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Abstract

Recent papers by Markman and O’Grady give, besides their main results on the Hodge
onjecture and on hyperkähler varieties, surprising and explicit descriptions of families of abelian
ourfolds of Weil type with trivial discriminant. They also provide a new perspective on the well-
nown fact that these abelian varieties are Kuga Satake varieties for certain weight two Hodge
tructures of rank six.

In this paper we give a pedestrian introduction to these results. The spinor map, which is
efined using a half-spin representation of SO(8), is used intensively. For simplicity, we use

basic representation theory and we avoid the use of triality.
© 2023 Elsevier GmbH. All rights reserved.
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Introduction

The recent papers [12,15] by Markman and O’Grady provide new descriptions of
amilies of abelian fourfolds of Weil type. Markman uses these to prove that certain
odge classes on these fourfolds are algebraic. Both show that these abelian varieties are

sogeneous to the intermediate Jacobians of algebraic hyperkähler varieties of Kummer
ype. O’Grady further relates this to the Kuga Satake construction for the (primitive)
econd cohomology group of algebraic Kummer type varieties. See also [20] for further
evelopments.

An abelian fourfold of Weil type has an imaginary quadratic field K = Q(
√

−d)
n its endomorphism algebra. Markman obtains the polarization on the abelian fourfold,
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an alternating form on H1, from a symmetric(!) form on H1 and the K -action. These
fourfolds define two subspaces of the complexification of their first homology group H1,
a free Z-module of rank 8. The first one is the +i-eigenspace of the complex structure on
H1 ⊗R defined by A. The second is one of the two eigenspaces of the K -action. These
two subspaces turn out to be maximally isotropic subspaces for the symmetric form that
determines the polarization.

In this paper we will mainly follow Markman’s approach. He considers a free, rank
8, Z-module V equipped with a symmetric bilinear form. This V will become the first
cohomology group of the fourfolds of Weil type. The maximally isotropic subspaces of
the complexification VC of V are well-known to be parametrized by two copies of a
Legendrian Grassmannian, a complex manifold of dimension six. The spinor map is a
natural embedding of this Grassmannian in P7, the image is a quadric hypersurface Q+.
This map already made several appearances in algebraic geometry, for example in the
study of vector bundles over hyperelliptic curves in [16], of K3 surfaces in [13], of secant
varieties in [11] and of integrable systems [1].

The spinor map is best constructed using the representation theory of Spin(V ), a
double cover of the orthogonal group SO(V ) defined by the bilinear form on V . The
spin group has a half-spin representation whose projectivization is P7. The spinor map
s equivariant for the action of Spin(V ). A natural integral structure on the half-spin
epresentation allows one to identify it with the complexification of a free Z module S+

f rank 8. There is a non-degenerate bilinear form on S+ which defines the quadric Q+.
A six dimensional analytic open subset Ω ⊂ Q+ parametrizes complex structures

n VR that preserve the bilinear form on V . Fixing a general element s ∈ S+ and
onsidering only the complex structures on VR corresponding to ℓ ∈ Ω ∩ s⊥ produces a
ve dimensional family of complex tori Tℓ, not algebraic in general, that have a Hodge
lass, called the Cayley class,

cs ∈ H 2,2(Tℓ,Z) = H 4(Tℓ,Z) ∩ H 2,2(Tℓ).

he idea of using these tori and the associated action of Spin(7) = Spin(s⊥) to study the
odge conjecture for fourfolds of Weil type is due to V. Muñoz [14]. In Section 2.4 we
bserve that the existence of the Cayley classes can be deduced from a relation between
he spinor and the Plücker map. Using representation theory we then compute the class
s for certain s that are relevant for Markman’s results in Proposition 3.4.

Triality, an automorphism of order three of Spin(V ), allows one to relate the standard
epresentation of Spin(V ) (via SO(V ) on V ) and the two half-spin representations, one
f which is S+. While it is prominent in [12], we use instead an ‘ad hoc’ Lemma 2.6.
his lemma suffices to obtain the results on the Cayley class and for the Kuga Satake
arieties.

For any h ∈ S+ such that the sublattice ⟨h, s⟩ of S+ spanned by h and s has rank two
nd is positive definite, the tori parametrized by the four dimensional domain Ω ∩⟨h, s⟩⊥

urn out to be abelian fourfolds of Weil type. The imaginary quadratic field K depends on
h and s, but fixing s and choosing h suitably, any such field occurs. The polarization is
etermined by K and the bilinear form on V . A further discrete invariant, the discriminant
f a polarized abelian variety of Weil type, is always trivial for the fourfolds constructed
n this way. See Theorem 4.6 for these results of Markman and O’Grady.
Please cite this article as: B. van Geemen, Fourfolds of Weil type and the spinor map,
Expositiones Mathematicae (2023), https://doi.org/10.1016/j.exmath.2023.04.006.
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The Hodge conjecture for an abelian fourfold A of Weil type is non-trivial. There is a
natural 2-dimensional subspace WK ⊂ H 2,2(A,Q) of Hodge classes. It is not known in
general if this subspace is spanned by classes of algebraic cycles. If cs is algebraic, then
ll classes in WK are also algebraic. Markman makes important progress in the study of
he Hodge conjecture by showing that cs is algebraic for all abelian fourfolds appearing
n his construction, which are all fourfolds of Weil type with trivial discriminant. For
his he uses deformation theory of sheaves on hyperkähler manifolds, see Section 5 for
brief outline.
We limit ourselves to a basic exposition of the constructions of Markman and O’Grady

f the abelian fourfolds of Weil type with trivial discriminant and of the Cayley classes
f Muñoz and Markman. The relation with the Kuga Satake construction is indicated in
he last section.

. Tori with an orthogonal structure

.1. The lattice V

The complex tori we consider are all quotients of a fixed real vector space, with a
arying complex structure, by a fixed lattice. Whereas one might expect an alternating
orm, a polarization, on the first cohomology group to be important, Markman instead
xes a symmetric, non-degenerate, bilinear form (•, •)V on a rank eight free Z-module

V of signature (4+, 4−). He fixes a rank four free Z-module W , defines W ∗
:=

omZ(W,Z) and

V := W ⊕ W ∗,
(
(w1, w

∗

1), (w2, w
∗

2)
)

V := w∗

1(w2) + w∗

2(w1).

f e1, . . . , e4 is a Z-basis of W and ei+4 := e∗

i , where e∗

1, . . . , e∗

4 is the dual basis of W ∗

o that e∗

i (e j ) = δi j (Kronecker’s delta), then

(v1, v2)V :=

4∑
i=1

xi yi+4 + xi+4 yi ,
(
v1 :=

8∑
i=1

xi ei , v2 :=

8∑
i=1

yi ei ∈ V
)
,

ence (V, (•, •)V ) ∼= U⊕4, the direct sum of four copies of the hyperbolic plane U =

Z2,
(

0 1
1 0

))
.

