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ON INTERMEDIATE JACOBIANS OF CUBIC THREEFOLDS ADMITTING

AN AUTOMORPHISM OF ORDER FIVE

BERT VAN GEEMEN AND TAKUYA YAMAUCHI

Abstract. Let k be a field of characteristic zero containing a primitive fifth root of unity. Let
X/k be a smooth cubic threefold with an automorphism of order five, then we observe that
over a finite extension of the field actually the dihedral group D5 is a subgroup of Aut(X). We
find that the intermediate Jacobian J(X) of X is isogenous to the product of an elliptic curve

E and the self-product of an abelian surface B with real multiplication by Q(
√
5). We give

explicit models of some algebraic curves related to the construction of J(X) as a Prym variety.
This includes a two parameter family of curves of genus 2 whose Jacobians are isogenous to the
abelian surfaces above.

Introduction

Let k be a field of characteristic zero that contains a primitive fifth root of unity ζ := ζ5.
Let X be a smooth cubic threefold in P4 with an automorphism of order five over k. There is a
two-dimensional family of such threefolds. From the explicit equations provided by the paper
[GL] we deduce that, over a finite extension of k, the dihedral group D5 acts on X . It is then
not hard to establish that the intermediate Jacobian J(X) of X , a principally polarized abelian
fivefold, is isogenous to the product of an elliptic curve E and the self-product of an abelian
surface B with Q(

√
5) ⊂ Endk(B)⊗Z Q.

To study the abelian varieties E and B in more detail, we use that J(X) is isomorphic to
the Prym variety of an etale double cover of curves. In fact, for a general line l on X , the
curve Hl which parametrizes the lines on X meeting l has a fixed point free involution ιl. We
found a line l such that the automorphisms of X in D5 induce automorphisms on the curve Hl,
commuting with the covering involution ιl. In this way we get an action of the group D5 on
the Prym variety which agrees with the action of D5 on J(X). Given X , we can then identify,
up to isogeny, the elliptic curve E with an explicit quotient of Hl. The abelian surface B is
isogenous to the Prym variety of certain explicit double cover of a genus two curve by a genus
four curve related to Hl. Finally we identify the isogeny class of B with the isogeny class of
the Jacobian of a certain explicit genus two curve.

Key words and phrases. cubic threefolds, intermediate Jacobian, elliptic curves, and abelian surfaces with
real multiplication.

The second author is partially supported by JSPS Grant-in-Aid for Scientific Research (C) No.15K04787.
1

http://arxiv.org/abs/1506.05346v1
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1. A standard model for X and decomposing J(X)

1.1. Outline. We start by finding a nice model for the cubic threefolds with an automorphism
of order five given in [GL]. We then observe that they also admit an involution and that
the dihedral group D5 acts on such cubic threefolds. We use the D5-action to decompose the
intermediate Jacobian in Proposition 1.5.

1.2. A standard model. Let k be a field, with char(k) = 0, which contains a primitive fifth
root of unity ζ = ζ5. From [GL, Thm 3.5] we know that a smooth cubic threefold X ⊂ P4 over
k that admits an automorphism αX over k of order five has an equation F = Fa:

Fa = a1x
3
0 + a2x0x1x4 + a3x0x2x3 + a4x

2
1x3 + a5x1x

2
2 + a6x2x

2
4 + a7x

2
3x4 = 0

where a = (a1, . . . , a7) ∈ k7 and the automorphism acts as

αX : (x0 : x1 : x2 : x3 : x4) 7−→ (x0 : ζx1 : ζ
2x2 : ζ

3x3 : ζ
4x4) .

We first study the condition on Fa to give a smooth cubic threefold in terms of the seven
parameters. For a ∈ k7, we define a homogeneous polynomial by

(1.1)
∆(a) := a42a

5
3a4a6 + 8a1a

2
2a

4
3a

2
4a

2
6 + 16a21a

3
3a

3
4a

3
6 + a52a

4
3a5a7 + 15a1a

3
2a

3
3a4a5a6a7+

12a21a2a
2
3a

2
4a5a

2
6a7 + 8a1a

4
2a

2
3a

2
5a

2
7 + 12a21a

2
2a3a4a

2
5a6a

2
7 + 27a31a

2
4a

2
5a

2
6a

2
7+

16a21a
3
2a

3
5a

3
7.

Put

(1.2) D(a) = a1a4a5a6a7∆(a).

Put

P1 = (1 : 0 : 0 : 0 : 0), P4 = (0 : 1 : 0 : 0 : 0), P5 = (0 : 0 : 1 : 0 : 0) ,

P6 = (0 : 0 : 0 : 0 : 1), P7 = (0 : 0 : 0 : 1 : 0) .

Then we have

Lemma 1.1. The polynomial Fa defines a smooth cubic threefold if and only if D(a) 6= 0.

Proof. Assume ai = 0 for some i ∈ {1, 4, 5, 6, 7}, then it is easy to see that Pi ∈ X gives a
singular point. So we may assume that ai 6= 0 for any i ∈ {1, 4, 5, 6, 7}. Let I = JFa

be the
homogeneous ideal in k[x0, . . . , x4] generated by the partial derivatives ∂Fa/∂xj for j = 0, . . . , 4.
By using a Groebner Basis, one can show that

ani
∆(a)x6

i ∈ I, i = 0, . . . , 4,

where (n0, n1, n2, n3, n4) = (1, 4, 5, 7, 6). So if D(a) 6= 0, then the radical of I in k[x0, . . . , x4]
contains (x0, . . . , x4), hence V (I) = ∅. Therefore Fa defines to a smooth cubic threefold.

Conversely, assume that X is smooth. Let Ui be the open subset of P4 defined by xi 6= 0.
Then one can check that the ideal corresponding to V (I) ∩ Ui contains ani

∆(a) as the unique
constant (up to scalar). Hence ani

∆(a) should be non-zero for any i. This proves the lemma. �
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1.3. A standard form. From Lemma 1.1 we see that the coefficients a1, a4, a5, a6, a7 must all
be non-zero for a smooth cubic. Over an algebraically closed field one can make changes of
the coordinates which reveal that a smooth cubic threefold with an automorphism of order five
actually has D5 in its automorphism group.

