I, so tUv = U−1

v .

Moreover, using the matrices Uv to define bilinear forms, we find:

Q[ǫǫ′ ] =
tXU(ǫ,ǫ′)X, A[ǫǫ′] =

tXU(ǫ,ǫ′)Y, with X := (. . . , Xσ, . . .), Y := (. . . , Yσ, . . .).

For example,

U(1,1∗) = U1∗U1 =

(

0 1
−1 0

)

, (X0 X1)

(

0 1
−1 0

)(

Y0

Y1

)

= X0Y1 −X1Y0 = A[11].
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The action of Uv ∈ Hk, with v = (x, x∗), is then simply

U(ǫ,ǫ′) 7−→ UvU(ǫ,ǫ′)(
tUv) = (−1)E((x,x∗),(ǫ,ǫ′))U(ǫ,ǫ′)Uv(

tUv) = (−1)x
∗(ǫ)+ǫ′(x)U(ǫ,ǫ′),

that is,

UvQ[ǫǫ′] = (−1)x
∗(ǫ)+ǫ′(x)Q[ǫǫ′ ], UvA[

ǫ
ǫ′] = (−1)x

∗(ǫ)+ǫ′(x)A[ǫǫ′ ].

This agrees with the results from section A.2.
The action of the element Mv ∈ Nk on a tensor represented by Uw where w = (ǫ, ǫ′) is also

easy to compute as MvUw(
tMv). In case v = (x, x∗) with x∗(x) = 0 we have Uv = tUv = U−1

v

and tMv = Mv, thus

Uw 7→ −1
2
(I + iUv)Uw(1 + iUv)

= − i
2
(Uw + i(UvUw + UwUv)− UvUwUv)

=







− i
2
(Uw + 0 + U2

vUw) = −iUw if E(v, w) = 1,

− i
2
(Uw + 2iUvUw − U2

vUw) = (−1)ǫ
′(x)Uv+w if E(v, w) = 0.

Similarly, in case v = (x, x∗) with x∗(x) = 1 we find:

Uw 7→
{

−iUw if E(v, w) = 0,
−i(−1)ǫ

′(x)Uv+w if E(v, w) = 1.

In both cases, the results can be conveniently summarized as follows:

Mv(Q[ǫǫ′]) =

{

ilQ[ǫǫ′ ] if x∗(x) + E(v, w) = 1,
ilQ[ǫ+x

ǫ′+x∗] if x∗(x) + E(v, w) = 0.

for some integer l which depends on v = (x, x∗), w := (ǫ, ǫ′). A similar result holds for the
alternating forms:

Mv(A[
ǫ
ǫ′]) =

{

ilA[ǫǫ′ ] if x∗(x) + E(v, w) = 1,
ilA[ǫ+x

ǫ′+x∗] if x∗(x) + E(v, w) = 0.

These formulas imply that the group generated by the Mv permutes the 2k−1(2k+1) polyno-
mials Q[ǫǫ′ ]

4, in particular their sum is an invariant of degree 8. One example already appeared
in section 2.6, where it was identified with the weight enumerator of the Hamming code. As the
Q[ǫǫ′] are eigenvectors for the Heisenberg group elements Uv, with eigenvalues ±1, the Heisen-
berg group acts trivially on the Q[ǫǫ′]

2’s. Thus we get a representation of the quotient group
Sp(2k,F2) on the vector space spanned by these quartic polynomials. This representation is
known to be irreducible of dimension (2k + 1)(2k−1 + 1)/3, cf. [DG] and references given there.

Similarly, the 2k−1(2k − 1) polynomials A[ǫǫ′]
4 are permuted by the group generated by the

Mv and this action factors over the quotient group Sp(2k,F2). In particular, for k = 2 we get
a homomorphism Sp(4,F2) → S6, the symmetric group, which describes the permutations of
the six A[ǫǫ′ ]

4, see also section C.2.
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B.3. Quadratic forms on Vk. The transformation formula for the tensors given in the pre-
vious section suggests the following definition. For w := (ǫ, ǫ′) ∈ Vk define a quadratic form qw
on Vk by:

qw : Vk −→ F2, v = (x, x∗) 7−→ x∗(x) + E(v, w) = x∗(x) + x∗(ǫ) + ǫ′(x).

Then we can rewrite the transformation formula from the preceding section as

Mv(Q[ǫǫ′ ]) =

{

ilQ[ǫǫ′] if qw(v) = 1,
ilQ[ǫ+x

ǫ′+x∗ ] if qw(v) = 0.