In [12] and Section 5 one defines W := H 1(X,Z) for an abelian surface X , but for
he basic properties of the complex tori this is not needed.

.2. Complex structures on VR

Let VR := V ⊗Z R, it is an eight dimensional vector space over the real numbers. A
omplex structure on VR is a linear map J : VR → VR with J 2

= −I . Such a map has
wo (complex) eigenspaces Z+, Z− ⊂ VC := V ⊗Z C corresponding to the eigenvalues
, −i ∈ C of J . These eigenspaces are complex conjugate, Z+ = Z−, where the complex
onjugation on VC is defined as v ⊗ z = v ⊗ z̄ for v ∈ V and z ∈ C.

V = Z ⊕ Z = Z ⊕ Z , J = (i, −i) ∈ End(Z ) ⊕ End(Z ).
Please cite this article as: B. van Geemen, Fourfolds of Weil type and the spinor map,
Expositiones Mathematicae (2023), https://doi.org/10.1016/j.exmath.2023.04.006.
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Conversely, given two complex conjugate subspaces Z± ⊂ VC such that VC =

Z+ ⊕ Z− one can define a linear map J̃ : VC → VC by J̃ (v+ + v−) = iv+ − iv−.
hen there is a linear map J : VR → VR whose C-linear extension to VC is J̃ . In fact,

the inclusion VR ↪→ VC identifies VR with the (v+, v−) ∈ Z+⊕Z− with v+ = v−. Writing
∈ VR as v = v+ + v+, one has J̃v = iv+ − iv+ ∈ VR, so J is just the restriction of J̃

to VR.

.3. Orthogonal complex structures and isotropic subspaces

The R-bilinear extension of (•, •)V defines a bilinear form on VR, denoted by the same
symbol. We consider now the complex structures J that preserve this bilinear form, so
(Jv1, Jv2)V = (v1, v2)V for all v1, v2 ∈ VR. Equivalently, J ∈ SO(VR, (•, •)V ) and we
will call J an orthogonal complex structure. Notice that for such a complex structure J
and for eigenvectors v1+, v2,+ ∈ Z+ we have, for the C-bilinear extension of the bilinear
form,

(v1+, v2+)V = (Jv1+, Jv2+)V = (iv1+, iv2+)V = i2(v1+, v2+)V = −(v1+, v2+)V .

ence the restriction of (•, •)V to Z+ is identically zero. Thus Z+ is an isotropic subspace
f VC (and since dim Z+ = 4 = (1/2) dim VC it is a maximally isotropic, or Legendrian,
ubspace of VC). Similarly Z− is a maximally isotropic subspace of VC (and since the
ilinear form is non-degenerate it induces a duality Z+

∼= Z∗
−

).
One easily verifies that, conversely, an isotropic subspace Z+ ⊂ VC such that VC =

V+ ⊕ V+ defines a complex structure J on VR that preserves (•, •)V . We summarize this
n the following lemma.

.4. Lemma

There is a natural bijection between the following two sets:

• the orthogonal complex structures J ∈ SO(VR, (•, •)V ) on VR,
• the maximally isotropic subspaces Z of VC such that VC = Z ⊕ Z .

1. The Legendrian Grassmannian and the spinor map

1.1.

We introduce a connected component I G(4, VC)+ of the Grassmannian of maximally
isotropic subspaces of VC in Section 1.7. It is isomorphic to a smooth six dimensional
quadric Q+

⊂ PS+

C
∼= P7, where (S+, (•, •)S+ ) is a certain lattice of rank eight, see

Section 1.10. This isomorphism is induced by the spinor map, which is equivariant for the
action of the double cover Spin(V ) of SO(V ) on V and S+ respectively. In Section 1.12
we identify a complex submanifold Ω ⊂ Q+ that parametrizes the orthogonal complex
structures and we define complex tori Tℓ for ℓ ∈ Ω .

The spinor map was defined by Cartan [2] (see also [1]). The description given by
hevalley in [3] was used by Markman [11, Section 2]. We define the spinor map using

he representation theory of orthogonal groups as in [5, Chapter 20] (but our (v, w)V is
2Q(v, w) in [5]).
Please cite this article as: B. van Geemen, Fourfolds of Weil type and the spinor map,
Expositiones Mathematicae (2023), https://doi.org/10.1016/j.exmath.2023.04.006.
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Recall that VC is the complexification of V , a free Z-module of rank 2n with n = 4,
ut in this section we will consider any positive integer n. The bilinear form (•, •)V is
xtended C-bilinearly to VC and the complexifications of W, W ∗

⊂ V are denoted by
WC, W ∗

C. Whenever convenient we will also write C2n for VC and SO(2n) for SO(VC)
tc.

.2. The Clifford algebra of VC

The Clifford algebra C(VC) of the complex vector space VC, of dimension 2n, with
he bilinear form (•, •)V is the quotient of the tensor algebra

C(VC) := ⊕k≥0V ⊗k
C /⟨v ⊗ w + w ⊗ v − (v, w)V · 1 ⟩,

by the two sided ideal generated by the v ⊗ w + w ⊗ v − (v, w)V with v, w ∈ VC, or
quivalently, by the two sided ideal generated by the v ⊗ v − (1/2)(v, v)V for v ∈ V .

The Clifford algebra has dimension 22n . We identify VC with its image in C(VC). The
even Clifford algebra C(VC)+ is the image of ⊕k≥0V ⊗2k

C .
As in Section 0.1 we let

VC = WC ⊕ W ∗

C, WC := ⟨e1, . . . , en⟩, W ∗

C := ⟨en+1, . . . , e2n⟩,

with W ∗

C = Hom(WC,C) the dual of WC, where w∗(w) := (w, w∗)V for w ∈ WC, w∗
∈

W ∗

C.
Since WC, W ∗

C are isotropic one has vw = −wv ∈ C(VC) for all v, w ∈ WC and also
for all v, w ∈ W ∗

C. The subalgebras of C(VC) generated by WC, W ∗

C are isomorphic to
the exterior algebras ∧

•WC and ∧
•W ∗

C respectively.
Let e∗

:= en+1 · · · e2n ∈ C(VC) be the product of the elements in a basis of W ∗

C. Then
the left ideal SC := C(VC)e∗ of C(VC) is isomorphic, as a C vector space, to ∧

•WC,

σ : ∧
•WC

∼=
−→ SC := C(VC)e∗, w1 ∧ w2 ∧ · · · ∧ wr ↦−→ w1w2 . . . wr e∗,

[3, II.2.2], [5, Exercise 20.12]). Under this isomorphism, left multiplication by w ∈ WC
and w∗

∈ W ∗

C on SC correspond to the following endomorphisms of ∧
•WC:

wσ (η) = σ (Lwη), w∗σ (η) = σ (Dw∗η), (η ∈ ∧
•WC),

where Lw(η) := w ∧ η is left multiplication by w and Dw∗ is the derivation on ∧
•WC

defined by

Dw∗ (1) = 0, Dw∗ (w1∧· · ·∧wr ) =

r∑
i=1

(−1)i−1w∗(wi )(w1∧· · ·∧ŵi ∧· · ·∧wr ),

(here w∗(w) = (w, w∗)V for w ∈ W, w∗
∈ W ∗

C).
These operations of WC, W ∗

C on ∧
•WC define a C(VC)-module structure and σ is a

homomorphism of C(VC)-modules. It induces an isomorphism of C-algebras between the
even Clifford algebra and the direct sum of two matrix algebras (cf. [5, (20.13)])

C(VC)+ ∼= End(S+

C ) ⊕ End(S−

C ), S+

C := ∧
even WC, S−

C := ∧
odd WC.