Lemma 1.2. Let Xa be a smooth cubic threefold defined by Fa where a ∈ k7. Assume that
a2 6= 0 or a3 6= 0. Then there is a change of coordinates in P4

k̄
such that Xa is isomorphic to

Xa,b : Fa,b := xu2 + 2yuv + zv2 + 2z2u+ 2x2v + ay3 + bxyz = 0

for some a, b ∈ k̄. Moreover, Xa,b is smooth if and only if

(1.3) D(a, b) :=
1

64
D(a, b, 2, 2, 1, 2, 1) = a∆(a, b) 6= 0,

∆(a, b) := 512a2 + 27a3 + 48a2b+ 128ab2 + 6a2b2 + 30ab3 + a2b3 + 8b4 + 2ab4 + b5.

The threefold Xa,b has the following automorphisms, of order five and two respectively:

αX(x) := (ζ2u : ζ3v : ζx : y : ζ4z), ιX(x) := (v : u : z : y : x) ,

where x = (u : v : x : y : z). These automorphisms generate a dihedral subgroup D5 of order 10
in Aut(Xa,b).

Proof. In case a3 = 0, we observe that changing coordinates and coefficients as follows:

(x0, x1, x2, x3, x4) 7−→ (x0, x4, x3, x2, x1) ,

a = (a1, a2, a3, a4, a5, a6, a7) 7−→ a′ := (a1, a3, a2, a6, a4, a5, a7) ,

maps Fa to Fa′. Hence we may assume that a3 6= 0. Since Fa defines a smooth cubic, we can
introduce new coordinates as follows:

x0 := 2y/a3, x1 := x/a5, x4 := z/a7 .

Then the equation for Xa is:

xx2
2 + 2yx2x3 + zx2

3 + 2a′6z
2x2 + 2a′4x

2x3 + a′1y
3 + a′2xyz = 0

where (a′6, a
′
4, a

′
1, a

′
2) =

(
a6
2a27

,
a4
2a25

,
8a1
a33

,
2a2

a3a5a7

)
. Now observe that a′6 6= 0 by Lemma 1.1. We

substitute x2 := λu, x3 := λv with λ = a′6 and we divide by λ2 to get, with constants a′′i ,

xu2 + 2yuv + zv2 + 2z2u+ 2a′′4x
2v + a′′1y

3 + a′′2xyz = 0 ,

where (a′′4, a
′′
1, a

′′
2) =

(
a4a

2
7

a25a6
,
32a1a

4
7

a33a
2
6

,
8a2a

3
7

a3a5a26

)
. Observe that a′′4 6= 0 by Lemma 1.1 again. Let

µ ∈ k so that

(1.4) µ15 =
1

a′′4
.
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We substitute (x, y, z, u, v) 7→ (µ8x, µ5y, µ2z, µ−4u, µ−1v). Then we get the equation Fa,b = 0
as in the lemma with the parameters

(1.5) (a, b) =

(
32a1a

2
5a

2
7

a33a4a6
,
8a2a5a7
a3a4a6

)
.

By Lemma 1.1, Xa,b is smooth if and only if D(a, b) 6= 0.
To see that the automorphisms generate a D5 it suffices to observe that ιXαXι

−1
X = α−1

X . �

Remark 1.3. If a2 = a3 = 0 and Xa is smooth, then, by Lemma 1.1, ∆(a) = 27a31a
2
4a

2
5a

2
6a

2
7 6= 0.

By the similar argument as above we see that Xa is isomorphic over k to

X0 : x
3
0 + x2

1x3 + x1x
2
2 + x2x

2
4 + x2

3x4 = 0.

1.4. The intermediate Jacobian. In this subsection we assume k ⊂ C. Let X be a smooth
cubic threefold over k. By abuse of notation we denote again by X its base change to C. The
intermediate Jacobian of X is the five dimensional (principally polarized) abelian variety ([V1,
Definition 12.2])

J(X) := H3(X,C)/(F 2H3(X,C) +H3(X,Z)) = H1,2(X)/H3(X,Z) ,

where we used that H0,3(X) = 0.
To find an isogeny decomposition of the intermediate Jacobian J(X) we first consider the

action of αX .

Lemma 1.4. Let X = Xa be a smooth cubic threefold in Section 1.2 with automorphism αX .
Then the eigenvalues of α∗

X : H1,2(X) → H1,2(X) are ζk, k = 0, 1, 2, 3, 4, each with multiplicity
one.

Proof. Using Griffiths’ theory of residues one has a natural isomorphism ([V2, Corollary 6.12])
H1,2(X) ∼= R4

F , where R4
F = (S/JF )4 is the degree four part of the Jacobian ring, so S =

C[x0, . . . , x4] and JF is the ideal generated by the partial derivatives of F . The eigenvalues do
not depend on the choice of F , so we can take F = x3

0 + . . .+x3
4, the Fermat cubic, and for the

order five automorphism we take the cyclic permutation of the variables. Then R4
F has a basis

rj := x0 · · · x̂j · · ·x4, with j = 0, . . . , 4. Then α∗
Xrj = rj+1, where we put r5 := r0 and thus the

eigenvalues are as stated in the lemma. �

Proposition 1.5. The intermediate Jacobian J(X) is isogenous to the product:

J(X) ∼ E × B2 ,

where B is an abelian surface, moreover Q(
√
5) ⊂ Endk(B)⊗Z Q.