Note that x∗(ǫ) =
∑

i ǫix
∗
i =

∑

i ǫi(x
∗
i )

2 because x∗
i = (x∗

i )
2 ∈ F2. Thus qw is actually

homogeneous of degree two(!): qw(λv) = λ2qw(v) = λqw(v), again because λ2 = λ ∈ F2. One
has, with u = (η, η′) ∈ Vk:

qu+w(v) = x∗(x) + x∗(ǫ+ η) + (ǫ′ + η′)(x) = qw(v) + E(v, u).

One verifies by direct computation that

qw(u+ v) = qw(u) + qw(v) + E(u, v), (u, v, w ∈ Vk),

i.e., E is the bilinear form associated with the quadratic form qw. A further computation shows
that

qw(tv(u)) = qw(u+ E(u, v)v)

= qw(u) + qw(E(u, v)v) + E(u,E(u, v)v)

= qw(u) + E(u, v)qw(v) + E(u, v)E(u, v)

=







qw(u) if qw(v) = 1,

qw+v(u) if qw(v) = 0.

Thus, defining an action of the involutions tv on the set of the quadrics qw, with w ∈ Vk by

tv(qw) : Vk −→ F2, tv(qw)(u) := qw(tv(u))

and writing Qqw , Aqw for Q[ǫǫ′ ], A[
ǫ
ǫ′] respectively, we can rewrite the transformation formula in

the following way:

Mv(Qqw) = ilQtv(qw), Mv(Aqw) = ilAtv(qw),

with l ∈ Z depending on v, w. Thus the quadratic forms qw on Vk parametrize, in a natural
way, the quadratic forms Q[ǫǫ′] and the alternating forms A[ǫǫ′]. This parametrization has the
advantage of being compatible with the actions of Nk and its quotient Sp(2k,F2).

B.4. Orthogonal groups. The action of the involutions tv on the quadrics qw can be extended
in an obvious way to an action of the group Sp(2k,F2) on these quadrics by defining for
g ∈ Sp(2k,F2) the quadric g(qw) by g(qw)(v) := qw(g

−1v).
The orthogonal group of the quadratic form qw is defined, as usual, by

O(qw) := { g ∈ GL(Vk) : qw(gv) = qw(v) ∀v ∈ Vk }.
As E is the associated bilinear form of qw, one easily sees that O(qw) ⊂ Sp(2k,F2). See also
[C], section 1.6 for these groups.
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We showed that tv(qw) = qw if qw(v) = 1. Hence O(qw) contains the subgroup generated by
the transvections tv with qw(v) = 1 and in fact O(qw) is generated by these transvections.

In case qw(v) = 0 we showed that tv(qw) = qv+w. An amusing consequence of this result is
that the action of Sp(2k,F2) on the even (and on the odd) quadrics is transitive: given [ǫǫ′ ] and
[ηη′ ] with ǫ′(ǫ) = η′(η), then v := (ǫ+ η, ǫ′+ η′) satisfies q(ǫ,ǫ′)(v) = 0, and thus tv(q(ǫ,ǫ′)) = q(η,η′).
This argument actually shows that, for each w = (ǫ, ǫ′) ∈ Vk, there is a bijection between the
sets

{v ∈ Vk : qw(v) = 0 } = {qu : u = (η, η′) and η′(η) = ǫ′(ǫ) }.
In particular, an even quadratic form is zero in 2k−1(2k + 1) points and an odd quadratic form
is zero in 2k−1(2k − 1) points. The case w = (0, 0) is particularly obvious: if v = (x, x∗) we get
qw(v) = x∗(x) and thus qw(v) = 0 iff qv is even.

As a consequence of the transitivity of the action of Sp(2k,F2) on the even/odd quadratic
forms we get the following formulas relating the orders of the various groups, where w = (ǫ, ǫ′) ∈
Vk:

♯Sp(2k,F2) =

{

2k−1(2k + 1) · ♯O(qw) if ǫ′(ǫ) = 0,
2k−1(2k − 1) · ♯O(qw) if ǫ′(ǫ) = 1.

More results on the action of Sp(2g,F2) on these quadratic forms can be found in [I], Ch. V.6.

Appendix C.

C.1. In this appendix we give some more examples of subgroups of Sp(2k,F2) which are
defined by Coxeter relations.

C.2. The normalizer N2 and the symmetric group S6. Using the Coxeter relations one
can establish an explicit isomorphism between Sp(4,F2) and the symmetric group S6. In the
diagram below, (abcd) stands for element v = ((a, b), (c, d)) ∈ V2:

c c c c c

(0010) (1010) (0111) (0001) (0101)

(12) (23) (34) (45) (56)

Now let tij = tv be the transvection defined by the element v above the permutation (ij) in the
diagram. Note that these transvections satisfy the Coxeter relations indicated by the diagram,
for example if v, w are connected by an edge then one checks that E(v, w) = 1 and thus indeed
(tvtw)

3 = I. The elements in the symmetric group S6 written below them satisfy the same
Coxeter relations.