± n−1
Please cite this article as: B. van Geemen, Fourfolds of Weil type and the spinor map,
Expositiones Mathematicae (2023), https://doi.org/10.1016/j.exmath.2023.04.006.
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1.3. The spin group of VC

The conjugation on C(VC) is the anti-involution given by

x := x1 · · · xr ↦−→ x∗
:= (−1)r xr · · · x1,

notice that it maps C(VC)+ into itself. The spin group of VC is

Spin(VC) := {x ∈ C(VC)+ : xx∗
= 1, xVCx∗

⊂ VC }.

Elements in Spin(VC) thus induce linear maps on VC and one has the following result.

1.4. Theorem

There is a surjective homomorphism of complex Lie groups

ρV : Spin(VC) −→ SO(VC), x ↦−→ [v ↦−→ xvx∗]

with kernel {±1}.

Proof. For a proof see [5, Thm 20.28]. □

1.5. The half-spin representations

Besides this ‘standard representation’ of Spin(VC) on VC, one also has the two half-
spin representations ρ+, ρ− of Spin(VC) on S+

C and S−

C respectively (vector spaces of
dimension 2n−1), given by left multiplication in C(VC):

ρ±
: Spin(VC) −→ GL(S±

C ), x ↦−→ [η ↦−→ xη].

See [5, Exercise 20.38] for the fact that for n ≡ 0 mod 4 the image of Spin(V ) lies
in SO(2n−1) (for a certain bilinear form β on S+

C ⊂ ∧
•WC also considered in [3, 3.2]).

The center of Spin(VC), dim VC > 2, is isomorphic to (Z/2Z)2 if n is even and is cyclic
f order four otherwise (cf. [5, Exercise 20.36]). For n even, n > 2, the three quotients

of Spin(VC) by the order two subgroups of the center are SO(VC) and the images of
Spin(VC) in the two half-spin representations.

.6. The Lie algebra spin(VC) = so(2n)

The Lie algebra spin(VC) of the subgroup Spin(VC) of the multiplicative group of
(VC)+ consists of the x ∈ C(VC)+ such that x + x∗

= 0 and xv − vx ∈ VC for all
∈ VC (cf. [3, p. 67–68]).
A basis of spin(VC) is given by the following n(n−1)/2+n(n−1)/2+n2

= n(2n−1)
elements:

ei e j , ei+ne j+n with 1 ≤ i ≤ j ≤ n; ei e j+n −
1
2 1, 1 ≤ i, j ≤ n.

o see that these elements are in spin(VC) (and to find their action on VC) one can use
hat for x, y, v ∈ VC one has

[xy, v] := xyv − vxy = x(−vy + (y, v) ) − (−xv + (x, v) )y = (y, v) x − (x, v) y.
Please cite this article as: B. van Geemen, Fourfolds of Weil type and the spinor map,
Expositiones Mathematicae (2023), https://doi.org/10.1016/j.exmath.2023.04.006.
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The Lie algebra spin(VC) is isomorphic to the Lie algebra so(2n) of the orthogonal
roup SO(VC) = SO(2n). This Lie algebra consists of the X ∈ End(VC) such that
Xv, w)V + (v, Xw)V = 0 for all v, w ∈ VC. One finds that

so(2n) =

{
X =

(
A B
C D

)
∈ End(VC) : A = −

t D, t B = −B, t C = −C

}
.

n isomorphism spin(VC) → so(2n) is given by the differential of ρV , so by the
epresentation of spin(VC) on VC given by x · v := xv − vx . Using the computation
f [xy, v] above and the notation Ei, j for the 2n × 2n elementary matrix whose only
on-zero coefficient is (Ei, j )i, j := 1, one verifies that this isomorphism is given by

spin(VC)
∼=

−→ so(2n),⎧⎨⎩ ei en+ j ↦−→ X i, j , X i, j := Ei, j − En+ j,n+i ,

ei e j ↦−→ Yi, j , Yi, j := Ei,n+ j − E j,n+i ,

ei+ne j+n ↦−→ Z i, j , Z i, j := En+i, j − En+ j,i .

We choose the Cartan subalgebra of so(2n) to be the diagonal matrices in so(2n) (as
n [5, Section 18.1]):

h := ⊕
n
i=1 CHi , Hi := Ei,i − En+i,n+i .

he dual h∗ of h then consists of the linear maps (weights)

h∗
:= ⊕

n
i=1CL i , L i

( n∑
j=1

t j H j
)

:= ti .

.7. The isotropic Grassmannian

The (complex) n-dimensional subspaces of VC are parametrized by the Grassmannian
G(n, VC), which has dimension n · (2n − n) = n2. The maximally isotropic subspaces
or (•, •)V (which are also those for the associated quadratic form) are parametrized by
wo (isomorphic, disjoint, connected) complex submanifolds of dimension n(n − 1)/2
f G(n, VC), denoted by I G(n, VC)+ and I G(n, VC)−. (See [6, Chapter 6] for linear
ubspaces of quadrics.) This generalizes the two rulings (families of lines) on a smooth
uadric Q ∼= P1

× P1 in P3. We denote by I G(n, VC)+ the connected component which
ontains the maximally isotropic subspace W ∗

C. A complex maximally isotropic subspace
Z defines a point [Z ] ∈ I G(n, VC)+ if and only if dim(Z ∩ W ∗

C) ≡ n mod 2. In case
= 4, the dimension of Z must be even and then also [WC] ∈ I G(4, VC)+.
We recall a local parametrization of I G(n, VC)+ by alternating n×n complex matrices.
basis of W ∗

C is given by the last n basis vectors of V . Thus W ∗

C is spanned by the
olumns of the 2n × n matrix (0

I ). Slightly deforming WC, we obtain another subspace
panned by the columns of a 2n × n matrix. Since det I = 1 ̸= 0 we may assume
hat the lower n × n submatrix is still invertible. Then we can find a basis of the same
ubspace given by the columns of a matrix (B

I ), the corresponding subspace will be
enoted by Z B . Thus we found a Zariski open subset G(n, VC)0 of G(n, VC) of dimension
2 parametrized by n × n complex matrices.