Proof. The kernel of the endomorphism α∗
5 − [1], where [n] denotes the multiplication by n

on J(X), has a connected component which is an elliptic curve since α∗
5 has the eigenvalue

1 with multiplicity one. A complementary abelian fourfold A can be defined as the image of
α∗
5 − [1], this fourfold has a automorphism of order five induced by α∗

5 and its eigenvalues on
T0A, the tangent space at the origin, are the ζ

j, j = 1, 2, 3, 4. So we must show that the abelian
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subvariety A ⊂ J(X) is isogenous to a selfproduct B. For this we use that ιX α̃Xι
−1
X = αX

−1,
which implies that ι∗X maps the eigenspace of α∗

X with eigenvalue ζj to the eigenspace with
eigenvalue ζ−1

j . In particular, ι∗X has two eigenvalues +1 and two eigenvalues −1 on T0A.
Hence the kernels B± of the endomorphisms ι∗X ± [1] of A are abelian surfaces, which are
isogenous, B+ ∼ B−, since α∗

X does not preserve them, so A ∼ B+ × B− ∼ B2
±.

The endomorphism α∗
X + (α−1

X )∗ of A commutes with ι∗X , hence it acts on the B±. As
α∗
X ∈ End(A) satisfies the equation x4 + x3 + x2 + x + 1 = 0 (this follows by considering the

action on T0A), it follows (divide by x2) that (x+ x−1)2 + (x+ x−1)− 1 = 0, thus α∗
X + (α−1

X )∗

generates a subfield Q(
√
5) ⊂ Endk(B±) ⊗Z Q. Hence if we put B := B+ the proposition

follows. �

1.5. An algebraic construction of J(X). We recall an algebraic construction of J(X) due to
Bombieri-Swinnerton-Dyer [BS], Murre [Mur], Altman-Kleiman [AK] (see also [AC-M]) which
is powerful as it works over any field of characteristic away from 2. However we restrict ourself
to the case of the characteristic zero.

Let k be a field as in Section 1. Let X be a smooth cubic threefold over k defined by a
cubic equation F and let S be the Hilbert scheme of lines of X , which is a smooth surface
over k. Then by the general theory of Fano threefolds (cf.[BS],[Ma]), the Grothendieck motive
M := h3(X) associated to X over k coincides with the motives h1(A)(L) over k associated
to the Albanese variety A of S where L stands for the Lefschetz motive. Note that A is also
defined over k. This A is nothing but an algebraic substitute of J(X). In fact, if k ⊂ C, then
AC is isogenous to J(X) by taking realizations of h3(X) = h1(A)(L):

AC ≃ H1(AC,C)/F
1H1(AC,C) +H1(A,Z) ∼ H3(X,C)/F 2H3(X,C) +H3(X,Z) = J(X).

We can not conclude that this map is an isomorphism since the equality h3(X) = h1(A)(L)
holds in the category of Grothendieck motives with the coefficients in Q.

By taking algebraic de Rham cohomology one has a functorial isomorphism

H3
dR(X) ≃ H1

dR(A)

between k-vector spaces. This isomorphism also preserves the Hodge filtrations of both sides.
We now describe the cohomology of the LHS. Notice that F 2H3

dR(X) ‘replaces’ H1,2(X) in
this section.

We denote by R = k[x0, . . . , x4] the polynomial ring over k with five variables and Rd

is the k-vector space of all homogeneous polynomial of degree d (∈ Z≥0). Consider U :=
P4 \X . Then U is an affine variety over k with coordinate ring Γ(U,OU), which consists of the
homogeneous elements of degree 0 in R[ 1

F
]. By excision for (X,U) (cf. Theorem (3.3), p.40

and Proposition (3.4), p.41 of [H]), there exists an isomorphism H3
dR(X) ≃ H4

dR(U) as k-vector
spaces. Furthermore, this isomorphism commutes with the action of Aut(X) ∩Aut(P4).
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Since U is affine, H4
dR(U) = Ker(d : Ω4

U −→ Ω5
U = 0)/Im(d : Ω3

U −→ Ω4
U). Furthermore right

hand side can be written as{AΩ
F i

∣∣∣ A ∈ R3i−5, i = 2, 3, · · ·
}/{

∂j

( A

F i

)
Ω
∣∣∣ j = 0, 1, 2, 3, 4, A ∈ R3i−4, i = 2, 3, · · ·

}
,

where Ω =
∑4

i=0(−1)ixidx0 ∧ · · · ∧ d̂xi ∧ · · · dx4. The subspace F 2H3
dR(X) corresponds to the

image of
{ AΩ

F i+1

∣∣∣ A ∈ R3i−2, i = 1, 2, · · ·
}

in H4
dR(U) and the

xiΩ

F 2
, i = 0, . . . , 4 give a basis of

F 2H3
dR(X).

We now assume that X admits an automorphism αX of order five and k contains ζ5. By
changing the coordinates if necessary, we may assume αX is the automorphism of P4 given at
the beginning of Section 1.2. Then it is easy to see that

vj =
xjΩ

F 2
, j = 0, 1, 2, 3, 4

are eigenvectors with eigenvalues ζj5 with respect to αX . By using this we can recover Proposi-
tion 1.5 for A:

Proposition 1.6. Let A be the abelian five-fold as above. Then A is isogenous over k to the
product of an elliptic curve E over k and the self-product of an abelian surface B over k so that
Q(

√
5) ⊂ Endk(B)⊗Z Q:

A
k∼ E × B2.

Proof. The proof is completely similar to Proposition 1.5 and is therefore omitted. �

Henceforth J(X) stands for the intermediate Jacobian for X in Section 1.4 if k ⊂ C and the
Albanese variety A associated to X in Section 1.5 otherwise. In both case we say that J(X) is
the intermediate Jacobian of X .

Proposition 1.7. The intermediate Jacobian of the smooth cubic threefold

X0 : x3
0 + x2

1x3 + x1x
2
2 + x2x

2
4 + x2

3x4 = 0

in Remark 1.3 is isogenous to the five-fold product of an elliptic curve:

J(X0)
k∼ E5

0 , E0 : y2 = x3 + 1 .