The abstract group generated by 5 elements with these Coxeter relations is the Weyl group of
the roots system A5, that is, the symmetric group S6. As there are five tv’s in Sp(4,F2) which
satisfy the same Coxeter relations, there is a surjective homomorphism S6 → H (⊂ Sp(4,F2))
where H is the subgroup generated by these five transvections; this homomorphism maps (12)
to tv with v = (0010) etc., as indicated in the diagram. In particular, this subgroup H has
order at most 6! = 720 and it is isomorphic to either {1}, {±1} or S6, but as ♯H ≥ 5, we
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must have H ∼= S6. As Sp(4,F2) also has order 720, it follows that H = Sp(4,F2), that is,
these five transvections generate Sp(4,F2) and S6

∼= Sp(4,F2). It is amusing to observe that
the 24 − 1 = 15 non-zero points v ∈ V2 correspond to the 15 transpositions tv = (ij) ∈ S6,
1 ≤ i < j ≤ 6. For example, (13) ∈ S6 can be obtained as (13) = (12)(23)(12) and thus
corresponds to t12t23t12 = tv with v = v12 + v23 = ((10), (0, 0)).

Another way to obtain this homomorphism from Sp(4,F2) to S6 is to use the action of
elements of N2 on six labels [ǫǫ′] with ǫ′(ǫ) = 1 (cf. section B.2), this action factors over Sp(4,F2).

C.3. Orthogonal subgroups in Sp(6,F2). In the Coxeter diagram for W (E7) in section 4.4,
in the top row, there are six vi, as well as the element v0 appearing above α̃, the highest root,
which are all of the type v = (x, x∗) with x∗(x) = 1, that is, q(0,0)(v) = 1. This implies that the
corresponding transvections are elements of O(q(0,0)), cf. section B.4. From the Dynkin diagram
one finds that the transvections generate a quotient of the symmetric group S8 and as S8 has
only three quotients, S8, {±1}, {1}, it follows that S8 ⊂ O(q(0,0)). One actually has equality
(recall that 2k−1(2k + 1) · ♯O(q(0,0)) = ♯Sp(2k,F2)):

♯O(q(0,0)) = ♯Sp(6,F2)/36 = (29 · 34 · 5 · 7)/36 = 8! hence O(q(0,0)) ∼= S8.

Similarly, let qω̃ = q[101110]
: V3 → F2 be the odd quadratic form defined by

qω̃((x, x
∗)) = x∗(x) + x1 + x2 + x∗

1 + x∗
3, then qω̃(vi) = 1, i = 1, . . . , 6.

Hence the subgroup of Sp(6,F2) generated by the corresponding transvections tvi , 1 ≤ i ≤ 6 is
contained in O(qω̃). From the diagram it is clear that O(qω̃) is a quotient of W (E6). One can
show that actually (cf. [B], Exercise §4.2, p229):

O(qω̃) ∼= W (E6),

and that the tvi , 1 ≤ i ≤ 6 generate O(qω̃).

Appendix D.

D.1. In this appendix we work out some well known results on the reduction mod two of the
root lattices of E7 and E6. In particular we determine the kernel of the map π : Q(E7) → V3

from section 4.6 and we show how root sublattices of type Q(E6) are related to odd quadratic
forms on V3. We use this to rederive once more the relation between lines in the Fano plane
and the restriction of V (ω7) to SL(2,C)7.

D.2. The root lattice Q(E7) and V3. To relate the root lattice Q(E7) to the finite vector
space V3

∼= F6
2 we consider first of all the F2-vector space Q(E7)/2Q(E7) ∼= F7

2. The bilinear
scalar product (−,−) descends to a well-defined bilinear map

< −,− > :
(

Q(E7)/2Q(E7)
)2

−→ F2, < ᾱ, β̄ > := (α, β) mod 2,

(Indeed if ᾱ = ᾱ1 and β̄ = β̄1 then α = α1 + 2α2, β = β1 + 2β2 for certain α2, β2 ∈ Q(E7) and
thus (α1, β1) ≡ (α, β) mod 2.)