In general Z B will not be isotropic, but one easily verifies that

(•, •)V |Z B×Z B = 0 ⇐⇒
(

t B I
) (0 I

)(
B
)

= 0 ⇐⇒
t B + B = 0.
Please cite this article as: B. van Geemen, Fourfolds of Weil type and the spinor map,
Expositiones Mathematicae (2023), https://doi.org/10.1016/j.exmath.2023.04.006.
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Hence the vector space of alternating n×n matrices Altn provides us with a parametriza-
tion of a Zariski open subset of I G(n, VC)+ of dimension n(n − 1)/2 which we denote
by I G(n, VC)+0 :

Altn
∼=

−→ I G(n, VC)+0 ↪→ I G(n, VC)+, B ↦−→ [Z B] =

[(
B
I

)]
.

The isotropic subspace Z B is also the graph of the (alternating) map W ∗
→ W ,

w∗
↦→ Bw∗. Notice that W ∗

= Z0.
The isotropic Grassmannian I G(n, VC)+ = SO(VC)/P is a homogeneous space where

P = PW∗ is the stabilizer of W ∗ in the group SO(2n). The Lie algebra of P , which are
the X ∈ so(2n) with X W ∗

⊂ W ∗, consists of the X ∈ so(2n) with B = 0.

1.8. The spinor map

We recall that the Pfaffian of an alternating 2m × 2 m matrix A is the complex number
Pfaff(A) defined by the following identity in ∧

2mC2m :

Pfaff(A)e1 ∧ · · · ∧ e2m = m!ωm
A ,

(
ωA :=

∑
i< j

ai j ei ∧ e j
)
.

In the next theorem these Pfaffians appear as the coordinate functions of the spinor map
γ : I G(n, VC)+ → PS+

C that is moreover equivariant for the action of Spin(VC).

1.9. Theorem

Let ρ+
: Spin(VC) → GL(S+

C ) be the half-spin representation of Spin(VC) on
S+

C = ∧
even WC := ⊕k ∧

2k WC.

(1) In case n is even, the highest weight α of S+

C is (L1 + · · · + Ln)/2 and it is
(L1 + · · · + Ln−1 − Ln)/2 if n is odd.

(2) The one dimensional subspace

⟨1⟩ = ⟨∧
0WC⟩ ⊂ ∧

even WC

is invariant under the Lie algebra of P . Thus there is a Spin(VC) equivariant map

γ : I G(n, VC)+ −→ PS+

C , γ ([ρV (g̃)W ∗

C]) = ⟨ρ+(g̃)1⟩

for g̃ ∈ Spin(VC).
(3) For an alternating matrix B ∈ Mn(C), let

X B :=

(
0 B
0 0

)
∈ so(2n), g̃B := exp(X B) ∈ Spin(VC).

In the standard representation ρV : Spin(VC) → SO(2n) one has

ρV (g̃B) =

(
I B
0 I

)
(∈ SO(2n)) and ρV (g̃B)Z0 = Z B .

In the half-spin representation on S+ the action of g̃B is given by left multiplica-
tion:

+ + +
Please cite this article as: B. van Geemen, Fourfolds of Weil type and the spinor map,
Expositiones Mathematicae (2023), https://doi.org/10.1016/j.exmath.2023.04.006.

ρ (g̃B) : SC −→ SC , ω ↦−→ exp(ωB) ∧ ω,
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and one has

exp(ωB) =

∑
I,♯I≡0 mod 2

Pfaff(BI )eI ,

where I runs over the subsets of {1, . . . , n} with an even number of elements and
eI = ei1 ∧ · · · ∧ ei2k ∈ ∧

even W = S+ with i1 < · · · < i2k .
(4) In the basis of S+

C consisting of the eI , the spinor map γ on the open subset
I G(n, VC)+0 is given by

γ : I G(n, VC)+0 −→ PS+

C , [Z B] ↦−→ (. . . : Pfaff(BI ) : . . .).

The image of γ is defined by quadrics.

roof. The highest weight of the half-spin representation S+

C is determined in
5, Proposition 20.15].

The Lie algebra of P is generated by the X i, j (matrices with B = C = 0) and the
Z i, j (matrices with A = B = D = 0). The images of these elements in End(S+

C ) (as
ell as those of the Yi, j ) are:

so(2n) −→ End(S+

C ),⎧⎨⎩
X i, j ↦−→ ei en+ j −

1
2δi j ↦−→ Lei ◦ Den+ j −

1
2δi j ,

Yi, j ↦−→ ei e j ↦−→ Lei ◦ Le j ,

Z i, j ↦−→ ei+ne j+n ↦−→ Dei+n ◦ De j+n .

Since Dw∗ (1) = 0 for all w∗
∈ W ∗, we see that X i, j and Z i, j map 1 to an element in

1⟩. Hence Lie(P) maps ⟨1⟩ into itself and thus also the inverse image of P in Spin(VC)
aps this line into itself.
The element X B ∈ so(2n) determined by B is X B =

∑
i< j bi j Yi, j . It acts as left

ultiplication by ωB :=
∑

bi j ei ∧ e j on ∧
even W and thus exp(X B) is left multiplication

y exp(ωB) ∈ ∧
even W . The exponential map of an endomorphism α is

∑
αn/n!. The

ultiplication between forms of even degree is commutative. The 2-form ωB therefore
enerates a commutative subalgebra of nilpotent elements, hence exp(X B) is actually a

finite sum. One also has

exp(ωB) =

∏
i< j

exp(bi j ei ∧ e j ) =

∏
i< j

(1 + bi j ei ∧ e j ).

e now show that, with BI the submatrix of B with coefficients bi, j with i, j ∈ I ,

exp(ωB) =

∑
I,♯I even

Pfaff(BI )eI .

In fact, exp(ωB) ∈ ∧
even WC is a linear combination of the eI = ei1 ∧ · · · ∧ ei2k ,

here i1 ≤ · · · ≤ ei2k I = {i1, . . . , i2k} ⊂ {1, . . . , n} is a subset with an even number
f elements. Since for an integer p one has that ω

p
B ∈ ∧

2pW , the coefficient of eI is
omogeneous of degree 2k, with 2k = ♯I , in the coefficients bi j of B and only those
ith i, j ∈ I contribute. So the coefficient of eI is determined by the 2k × 2k alternating

ubmatrix BI of B with rows and columns indexed by I . Moreover this coefficient is∑
b e ∧ e )k/k!, which is indeed Pfaff(B ).
Please cite this article as: B. van Geemen, Fourfolds of Weil type and the spinor map,
Expositiones Mathematicae (2023), https://doi.org/10.1016/j.exmath.2023.04.006.
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Since ρV (g̃B)Z0 = Z B and γ ([Z0]) = 1 ∈ S+

C we get γ ([Z B]) = ⟨ρ+(g̃)1⟩ =

exp(ωB)⟩ ∈ S+

C = ∧
even WC. The description of the spinor map follows immediately.

or the equations defining the image see [3, III.3.2] or [9]. □

.10. The spinor map for n = 4

In case n = 4, the spinor (or Cartan) map

γ : I G(4, VC)+ −→ PS+

C

s an embedding whose image is a smooth quadric Q+
⊂ PS+

C . We will often identify
I G(4, VC) with Q+ and simply write [Z ] for γ ([Z ]).