Proof. By Proposition 1.5 one has J(X0)
k∼ E0 ×B2

0 . Let ζ3 be a primitive third root of unity.
The action ζ3 : (x0 : x1 : x2 : x3 : x4) 7→ (ζ3x0 : x1 : x2 : x3 : x4) induces the multiplication by
ζ23 (resp. ζ3) on F 1H1

dR(E0,k) (resp. F 1H1
dR(B0,k)). Here we used the explicit basis of Section

1.5. This means that E0, B0 have complex multiplication by Q(
√
−3) and in particular E0 has

an affine model y2 = x3 + 1 over k (up to isogeny). It follows from Q(
√
5) ⊂ Endk(B) that

B has non-simple CM by Q(
√
5,
√
−3) (cf. [ST, p.40, Proposition 3, 4; p.73, Example 8.4(2)]).

Therefore we have that B0
k∼ E2 for some CM elliptic curve E. Recall the action of ζ3 on

F 1H1
dR(B0,k) = F 1H1

dR(Ek)
⊕2 is multiplication by ζ3. This shows that E

k∼ E0. �
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2. The curve Ha,b

2.1. Outline. We use the simple equation Fa,b = 0 for a smooth cubic threefold with an
automorphism of order five to find a line l in X that is invariant under the D5-action. We
explicitly construct the curve Hl that parametrizes the lines in X meeting l and its involution
ιl following [Mur]. The quotient Hl := Hl/ιl is a plane quintic curve and the associated Prym
variety Prym(Hl/Hl) is the intermediate Jacobian J(X) of X .

2.2. The conic bundle. Let Xa,b be a smooth cubic threefold as in Lemma 1.2. It has the
equation, in P4 with coordinates x, y, z, u, v,

Fa,b := l1u
2 + 2l2uv + l3v

2 + 2Q1u+ 2Q2v + C = 0 ,

which is of the same form as (16) in [Mur], with li, Qj, C homogeneous of degree 1, 2, 3 in x, y, z
respectively:

l1 = x, l2 = y, l3 = z, Q1 = z2, Q2 = x2, C = ay3 + bxyz .

As in [Mur, Section 1C] we define a line l ⊂ Xa,b:

l : x = y = z = 0 (⊂ Xa,b) .

Notice that l is invariant under the D5-action. (There is only one other line in Xa,b, defined by
u = v = y = 0, which is also D5-invariant.)

For a point T := (x : y : z) ∈ P2 we define a 2-plane LT in P4:

LT := span(l, T ); p = (xt : yt : zt : u : v) (∈ LT )

provides a parametrization of this 2-plane with coordinates (t : u : v) and l is defined by t = 0
in LT . The intersection of LT with X is the union of the line l and a conic KT ([Mur, (24)]):

KT : xu2 + 2yuv + zv2 + 2z2tu+ 2x2tv + t2(ay3 + bxyz) = 0.

The conic KT degenerates if the point T is on the quintic curve Ha,b ⊂ P2 defined by

det




x y z2

y z x2

z2 x2 ay3 + bxyz


 = x5 − (b+ 2)x2yz2 − (a− b)xy3z + ay5 + z5 = 0.

The automorphisms αX , ιX of Xa,b induce the automorphisms of order five and two respectively
on Ha,b:

α5, ι : Ha,b −→ Ha,b, α5((x : y : z)) = (ζx : y : ζ−1z), ι((x : y : z)) = (z : y : x) .

These automorphisms generate of subgroup isomorphic to the dihedral group D5 of order ten
in Aut(Ha,b). Similar to the proof of Lemma 1.1, we found that the curve Ha,b is smooth (and
thus has genus 6) if and only if D1(a, b) 6= 0 where:

(2.1) D1(a, b) := (−1 + a+ b)D(a, b).
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2.3. Remark. Notice that the point T = (1 : 1 : 1) lies on the quintic curve Ha,b for all a, b.
The conic KT is defined by u2 + 2uv + 2ut+ v2 + 2vt+ (a+ b)t2 = 0 which, after substituting
u := w− v− t, becomes w2+(a+ b− 1)t2 = 0. Hence KT is a double line in case a+ b− 1 = 0,
which is the reason it appears in D1(a, b) in equation (2.1).

2.4. Remark. If we work over Q and take a = b = −2 then Ha,b is the (twisted) Fermat
quintic curve. It has good reduction outside 5 and 2, matching with D1(−2,−2) = 54 · 24. It is
interesting to study the difference of the arithmetic conductor (that is 22 · 52) of the curve Ha,b

and our discriminant D1(a, b).

2.5. The double cover. If the quintic curve Ha,b that parametrizes the degenerate conics
is smooth, it has an etale double cover Ha,b = H(l)a,b that parametrizes the two irreducible
components of the degenerate conic (see [Mur, 1.24]).

Proposition 2.1. If the curve Ha,b is smooth (so D1(a, b) 6= 0), then the double cover

πl : Ha,b −→ Ha,b

is etale and Ha,b has genus 11. The intermediate Jacobian J(X) of X is isomorphic (as prin-
cipally polarized abelian variety) to the Prym variety Pa,b = Pa,b(l) of this double cover:

J(X) ∼= Pa,b = Prym(Ha,b/Ha,b) .

Moreover, the double cover πl corresponds to the quadratic extension

k(Ha,b) = k(Ha,b)(w), w2 = 1− xz/y2 ,

of the function field of Ha,b.

Proof. See [Mur], we follow it closely in order to obtain the explicit expressions.
For a point T ∈ Ha,b, the conic KT has two irreducible components that are lines. For

general T the points of intersection of these two lines with l will be distinct. The etale double
cover Ha,b → Ha,b is thus defined by the degree two extension of the function field of Ha,b

which corresponds to the square root of discriminant of the quadratric polynomial obtained by
intersecting KT with l.

The line l is defined by t = 0, hence KT ∩ l is defined by xu2 + 2yuv + zv2 = 0 and this
homogeneous quadratic polynomial in the coordinates u, v on l has discriminant ∆ = y2 − xz.
Notice that ∆ = 0 defines a conic in the plane of Ha,b and that the intersection of ∆ = 0 with
Ha,b consists of points with z 6= 0, putting z = 1 we find these points by substituting x = y2

into the equation for Ha,b:

(y2)5 − (b+ 2)(y2)2y − (a− b)y2y3 + ay5 + 1 = y10 − 2y5 + 1 = (y5 − 1)2 .