As (α, α) ∈ 2Z for any α ∈ Q(E7) we get < ᾱ, ᾱ >= 0, so the bilinear form < −,− > is
alternating on the odd dimensional vector space Q(E7)/2Q(E7). Thus it must be degenerate.
In fact one easily verifies (taking α = αi, i = 1, . . . , 7) that

(γ, α) ∈ 2Z ∀α ∈ Q(E7), with γ := α2 + α5 + α7 ∈ Q(E7)
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but note that γ 6∈ 2Q(E7). Thus γ̄ 6= 0 but < γ̄, ᾱ >= 0 for all α ∈ Q(E7).
Therefore, we consider the composite π of the two quotient maps

π : Q(E7) −→ Q(E7)/2Q(E7) −→ (Q(E7)/2Q(E7)) /〈γ̄〉,
notice that

(Q(E7)/2Q(E7)) /〈γ̄〉 ∼= Q(E7)/
(

2Q(E7) + (γ + 2Q(E7))
)

.

The fact that, with the notation of section 4.4, we have (αi, αj) ≡ E(vi, vj), implies that we
can describe π explicitly as

π : Q(E7) −→ V3
∼= F6

2, π(αi) := vi.

(The fact that π(γ) = 0 corresponds to the relation v2 + v5 + v7 = 0). By construction, this
map is compatible with scalar product on the roots and the symplectic form on F6

2:

(α, β) ≡ E(π(α), π(β)) mod 2 (α, β ∈ Q(E7)).

The images of the 63 pairs of roots ±α of E7 are exactly the 63 non-zero elements of V3
∼= F6

2.
A final comment on the kernel of π:

ker(π) = 2Q(E7) + (γ + 2Q(E7) = 2P (E7),

where P (E7) is the weight lattice of E7, which the dual of the root lattice:

P (E7) := {ω ∈ R7 : (ω, α) ∈ Z ∀α ∈ Q(E7) } = {ω ∈ R7 : (ω, αi) ∈ Z, i = 1, . . . , 7 }.
Indeed, as a consequence of the fact that the determinant of the Cartan matrix ((αi, αj)) is
equal to 2, one can show that Q(E7) is a subgroup of index two in P (E7). As (γ, α) ∈ 2Z for
all α ∈ Q(E7) we do have γ/2 ∈ P (E7), but obviously γ/2 6∈ Q(E7). Thus we conclude that
indeed P (E7) = Q(E7) + (γ/2 + Q(E7)) and that Q(E7)/2P (E7) ∼= V3 (see also [B], Exercise
§4.3, p229).
D.3. The weights of V (ω7) and the odd quadratic forms qw. We will show that there is
a natural bijection between these 28 pairs of weights in Π(ω7) and the 28 quadratic forms qw
on V3 which are odd in the sense that

qw(v) = x∗(x) + E(v, w), v = (x, x∗), w = (ǫ, ǫ′) ∈ V3, ǫ′(ǫ) = 1.

(see also [B], Exercise §4.2, p229). In particular, these pairs of weights also correspond naturally
to the 28 alternating forms Aqw = A[ǫǫ′] ∈ ∧2H3. This again is related to the realization

V (ω7) ∼= (∧2H3) ⊕ (∧2H3)
∗.

By definition, ω7 is perpendicular to the simple roots α1, . . . , α6. The Dynkin diagram in
section 4.4 shows that these roots span a root system of type E6, such a root system has
72 = 2 · 36 roots. Let Φ ⊂ Q(E7) be the set of these roots:

Φ := {α ∈ E7 : (ω7, α) = 0 } ≃ E6.

Under the map π : Q(E7) → V3 these map to a subset of V3, we will show that there is an odd
quadratic form qω such that this subset is the set of points

π(Φ) = {v ∈ V3 : qω(v) 6= 0 },
thus we have the property (which defines qω)

(ω7, α) = 0 ⇐⇒ qω(π(α)) = 1 (α ∈ E7).
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To see that such a qω exists, we observe that the root lattice of E6, Q(E6) ∼= Z6, is a sublattice
of root lattice of E7, Q(E6) ⊂ Q(E7), and thus under the map π : Q(E7) → V3, the image of
Q(E6) is all of V3, π(Q(E6)) = V3 (in fact γ 6∈ Q(E6)). Now we put

qω : V3 −→ F2, qω(β̄) := (β, β)/2 mod 2, β ∈ Q(E6);

this makes sense since (β, β) = 2Z for all β ∈ Q(E6) and qω is well-defined since (β + 2β1, β +
2β1) = (β, β) + 4((β, β1) + (β1, β1)). Note for example that qω(β) = 1 for all β ∈ E6 since
(β, β) = 2.