For Z B in the open subset I G(4, VC)+0 , where B = (bi j ) is an alternating 4 × 4 matrix,
his map is given, in a suitable basis of S+, by (see Theorem 1.9.4):

γ : Z B ↦−→ (z1 : . . . : z8) =(
1 : b12 : b13 : b14 : b12b34 − b13b24 + b14b23 : −b34 : b24 : −b23

)
.

he coordinate functions are, up to signs, the Pfaffians of the alternating submatrices of
B with an even number of rows and columns. The closure of the image of γ is the spinor
ariety, a smooth quadric:

Q+
= γ (I G(4, VC)+) = { (z1 : . . . : z8) ∈ PS+

C : z1z5 + z2z6 + z3z7 + z4z8 = 0 }.

n fact the signs and the order of the coordinate functions on S+

C were chosen in such a
ay as to obtain this simple equation.
The homogeneous coordinates above define a Z-module S+ ∼= Z8

⊂ S+

C with bilinear
orm (•, •)S+ such that for z = (z1, . . . , z8) ∈ S+ one has (z, z)S+ = 2(z1z5 + z2z6 +

z3z7 + z4z8). In particular, S+ ∼= U 4 and for z ∈ S+

C one has z ∈ Q+ iff (z, z)S+ = 0
here we use the C-bilinear extension of the bilinear form.
In this ad-hoc manner we obtain an integral structure on S+

C and, as observed by
arkman, one can define the spinor map over the integers.

.11. Lemma

Let Z1, Z2 be two distinct maximally isotropic subspaces of VC in the family
arametrized by I G(4, VC)+. Then Z1 ∩ Z2 = {0} if and only if the complex line
[Z1], [Z2]⟩ ⊂ PS+

C is not contained in the spinor quadric Q+.

roof. Using the action of the orthogonal group, if Z1 ∩ Z2 = {0}, then we can map
Z1, Z2 to W, W ∗. As [W ] = e∗, [W ∗] = 1 ∈ S+ and (e∗, 1)S+ ̸= 0 it follows that the
ine ⟨[Z1], [Z2]⟩ is not contained in Q+. On the other hand, if Z1 ∩ Z2 ̸= 0, then we

ay assume Z1 = W ∗ and Z1 = Z B with B the rank two alternating 4 × 4 matrix with
B = e1 ∧ e2. Then [Z1] = ⟨1⟩ and [Z2] = ⟨1 + e1 ∧ e2⟩ so that ⟨[Z1], [Z2]⟩ ⊂ Q+. □

.12. Orthogonal complex structures and their period space Ω

We use the spinor map and the spinor variety Q+ to parametrize the orthogonal
Please cite this article as: B. van Geemen, Fourfolds of Weil type and the spinor map,
Expositiones Mathematicae (2023), https://doi.org/10.1016/j.exmath.2023.04.006.

omplex structures and the complex tori that these define.
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An orthogonal complex structure J on VR is determined by (and determines) a
aximally isotropic subspace Z+ such that VC = Z+ ⊕ Z+, see Lemma 0.4. Assume

hat [Z+] ∈ I G(4, VC)+. Using the spinor map we see that ℓ := γ ([Z+]) is a point of the
uadric Q+

⊂ PS+

C , that is (ℓ, ℓ)S+ = 0. Since the spinor map is defined over Q, we get
Z+] = ℓ̄, the complex conjugate of the point ℓ in PS+

C . The condition that Z+ ∩ Z+ = 0
s equivalent to the fact that the complex line spanned by ℓ, ℓ̄ is not contained in Q+ by
emma 1.11. This again is equivalent to (ℓ, ℓ̄)S+ ̸= 0 and since (ℓ, ℓ̄)S+ ∈ R we see that
ℓ, ℓ̄)S+ is either positive or negative.

We define an open (six dimensional, connected) analytic subset of Q+ by

Ω = ΩS+ := { ℓ ∈ PS+

C : (ℓ, ℓ)S+ = 0, (ℓ, ℓ)S+ > 0 }.

Then any ℓ ∈ Ω defines a maximal isotropic subspace Zℓ of VC such that VC = Zℓ ⊕ Zℓ

and thus it defines an orthogonal complex structure Jℓ on VR.
The complex structure Jℓ on VR defines a complex torus Tℓ of dimension four by

requiring an isomorphism of weight 1 Hodge structures

H 1(Tℓ,Z) = (V, Jℓ), i.e. H 1,0(Tℓ) = Zℓ.

This complex torus can also be defined as Tℓ = VC/(Zℓ + V ).

2. Tori with an orthogonal structure and a Cayley class

2.1.

In the previous section we used the spinor map to embed a Grassmannian I G(4, VC)+

of maximally isotropic subspaces in to PS+

C . We now relate this embedding to the Plücker
embedding of Gr (4, VC). For this we use again representation theory.

As a consequence, we find a natural map from S+ to ∧
4V , the image of s ∈ S+ is

denoted by cs ∈ ∧
4V . This is exploited as follows. For ℓ ∈ Ω we defined a complex

torus Tℓ and there is an isomorphism of Hodge structures H 1(Tℓ,Z) = (V, Jℓ). Thus we
can also identify the Hodge structures ∧

4V = H 4(Tℓ,Z). For s ∈ S+ we then obtain a
ohomology class cs ∈ H 4(Tℓ,Z) which is Markman’s Cayley class of s.

In Section 2.5 we recall Markman’s result that the Cayley class is a Hodge class, so
s ∈ H 2,2(Tℓ,Z), if and only if ℓ ∈ Ωs⊥ := s⊥

∩ Ω where s⊥ is the hyperplane in S+

C
efined by s using the bilinear form on S+. Hence the five dimensional complex manifold
s⊥ parametrizes the four dimensional complex tori with an orthogonal structure and
odge class cs .