Thus the conic ∆ = 0 is tangent to Ha,b in all five intersection points, as it should be for
the double cover it defines to be etale. A singular model of H ⊂ P3 can be obtained simply
by taking the inverse image of Ha,b in the quadric surface defined by w2 = y2 − xz (where
(x : y : z : w) are the homogeneous coordinates on P3). That is, the singular model is a
complete intersection of bidegree (5, 2) in P3.
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The function field of Ha,b is generated by the rational functions x/y, z/y and as we observed,
the function field of Ha,b is generated by the square root of (y2 − xz)/y2 = 1− (xz/y2). �

2.6. Automorphisms of Ha,b. From the explicit construction of the curve Ha,b, in particular
the fact that the rational function 1 − xz/y2 ∈ k(Ha,b) is invariant under the automorphisms
α5, ι of Ha,b, we see that the automorphism αX , ιX of the threefold Xa,b induce automorphisms
α̃5, ι̃ on Ha,b which generate a D5 ⊂ Aut(Ha,b). The covering involution of the double cover
Ha,b → Ha,b will be denoted by ιl (∈ Aut(Ha,b)).

The action of these automorphisms on the rational functions x/y, z/y, w ∈ k(Ha,b) is

ιl : ( x/y, z/y, w) 7−→ ( x/y, z/y, −w),

α̃5 : ( x/y, z/y, w) 7−→ ( ζx/y, ζ−1z/y, w),

ι̃ : ( x/y, z/y, w) 7−→ ( z/y, x/y, w) .

Notice that ιl commutes with both α̃ and ι̃, hence α̃ and ι̃ induce automorphisms of the Prym
variety Prym(Ha,b/Ha,b).

Since the line l is fixed by ιX , this involution on Xa,b induces an involution on the curve Ha,b

which parametrizes lines in Xa,b meeting l. The following lemma identifies this involution.

Lemma 2.2. The involution ιX on the threefold Xa,b induces the involution ι̃ on Ha,b.
The quotient curves Ha,b/ι̃ and Ha,b/ι̃ιl have genus 4 and 6 respectively.

Proof. The involution ιX induces ι on Ha,b with ι(x : y : z) = (z : y : z). As Ha,b is defined
by the quadratic equation w2 = 1 − xz/y2, and ιl changes only the sign of w, we must have
that ιX induces either ι̃ or ι̃ιl on Ha,b. To find out which, we consider the fixed points of these
involutions on Ha,b.

The fixed points of ι̃ and ι̃ιl map under πl to the fixed points of ι on Ha,b. These are the
point (1 : 0 : −1) and the five points of intersection of Ha,b with the line x = z, one of which is
(1 : 1 : 1). In the other four points, the function 1− xz/y2 has a non-zero value and thus the 8

points on H̃a,b mapping to them are fixed points of ι̃, and thus none of these points is a fixed
point of ι̃ιl.

It is not hard to check that the corresponding 4 pairs of lines on Xa,b are interchanged by
ιX , hence ιX induces ι̃ on Ha,b.

The fixed points of ι̃ on Ha,b are thus among the four points which map to (1 : 0 : −1) and
(1 : 1 : 1) and they correspond to the lines meeting l which are fixed by ιX . For T = (1 : 0 : −1)
these lines form the conic KT which is (u− v + 2t)(u+ v) = 0. The line on Xa,b corresponding
to u + v = 0 is the line parametrized by (u : v : x : y : z) = (s : −s : t : 0 : −t), and this
line is mapped into itself by ιX . Thus both of the points on Ha,b mapping to T are fixed under
ι̃. Similarly, for (1 : 1 : 1) ∈ Ha,b, the two corresponding lines on Xa,b are parametrized by
(u : v : x : y : z) = (s+ ct : −s+ ct : t : t : t), with 4c2 +4c+ a+ b = 0, and thus both are fixed
by ιX . Therefore ι̃ has 4 fixed points and ι̃ιl has 8 fixed points on Ha,b.

The genera of the quotient curves now follow from the Hurwitz formula. �
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3. Quotients of Ha,b

3.1. Outline. In this section we determine the isogeny classes of the factors Ea,b and Ba,b of
J(Xa,b) explicitly. Throughout this section we assume that Xa,b is smooth, hence D(a, b) 6= 0.

3.2. Quotient maps of degree five. We determine the quotient curves Ha,b and Ha,b of Ha,b

andHa,b by the automorphisms of order five. In Proposition 3.1 we will show that these quotient
curves have genus two and three respectively, thus these quotient maps are etale. Moreover, the
Prym variety of the double cover Ha,b → Ha,b is thus an elliptic curve E ′

a,b which we determine

explicitly, it is in fact a quotient of Ha,b. All these curves and quotient maps fit in the following
diagram:

Ha,b
5:1−−−→ Ha,b := Ha,b/α̃5

2:1−−−→ E ′
a,b

2:1

y 2:1

y

Ha,b
5:1−−−→ Ha,b := Ha,b/α5

Proposition 3.1. The curves in the diagram above have defining equations:

Ha,b : r2 = f4(1− w2) ,

Ha,b : s2 = (t− 1)f4(t) ,

E ′
a,b : r2 = f4(1− w) ,

where the degree four polynomial f4 is defined by:

f4(t) = t4 −
(b2
4
+ b
)
t3 −

(ab
2

+ a− b2

4

)
t2 −

(a2
4

− ab

4

)
t +

a2

4
.

A Weierstrass model for E ′
a,b and the maps between the curves are given in the proof.

Proof. We introduce rational functions s, t on Ha,b which are invariant under the automorphism
α5 : (x : y : z) 7→ (ζ5x : y : ζ−1

5 z) of order five:

s := (x/y)5, t := xz/y2, then t5/s = (z/y)5 .