A basic property of the quadratic form qω is that the associated bilinear form is E. Indeed,
for β1, β2 ∈ Q(E6) we have:

qω(β̄1 + β̄2) = qω(β1 + β2)

≡ (β1 + β2, β1 + β2)/2 mod 2

≡ (β1, β1)/2 + (β2, β2)/2 + (β1, β2) mod 2

≡ qω(β̄1) + qω(β̄2) + E(β̄1, β̄2) mod 2.

This implies that there is a w ∈ V3 such that qω(v) = x∗(x) + E(v, w) for all v ∈ V3 (since
v 7→ x∗(x) is also a quadratic form with associated bilinear form E, the map v 7→ x∗(x)+ qω(v)
is in fact a linear map and hence is of the form v 7→ E(v, w) for some w ∈ V3).

Obviously, this construction is equivariant for the action of W (E7) so if s ∈ W (E7) then
s(ω7) is a weight of the representation V (ω7) and the associated odd quadratic form is s(qω),
which is defined using the root system of type E6 in s(ω7)

⊥ ∩ E7. In particular, (ω, α) = 0 iff
qω(π(α)) = 1 for all roots α of E7.

D.4. Example of a qω. We determine the odd quadratic form qω defined by ω = ω7. By
definition of ω7 we have

(ω7, vi) = 0 for i = 1, . . . , 6, =⇒ qω7(π(αi)) = 1 for i = 1, . . . , 6.

Using the explicit description of π (that is, π(αi) = vi as in the diagram in section 4.4) one
finds that the unique (odd) quadratic form which is non-zero on α1, . . . , α6 is:

qω7 = q[101110]
: V3 −→ F2, qω7((x, x

∗)) = x∗(x) + x1 + x2 + x∗
1 + x∗

3.

(Note that this odd quadratic form appeared in section 4.4.) We already observed in section
B.4 that an odd quadratic form is non-zero in 36 points of V3, thus these are exactly the images
of the roots of E6:

π(Φ) = {v ∈ V3 : qω(v) 6= 0 }.

D.5. The restriction of V (ω7) to SL(2,C)7, bis. Recall that the map π : E7 → V3 maps
the 126/2 = 63 pairs ±α of roots of E7 bijectively to the 26 − 1 non-zero points of V3 in such a
way that (α, β) = E(π(α), π(β)).

Let Π(ω7) be the set of 56 weights of the 56-dimensional representation V (ω7) of E7(C).
Under the map π the 56/2 = 28 pairs of weights ±ω in Π(ω7) correspond to the 28 odd
quadratic forms qω on V3 in such a way that (cf. D.3):

(ω, α) = 0 ⇐⇒ qω(π(α)) = 1 (α ∈ E7, ω ∈ Π(ω7)).
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This information is quite useful for understanding the restriction of the E7(C) representation
V (ω7) to SL(2,C)7. In fact, if L is the Lagrangian subspace corresponding to SL(2,C)7, then
we need to understand the set of the l = π(α) ∈ L for which (ω, α) = 1 for a given weight
ω ∈ Π(ω7), or equivalently, the set of points l ∈ L for which qω(l) = 0. As the bilinear form
associated to qω is E, and E is zero on L × L, the restriction of qω to L is a linear form
qω : L → F2:

qω(l1 + l2) = qω(l1) + qω(l2) + E(l1, l2) = qω(l1) + qω(l2).

As qω is odd, one has qω(L) = F2. This can be checked by using the Sp(6,F2) action to put
L in standard form, say L = L3 × {0} = {((a, b, c), (0, 0, 0)} ⊂ V3 and observing that if [ǫ, ǫ′]
is odd (so ǫ′(ǫ) = 1) then at least one ǫ′i is non-zero and thus the restriction of q[ǫ,ǫ′] to L is
non-trivial. Thus qω is linear on L and surjective, hence its kernel

Mω := ker(qω : L ∼= F3
2 −→ F2) ∼= F2

2

is a linear subspace of codimension 1 in L. The three non-zero points in Mω correspond to
three copies of sl(2) in sl(2)7 for which ω is a weight of V (1) and the remaining 7−3 = 4 points
of L correspond to copies with the trivial representation V (0).

Therefore each non-trivial summand V (w1)⊠ . . .⊠ V (w7) (see section 4.9) has three of the
wi equal to one and four equal to zero. The dimension of the summand is then 23 · 14 = 8. As
dimV (ω7) = 56 it follows that there are 56/8 = 7 such irreducible summands. This is also the
number of linear subspaces of dimension 2 in L, thus we conclude that

V (ω7)|ß = ⊕M⊂LVM , VM := V (w1)⊠ . . .⊠ V (w7) with wi =

{

1 if βi ∈ M,
0 if βi 6∈ M,

where the sum is over the two dimensional subspaces M of L. This is just the result of [DF1].
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