.2. The Plücker map

The Grassmannian G(4, VC) has a natural embedding, the Plücker map π , into a
rojective space PN

= P ∧
4 VC of dimension N , where N + 1 =

(8
4

)
= 70:

π : G(4, VC) −→ P ∧
4 VC, Z ↦−→ [∧4 Z ].

he Plücker map is equivariant for the action of GL(VC).
On the open subset G(4, VC)0 of G(4, VC) defined in Section 1.7, the Plücker map is

hus given by the determinants of the 4 × 4 submatrices of the 8 × 4 matrix P := (B).
Please cite this article as: B. van Geemen, Fourfolds of Weil type and the spinor map,
Expositiones Mathematicae (2023), https://doi.org/10.1016/j.exmath.2023.04.006.
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Using the basis of V from Section 0.1, the coefficient of ei1 ∧ · · · ∧ ei4 in

[∧4 Z B] = [r1 ∧ · · · ∧ r4],
(
r j =

8∑
k=1

Pk j ek ∈ Z B, P := (B
I )
)

s the determinant of the 4 × 4 submatrix of P with rows i1, . . . , i4.

.3. The spinor and the Plücker map

The theory of line bundles on homogeneous spaces provides a natural setting for
he results below (cf. [5, Section 23.3, p.393], [1, Section II]), we only use basic
epresentation theory. The Picard group of G(4, VC) is generated by the Plücker line

bundle π∗OPN (1). The restriction of this line bundle to I G(4, VC)+ does not generate
he Picard group of I G(4, VC)+, but there is a line bundle L on I G(4, VC)+ such that

(π∗OPN (1))|I G(4,VC)+
∼= L⊗2,

nd Pic(I G(4, VC)+) ∼= Z is generated by L. One has H 0(I G(4, VC)+,L) = S+

C and
he spinor map γ is the map defined by the global sections of L.

From the isomorphism π∗OPN ∼= L⊗2 over I G(4, VC)+, one can deduce that the
lücker map on I G(4, VC)+ is the composition of the spinor map γ with the second
eronese map ν on PS+

C . The Veronese map is induced by

ν : S+
−→ Sym2(S+), s ↦−→ s ⊙ s.

ore precisely, the group Spin(VC), a double cover of SO(VC), has a natural (half-spin)
epresentation ρ+ on S+

C and on the 36-dimensional vector space Sym2(S+

C ). This latter
epresentation is reducible, due to the Spin(V )-invariant quadric on S+ which dually
efines an invariant one dimensional subspace Γ0 of Sym2(S+

C ). A complement of this
ubspace turns out to be an irreducible Spin(VC)-representation, of dimension 35, and is
enoted by Γ2α ([3, Section 3.4], [5, Exercise 19.6]):

Sym2(S+

C ) ∼= Γ2α ⊕ Γ0.

he subspace Γ2α is spanned by the symmetric tensors z ⊙ z ∈ Sym2(S+

C ) with [z] ∈

Q+
⊂ PS+

C .
There is a decomposition of the 70-dimensional ∧

4VC in two irreducible Spin(VC)-
epresentations of dimension 35 (it corresponds to the decomposition of ∧

4VC into dual
nd anti-selfdual 4-forms for the Hodge star operator defined by (•, •)V ) ([5, Remarks(ii),
. 289–290]):

∧
4VC = Γ2α ⊕ Γ2β .

he image of Q+ by the second Veronese map spans the linear subspace PΓ2α ⊂ PN
=

∧
4 VC.

Since on the open subset of I G(n, 2n)+ parametrized by alternating matrices the
pinor map is given by Pfaffians and the Plücker map is given by minors, this result
mplies that any quadratic expression in Pfaffians is a linear combination of minors,
ee [1].
Please cite this article as: B. van Geemen, Fourfolds of Weil type and the spinor map,
Expositiones Mathematicae (2023), https://doi.org/10.1016/j.exmath.2023.04.006.
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.4. The Cayley classes

A remarkable consequence of the relation between the Spin(V )-representations
Sym2(S+) and ∧

4V is that any element s ∈ S+ defines a 4-form cs ∈ ∧
4V , which

is called the Cayley class of s ([12, Remark 12.4], [14, Section 2.1]). It is obtained as
the composition

S+ ν
−→ Sym2(S+) ∼= Γ2α ⊕ Γ0 −→ Γ2α −→ ∧

4V, s ↦−→ cs .

This map is equivariant for the action of Spin(V ). The stabilizers in Spin(V ) of s and
cs thus have the same Lie subalgebra. If (s, s)S+

̸= 0, the complexification of this Lie
algebra is isomorphic to so(7)C.

2.5. The Cayley class and Hodge classes

Let ℓ ∈ Ω ⊂ Q+ and let Tℓ be the associated complex torus. The Hodge
decomposition of the first cohomology group H 1(Tℓ,Z) = (V, Jℓ) is given by the
igenspaces Zℓ, Z ℓ = Zℓ of the orthogonal complex structure Jℓ in VC:

H 1(Tℓ,C) = VC = Zℓ ⊕ Zℓ, Jℓ = (i, −i) ∈ End(Zl) ⊕ End(Zℓ).

o describe the Hodge structure on H k(Tℓ,Z) we use the homomorphism

hV,ℓ : U (1) := {z ∈ C : zz = 1} −→ GL(VR), hV,ℓ(a + bi) := aI + bJℓ,

here a, b ∈ R, a2
+b2

= 1. Notice that aI +bJℓ = (a+bi, a−bi) ∈ End(Zl)⊕End(Zℓ).
Since H k(Tℓ,Z) = ∧

k H 1(Tℓ,Z) = ∧
k V , the Hodge decomposition H k(Tℓ,C) =

H p,q (Tℓ) is defined by

H p,q (Tℓ) =
(
∧

p Zℓ

)
⊗
(
∧

q Zℓ

)
= {x ∈ ∧

k VC : hV,ℓ(a + bi) · x

= (a + bi)p(a − bi)q x ∀a + bi ∈ U (1) },

In particular, the Hodge classes in H 2p(Tℓ,Z) are the invariants of the one-parameter
subgroup hV,ℓ of SO(VR).

The homomorphisms hV,ℓ can be lifted to Spin(VC) and the following lemma
describes the action of such a lift on S+

C . It implies that the weight one Hodge structure
(V, Jℓ) defines a weight two Hodge structure on S+. A rank six Hodge substructure
H = Hℓ ⊂ S+ will be studied in Section 6.1.

It should be noted that if dim VC ̸= 8 then Spin(VC) only allows one to relate polarized
weight two Hodge structures on V to complex structures on S+ and on the even Clifford
algebra C(V )+. The special feature in the case dim V = 8 is triality, an automorphism of
order three of Spin(V ), which allows one to permute the three irreducible 8-dimensional
representations V, S+, S−, see [5, Section 20.3], [3, Chapter 4], and which is implicit in
the proof of Lemma 2.6.