Now we divide the defining polynomial for Ha,b by y5 and rewrite it with these invariant
functions:

(x/y)5 − (b+ 2)(xz/y2)2 − (a− b)xz/y2 + a+ (z/y)5 = s− (b+ 2)t2 − (a− b)t + a+ t5/s ,

Multiplying by s we obtain a polynomial of degree two in s:

s2 −
(
(b+ 2)t2 + (a− b)t− a

)
s + t5 = 0,

which defines a genus two curve Ha,b which is thus the quotient of Ha,b by α5.
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Notice that Ha,b is a double cover of P1, with coordinate t, branched in the six points
where the discriminant is zero. It is also easy to find the Weierstrass form by substituting
s := s+

(
(b+ 2)t2 + (a− b)t− a

)
/2, one finds Ha,b: s

2 = (t− 1)f4(t), with f4 as above.
The function 1− xz/y2 ∈ k(Ha,b), whose square root w defines Ha,b, can be written as

(3.1) w2 = 1 − xz/y2 = 1 − t so t = 1− w2

and substituting this in the Weierstrass equation of Ha,b and defining r := s/w we get the
Weierstrass equation for the double cover Ha,b of Ha,b:

Ha,b : r2 = f4(1− w2) .

In particular, Ha,b is hyperelliptic of genus three and thus the map Ha,b → Ha,b is an etale
double cover. The Prym variety of this double cover can be determined as in [Mum]. The
discriminant of Ha,b is given by

2−8(1− a− b)a10∆(a, b).

This curve has a subgroup isomorphic to (Z/2Z)2 ⊂ Aut(Ha,b); there is the hyperelliptic
involution (s′, w) 7→ (−s′, w), the covering involution (s′, w) 7→ (−s′,−w) and their product is
the involution (s′, w) 7→ (s′,−w) with quotient a genus one curve

Ca,b : s′2 = f4(1− w) .

By Proposition 1.2.1 of [Cor], one has the following cubic Weierstrass model which is a smooth
birational model of Ca,b:

(3.2)
E ′′

a,b : y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6 ,

(x, y) =
(2s′ + ( b

2

4
+ b− 4)w + 2

w2
,
4s′ + 4a2w

2 + ( b
2

2
+ 2b− 8)w + 4

w3

)
,

with

a1 =
b2

4
+ b− 4, a3 =

(a+ b)2

2
+ 4a + 6b− 8, a2 = 2− a− ab

2
− b4

64
− b3

8
− b2

4
− b,

a4 = 4(a+ b− 1), a6 = (a + b− 1)(8− 4a− 2ab− b4

16
− b3

2
− b2 − 4b).

The discriminant and the j-invariant of E ′′
a,b are given by −2−4a5∆(a, b) and

j(E ′′
a,b) = −16(64a2 + 4a2b+ 16ab2 + a2b2 + 2ab3 + b4)3

a5∆(a, b)

respectively. Notice that the factor (a + b − 1) disappears. This elliptic curve is actually the
Prym variety Prym(Ha,b/Ha,b). �

Proposition 3.2. If the threefold Xa,b is smooth, the elliptic curve E ′′
a,b is isogenous to the

elliptic factor Ea,b of J(Xa,b) which we found in Proposition 1.5 (and also in Proposition 1.6).
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Proof. In case Ha,b is smooth, it follows from the diagram in Section 3.2 that E ′′
a,b is isogenous

to an abelian subvariety of J(X) = Prym(Ha,b/Ha,b) and that the tangent space in 0 to this
subvariety is the eigenspace of α̃∗

5 acting on T0J(X) with eigenvalue 1. Thus E ′′
a,b is isogenous

to Ea,b if (1− a− b)D(a, b) 6= 0.
What is left is the case 1 − a − b = 0 and D(a, b) = a∆(a, b) 6= 0. Let S be the affine open

subscheme of A2
a,b defined by D(a, b) 6= 0. Let P0 = (a0, b0) be a (geometric) point of S with

1 − a0 − b0 = 0. Take a line Z on S passing P0 but different from the line 1 − a − b = 0. Let
R be the localization of OZ at P0 and Q(R) its field of fractions. We view E ′′

a,b, Ea,b as smooth
families over Z. Let us consider their base change to SpecR and take the Néron models E ′

a,b,
Ea,b over SpecR respectively. What we have shown above is that HomQ(R)(E

′
a,b, Ea,b) 6= 0. As

HomQ(R)(E
′
a,b, Ea,b) = HomR(E ′

a,b, Ea,b) (cf. p.12, Definition 1 and p.16, Corollary 2 of [BLR])
and the specialization map

HomR(E ′
a,b, Ea,b) −→ Homk(E ′

a0,b0
, Ea0,b0)

is injective (cf. [L, p.45, Theorem 3.2]), we find that E ′′
a0,b0

= E ′
a0,b0

and Ea0,b0 = Ea0,b0 are
isogenous. Hence we conclude that E ′′

a,b is isogenous to Ea,b whenever Xa,b is smooth. �

3.3. Quotient maps of degree two. In the previous section we studied quotients of the curve
Ha,b by the automorphism of order five. This curve also has the involution ι̃ (cf. Section 2.6)
which is a lift of the involution ι on Ha,b. Thus we have a commutative diagram:

Ha,b
2:1−−−→ Da,b := Ha,b/ι̃

2:1

y 2:1

y

Ha,b
2:1−−−→ Da,b := Ha,b/ι .

Proposition 3.3. The curves Da,b and Da,b have genus four and two respectively.
The quotient curve Da,b = Ha,b/ι̃ has a (singular) projective model in P2 defined by

(3.3) (T1−2T2)(T
2
1 +T1T2−T 2

2 )
2 + ((a+b+4)T 3

2 −10T1T
2
2 +5T 3

1 )w
2 + ((−2−b)T2+5T1)w

4 = 0.

The genus two curve Da,b = Ha,b/ι̃ has the Weierstrass model

(3.4) Da,b : v22 = 5T 6
1 + (4b+ 8)T 5

1 + 10(a− b)T 3
1 − 20aT1 + (a+ b)2 + 8a.