2.6. Lemma

Let V = U ⊕ U ∗ be a decomposition of V = C8 with two maximally isotropic
∗ +
Please cite this article as: B. van Geemen, Fourfolds of Weil type and the spinor map,
Expositiones Mathematicae (2023), https://doi.org/10.1016/j.exmath.2023.04.006.

subspaces with [U ], [U ] ∈ I G(4, VC) . For t ∈ C, t ̸= 0, the orthogonal transformation
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(t idU , t−1idU∗ ) ∈ (End(U ) ⊕ End(U ∗)) ∩ SO(V ) has a lift h(t) ∈ Spin(V ) which acts as
ollows on S+:

ρ+(h(t)) ℓU = t2ℓU , ρ+(h(t)) ℓU∗ = t2ℓU∗ , ρ+(h(t)) s = s,

∀s ∈ ⟨ℓU , ℓU∗⟩
⊥,

here ℓU , ℓU∗ ∈ S+ are (any) representatives of γ ([U ]), γ ([U ∗]) ∈ PS+.

roof. We use that the spinor map is equivariant for the action of Spin(V ). There is
n element of Spin(V ) mapping U to W since I G(4, 8)+ = SO(V )/P . Then U ∗ is
apped to Z B for some B ∈ Alt4 and it is easy to see that there is another element

n Spin(V ) fixing W (so with C = 0) and mapping Z B to Z0 = W ∗. We thus may
eplace W, W ∗ with U, U ∗. The one parameter subgroup h acts as multiplication by
on U ⊂ V , hence h is generated by an X ∈ h ⊂ spin(V ) with L i (X ) = 1 for
= 1, . . . , 4 (and thus X =

∑
Hi ). The weights of S+ are (±L1 ± L2 ± L3 ± L4)/2 with

n even number of - signs, hence their values on X are 2, −2, with multiplicity one, and
with multiplicity six. Thus ρ+(h(t)) is semisimple with eigenvalues t2, t−2 and 1, the

ast with multiplicity six. The eigenvalue t−2, the lowest weight of S+, is on ZU∗ , see
heorem 1.9. The element g ∈ SO(V ) that maps ei ↦→ ei+4, ei+4 ↦→ ei for i = 1, . . . , 4

nterchanges U and U ∗ and acts (in the Adjoint representation) as −id on h, hence the
igenvalue t2 must be on ZU . As Spin(V ) preserves (•, •)S+ , the decomposition into
hese eigenspaces is orthogonal. (For any n, the one parameter subgroup of SO(V ) that
cts as multiplication by t2, t−2 on e1, en+1 respectively and is the identity on ⟨e1, en+1⟩

⊥

s generated by an X ∈ spin(V ) with L1(X ) = 2, L i (X ) = 0 for i ≥ 2 and thus
1/2)(±L1 ± L2 . . . ± Ln)(X ) = ±1, showing that the lift of this subgroup to Spin(V )
as only eigenvalues t, t−1 on S+, with the same multiplicities, and the same holds for

S−. A similar result holds for SO(V ) and its spin representation if dim V = 2n +1.) □

We use this lemma to identify the complex tori Tℓ for which the Cayley class cs is of
odge type (2, 2). The following proposition is essentially [12, Lemma 12.2].

.7. Proposition

Let cs ∈ ∧
4V be the Cayley class defined by s ∈ S+, the integral lattice, and let

∈ ΩS+ . Then cs is an integral Hodge class in H 4(Tℓ,Z) exactly when (ℓ, s)S+ = 0:

cs ∈ H 2,2(Tℓ,Z) := H 4(Tℓ,Z) ∩ H 2,2(Tℓ) if and only if
ℓ ∈ Ωs⊥ := {ℓ ∈ Ω : (ℓ, s)S+ = 0 }.

roof. First we observe that hV,ℓ(z) ∈ SO(VR) for all z ∈ U (1). In fact, for v, w ∈ VR
e have(

(aI + bJℓ)v, (aI + bJℓ)w
)

V = a2(v, w
)

V + ab
((

v, Jℓw
)

V +
(
Jℓv, w

)
V

)
+ b2(Jℓv, Jℓw

)
V =

(
v, w

)
V ,

ecause (J v, J w) = (v, w) implies (v, J w) = (J v, J 2w) and J 2
= −I .
Please cite this article as: B. van Geemen, Fourfolds of Weil type and the spinor map,
Expositiones Mathematicae (2023), https://doi.org/10.1016/j.exmath.2023.04.006.
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The homomorphism lifting the one-parameter subgroup hV,ℓ : U (1) → SO(VC) to
Spin(VC) is denoted by

hℓ : U (1) := {z ∈ C : zz = 1} −→ Spin(VC).

he action of hℓ(z) ∈ Spin(VC) in the half-spin representation ρ+ on S+

C is (see
emma 2.6):

ρ+(hℓ(z))ℓ = z2ℓ, ρ+(hℓ(z))ℓ = z̄2ℓ, ρ+(hℓ(z))s = s, ∀s ∈ ⟨ℓ, ℓ⟩⊥.

sing the induced action of Spin(VC) on s ⊙ s ∈ Sym2(S+

C ) and its image cs ∈ ∧
4VC =

H 4(Tℓ,C) we see that cs is invariant under hℓ(z) for all z ∈ U (1) if and only if s is
nvariant, so s ∈ ⟨ℓ, ℓ⟩⊥. For s ∈ S+ the condition (s, ℓ)S+ = 0 implies, by complex
onjugation, that also (s, ℓ)S+ = 0, which proves the proposition. □

. The Cayley class as Spin(7)-invariant

.1.

In Section 2.4 we defined the Cayley class cs ∈ ∧
4V for s ∈ S+. We compute this

lass explicitly in Proposition 3.4 for certain s ∈ S+ that are of interest for Markman’s
esults.

.2. Representations of spin(V )s = so(7)

For s ∈ S+, the Cayley class cs of s is the image of s ⊙ s under the composition
Sym2(S+) → Γ2α ↪→ ∧

4V . We will now assume that (s, s)S+ ̸= 0. Then the stabilizer
f s in SO(S+) is the orthogonal group SO(s⊥) ∼= SO(7). The inverse image of this

group in Spin(V ), a double cover of SO(S+), is denoted by Spin(V )s ∼= Spin(7). In the
tandard representation ρV of Spin(V ) on V , the subgroup Spin(V )s still acts irreducibly,
n fact V is isomorphic with the (unique, irreducible) spin representation of Spin(7).