The discriminant of Da,b is

21255(a+ b− 1)4∆(a, b).

Proof. The genus of the quotient curves is given in Lemma 2.2. We introduce the following
ι̃-invariant rational functions on Ha,b:

T1 := x+ y, T2 := xz = y2(1− w2) ,

where w is as in equation (3.1). If we dehomogenize by putting y = 1, we get a rational map
from Ha,b to the singular quintic in the proposition. Since this quintic curve has two nodes in
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the points w = T 2
1 + T1 − 1 = 0, its genus is (5−1)(5−2)

2
− 2 = 4 and thus it is birational to the

quotient curve Da,b.
The covering involution Ha,b → Ha,b induces the involution τ : (T1, w) −→ (T1,−w) on the

curve Da,b. The fixed points of τ in the singular model are (0 : 0 : 1) and (2 : 1 : 0) (in fact,
the nodes are also fixed points, but as the two tangent lines in each node are interchanged,
there are no fixed points on the smooth model mapping to the nodes). Thus the genus of the
quotient curve will be equal to two.

If we put v := w2, the quotient curve Da,b := Da,b/τ is given by

(T1 − 2)(T 2
1 + T1 − 1)2 + (a+ b+ 4− 10T1 + 5T 3

1 )v + (−2 − b+ 5T1)v
2 = 0.

To find a Weierstrass model of this genus two curve, we replace v with
v1

2 + b− 5T1
and next

replace v1 by
v2
2
+
1

2
(a+b+4−10T1+5T 3

1 ) and we find the equation given in the proposition. �

Proposition 3.4. In the decomposition of the intermediate Jacobian J(Xa,b),

J(Xa,b)
k∼ Ea,b × B2

a,b

(see Proposition 1.5), the abelian surface Ba,b is isogenous to the (two-dimensional) Prym
variety of the double cover Da,b → Da,b,

Ba,b ∼ Prym(Da,b/Da,b) .

Proof. From the diagram in Section 3.3 it follows that Prym(Da,b/Da,b) is isogenous to an
abelian subvariety of J(Xa,b) ∼= Prym(Ha,b/Ha,b), and from the proof of Proposition 1.5 one
finds that it must be isogenous to Ba,b. �

3.4. The Jacobian of a genus two curve. We now try to find the Jacobian of a genus two
curve which is isogenous to the abelian surface Ba,b. To do this we first consider, for general
a, b, the normalization of the 4 : 1 cover

Da,b −→ Da,b −→ P1, (T1, w) 7−→ (T1, v2) 7−→ T1

where we put T2 = 1. So we view k(Da,b) = k(T1, w) as a quartic extension of k(T1) and we
consider its Galois closure.

Proposition 3.5. Assume that the map Da,b −→ P1 is not a Galois cover, and let D̃a,b −→ P1

be its (Galois) normalization. Then the double cover D̃a,b −→ Da,b is defined by the function
field extension

k(D̃a,b) = k(Da,b)(t), t2 =
T1 − 2

5T1 − b− 2
,

where k(Da,b) is the function field of Da,b.
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Proof. The equation of Da,b can be written as pw4 + qw2 + r, with p, q, r polynomials in T1.
So T1, w ∈ k(Da,b), and w is a root of the irreducible polynomial pX4 + qX2 + r ∈ k(T1)[X ].
Another root is obviously −w, and in k(T1, w)[X ] = k(Da,b)[X ] one finds the factorization:

pX4 + qX2 + r = p(X2 − w2)(X2 − s) , s =
r

pw2
=

(T1 − 2)(T 2
1 + T1 − 1)2

(5T1 − b− 2)w2
.

Thus in general we need to adjoint the square root of s, or equivalently t as in the proposition,
to obtain a Galois extension. �

3.5. The Galois group. For a, b such that the 4:1 map Da,b → P1 is not Galois (this would

imply b 6= 8), the Galois cover D̃a,b → P1 has group Gal(k(D̃a,b)/k(T1)) ∼= D4, the dihedral
group of order eight. Since the roots of the polynomial pX4 + qX2 + r are ±w and ±w1 =
±t(T 2

1 +T1−1)/w, this Galois group is generated by σ, which acts on the roots w,w1 as w1,−w

and the involution τ on D̃a,b, which sends t 7→ −t and thus maps w,w1 to w,−w1.
In the following proposition we establish and use the following diagram, where each arrow is

a double cover:

D̃a,b

ւ ց
Da,b Ca,b := D̃a,b/στ
↓ ↓

Da,b C0 := D̃a,b/〈στ, σ2〉 ∼= P1

ց ւ
P1

Proposition 3.6. Assume that the 4:1 map Da,b → P1 is not Galois. Then the abelian surface
Ba,b in J(Xa,b), which is isogenous to Prym(Da,b/Da,b), is also isogenous to the Jacobian of

the genus two curve Ca,b := D̃a,b/στ . More precisely, Prym(Da,b/Da,b) is isomorphic, as a
principally polarized abelian variety, to Jac(Ca,b).

The curve Ca,b is defined by the Weierstrass equation

(3.5) Ca,b : s2 = −(b− 8)f6(t), f6(t) :=
6∑

i=0

bit
i, with

b0 = −(a + b+ 24),
b1 = 10(b− 8),
b2 = 5(3a+ 13b− 8),
b3 = −10(b− 8)(b+ 2),
b4 = −5(15a+ 6b2 + 19b− 56),
b5 = 2(b− 8)(b2 + 9b− 11),
b6 = 5(25a+ b3 + 6b2 − 13b+ 8) .
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The discriminant of the curve Ca,b is given by

2655(b− 8)22∆(a, b)2 .

Proof. The involutions στ and σ2 act as (w,w1) 7→ (w1, w) and (w,w1) 7→ (−w1,−w) re-
spectively. In particular, both fix t = ww1/(T

2
1 + T1 − 1). Thus the function field of

C0 := D̃a,b/〈στ, σ2〉, which is a quadratic extension of k(T1), is the field k(t) and hence C0
∼= P1.

The function field of Ca,b := D̃a,b/στ is the extension of k(T1) generated by w+w1 and ww1

and is a quadratic extension of k(t). From the factorization

pX4 + qX2 + r = p(X − w)(X + w)(X − w1)(X + w1)
= p(X2 − (w + w1)X + ww1)(X

2 + (w + w1)X + ww1)

we find that q/p = 2ww1 − (w + w1)
2 and r/p = (ww1)

2. Therefore

(w + w1)
2 = 2ww1 − q/p = 2t(T 2

1 + T1 − 1) − (5T 3
1 − 10T1 + (a+ b+ 4))/(5T1 − (b+ 2)) .

From the definition of t we also have T1 = ((b+ 2)t2 − 2)/(5t2 − 1), thus we can write (w+w1)
2

as a rational function in t. Defining s := (b− 8)(5t2 − 1)(w + w1) clears the denominator and
we obtain the equation for Ca,b as in the proposition.

For such a diagram defined by a D4-cover, a general result of Pantazis [P, Proposition 3.1]
asserts that Prym(Da,b/Da,b) and Prym(Ca,b/C0) = Jac(Ca,b) are dual abelian varieties. As
Jac(Ca,b) is principally polarized, it is self dual, and the proposition is proved. �

3.6. The case b = 8. In this case, the extension k(Da,b)/k(T1) is already normal, see Proposi-
tion 3.5. The affine model

Da,8 : (T1 − 2)(T 2
1 + T1 − 1)2 + (a+ 12− 10T1 + 5T 3

1 )w
2 + 5(T1 − 2)w4 = 0

admits the following two new involutions

ι±8 : (T1, w) 7−→
(
T1, ±

T 2
1 + T1 − 1√

5w

)
.

Put

(X, Y ) =
( −1

T1 − 2
,

1

T1 − 2
(
√
5w ± T 2

1 + T1 − 1

w
)
)
.

The quotient curves C±
a = Da,8/ι

±
8 are elliptic curves with the following affine models:

C±
a : Y 2 = (a+ 32)X3 + 10(−5±

√
5)X2 − 10(−3±

√
5)X − 5± 2

√
5

with the discriminants −5(2∓
√
5)2(a+32)(27a+64) and the j-invariants (independent of the

choice of sign):

j(C±
a ) =

214 · 52(3a− 4)3

(a+ 32)3(27a+ 64)
.
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Since we have assumed that k contains ζ5, it is easy to see that the curves C±
a are isomorphic

over k(
√
−1) to the elliptic curve with the following affine model

Ca : 5y
2 = 5(a+ 32)x3 − 100x2 + 20x− 1, (x, y) =

(
5±

√
5

10
X,

√
5± 2

√
5

5
Y

)
,

where
√

5 + 2
√
5 =

√
−1(1 + 2ζ3 + 2ζ4) and

√
5− 2

√
5 = −

√
−1(1 + 2ζ + 2ζ3). Note that

D(a, 8) = a(a + 32)2(27a+ 64). Hence Ca ≃ C±
a is smooth provided if Xa,8 is smooth.

Proposition 3.7. Keep the notation as above. Assume that b = 8. Then

Ba,8
k∼ C+

a × C−
a

k(
√
−1)≃ C2

a .

Proof. We denote by π : Da,8 −→ Da,8 = Da,8/τ the quotient map and π±
a : Da,8 −→ C±

a as
well. Then it is easy to see that (π±

a )∗ ◦π∗ = 0 and (π−
a )∗ ◦ (π+

a )
∗ = 0 on Jacobians respectively.

The claim follows from this. �

Summing up, we have proved the following:

Proposition 3.8. Assume that Xa,b is smooth. If the map Da,b → P1 is not Galois (hence
b 6= 8), then

J(Xa,b)
k∼ Ea,b × Jac(Ca,b)

2.

In case b = 8, this map is Galois, and moreover

J(Xa,8)
k∼ Ea,8 × (C+

a )
2 × (C−

a )
2 k(

√
−1)≃ Ea,8 × C4

a .

3.7. Moduli. The moduli space of principally polarized abelian surfaces with real multiplica-
tion by Z[(1 +

√
5)/2] was studied in [Wil]. A general such abelian surface is the Jacobian of a

genus two curve and this curve is determined by six points on P1. In [Wil, Section 5] one finds
that these six points satisfy the equation (for m = 6)

Hm(z) := 12z4m − 4τ2(z)z
2
m + τ 22 (z) − 4τ4(z) = 0

where τk(z) =
∑

zkj and z1, . . . , zj are certain (explicit) functions in the coordinates of the six

points. These zj satisfy
∑

zj = 0 and
∑

z3j = 0, so z = (z1 : . . . : z6) is a point of the Segre

cubic threefold, and permuting the points on P1 permutes the zj . Moreover, [Wil, p.133] gives
explicit expressions of the Igusa invariants I2(z), I4(z), I6(z), I10(z) of the genus two curve in
terms of z.

We computed the Igusa invariants Ik(Ca,b) of the curve Ca,b with Magma [M]. We checked
that there is a (weighted) homogeneous polynomial P of degree 24 in the Igusa invariants, with
16 terms,

P := I42I
4
4 − 12I32I

3
4I6 − 972I32I

2
4I10 − . . . − 15116544I4I

2
10 + 81I46 ,

such that P (Ca,b) = 0 for all a, b. Next we parametrized the Segre threefold by taking six
general points, (1 : x1), (1 : x2), (1 : x3), (1 : 1), (1 : 0), (0 : 1), in P1, and we computed the
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functions z1, . . . , z6 as well as the Igusa invariants Ik(z) explicitly. Substituting the Ik(z) in P
and factorizing the result, we found that

P (z) = 2−2836H1(z)H2(z)H3(z)H4(z)H5(z)H6(z) .

Thus indeed Q(
√
5) ⊂ Endk(J(Ca,b)) ⊗Z Q, as we already know from our construction. The

more precise result that Z[1+
√
5

2
] ⊂ Endk(J(Ca,b)) follows as well.
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