Since s is fixed by Spin(V )s , the 4-form cs is fixed by the Lie algebra spin(V )s ∼=

o(7). We now show that cs is the unique spin(V )s-invariant in ∧
4V by considering the

estriction to so(7) of the so(V ) = so(8)-representations appearing in Section 2.3.
Multiplication by s gives an inclusion of spin(V )s-representations

S+
= ⟨s⟩ ⊕ s⊥ ↪→ Sym2(S+) = Γ0 ⊕ Γ2α

= Γ0 ⊕ ⟨cs⟩ ⊕ s ⊙ s⊥
⊕ Γ(2,0,0)

= Γ0 ⊕ Γ(0,0,0) ⊕ Γ(1,0,0) ⊕ Γ(2,0,0),

here Γ0 and Γ(0,0,0) are trivial spin(V )s-representations, Γ(1,0,0) ∼= s ⊙ s⊥ ∼= s⊥ is the
tandard seven dimensional representation of spin(V )s ∼= so(7) and Γ(2,0,0) is irreducible
f dimension 35−1−7 = 27 (the notation Γ(a,b,c) for so(7)-representations is as in [5]).

The restriction of the spin(V )-representation Γ2α is thus a direct sum of three
rreducible representations of spin(V )s . The representation of spin(V )s on the other
rreducible component Γ2β of ∧

4V is irreducible and it is isomorphic to Γ(0,0,2). Thus one
as the spin(7) = so(7)-decomposition into irreducible representations (cf. [14, Prop. 2],
7, Prop. 10.5.4]):

∧
4V = Γ ⊕ Γ ⊕ Γ ⊕ Γ .
Please cite this article as: B. van Geemen, Fourfolds of Weil type and the spinor map,
Expositiones Mathematicae (2023), https://doi.org/10.1016/j.exmath.2023.04.006.
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Since there is a unique copy of the trivial representation of so(7) in ∧
4V , the Cayley

class is the unique spin(V )s invariant in ∧
4V .

3.3.

The following proposition computes the 4-form cs , which spans the trivial spin(V )s-
subrepresentation Γ(0,0,0) in ∧

4V , explicitly in a case of interest in Markman’s paper,
cf. [12, 1.4.1, Proposition 11.2]. There s is called w = sn . We consider in fact 1

n+1 cw

and we write n for his n +1. Notice that the computation below uses only representation
theory.

3.4. Proposition

Let n ∈ Z, n ̸= 0, and let s = sn = 1 − ne∗ ∈ S+. where e∗ := e1 ∧ e2 ∧ e3 ∧ e4 ∈
even W = S+. Then we have, up to a scalar multiple,

cs = −nα2
+ 4n2β + 4γ (∈ ∧

4V ),

here the forms, now in ∧
∗V , involved are:

α := e1 ∧ e5 + · · · + e4 ∧ e8, β := e1 ∧ · · · ∧ e4, γ := e5 ∧ · · · ∧ e8.

roof. The space of spin(V )s-invariants in ∧
4V is one dimensional and it is spanned

y cs , see Section 3.2. So it suffices to show that the right hand side is a non-zero
pin(V )s-invariant form.

The Lie algebra spin(V )1,e∗
that acts trivially on the two dimensional subspace of

S+ spanned by 1, e∗ is isomorphic to so(6) ∼= sl(4). The representation of sl(4) on
V = W ⊕ W ∗ is reducible and W is the standard representation of sl(4) whereas W ∗

s the dual of the standard representation. This implies that β ∈ ∧
4W ⊂ ∧

4V and
∈ ∧

4W ∗
⊂ ∧

4V as well as the 2-form α, which is the sl(4)-invariant in W⊗W ∗
⊂ ∧

2V
orresponding to the symplectic form ((w1, w

∗

1), (w2, w
∗

2)) = w∗

1(w2)−w∗

2(w1) on V , are
pin(V )1,e∗

-invariants. On the other hand,

∧
4(W ⊕ W ∗) = ∧

4W ⊕ W ⊗ ∧
3W ∗

⊕ ∧
2W ⊗ ∧

2W ∗
⊕ ∧

3W ⊗ W ∗
⊕ ∧

4W ∗.

ince W, W ∗ have dimension four, ∧
3W ∗ ∼= W and it is well-known that there are no

l(4)-invariants in W ⊗ W nor in W ∗
⊗ W ∗. Also ∧

2W is irreducible and thus the sl(4)-
nvariants in ∧

2W ⊗∧
2W ∗ ∼= End(∧2 W ) are a one dimensional subspace spanned by the

race. Hence the subspace of sl(4)-invariants in ∧
4V has dimension three. Since α2, β, γ

re linearly independent invariants, the invariant subspace is

(∧4V )spin(V )1,e∗ = (∧4V )sl(4)
= ⟨α2, β, γ ⟩.

Since spin(V )1,e∗
⊂ spin(V )s , any spin(V )s-invariant in ∧

4V must lie in the
ubspace ⟨α2, β, γ ⟩. The 21-dimensional Lie algebra spin(V )s is defined by

spin(V )s = {X ∈ spin(V ) : Xs = 0 }.

he action of spin(V ) on S+ is given in the proof of Theorem 1.9. It is then easy to
heck that the following elements (of so(2n) ∼= spin(V )) span spin(V )s :

h :=

{∑
a X :

∑
a = 0

}
, X (i ̸= j), nY ± Z ({i, j, k, l} = {1, . . . , 4}),
Please cite this article as: B. van Geemen, Fourfolds of Weil type and the spinor map,
Expositiones Mathematicae (2023), https://doi.org/10.1016/j.exmath.2023.04.006.
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here the sign depends on i, . . . , l. In particular, X := nY1,2 + Z3,4 ∈ spin(V )s (in fact
X acts as e1e2 + De3 De4 on S+ and X (1) = ne1e2, X (e∗) = −e1e2, so Xs = 0). The
action of X on V is given by

X (e1) = 0, X (e2) = 0, X (e3) = −e8, X (e4) = e7,

X (e5) = −ne7, X (e6) = ne8, X (e7) = 0, X (e8) = 0.

ince the Lie algebra element X acts a derivation on ∧
4V we have

X (α) = X (e1) ∧ e5 + e1 ∧ X (e5) + · · · = −2ne1 ∧ e2 + 2e7 ∧ e8.

hus

X (α2) = 2α∧X (α) = −4n(e1∧e2)∧(e3∧e7+e4∧e8)+4(e1∧e5+e2∧e6)∧(e7∧e8).

imilarly one finds

X (β) = (e1 ∧e2)∧ (e4 ∧e8 +e3 ∧e7), X (γ ) = −n(e2 ∧e6 +e1 ∧e5)∧ (e7 ∧e8).

herefore the only non-trivial linear combination of α2, β, γ that is mapped to zero by
X is −nα2

+ 4n2β + 4γ . Hence this must be the unique spin(V )s-invariant in ∧
4V . □

. Abelian varieties of Weil type

.1. The complex tori Tℓ and abelian varieties

For a point ℓ ∈ Ω , an open subset of the spinor quadric Q+, we defined a complex
orus Tℓ of dimension four whose first cohomology group is identified with V and whose
odge structure is determined by H 1,0(Tℓ) = Zℓ, the maximal isotropic subspace of VC

orresponding to ℓ.
Fixing an s ∈ S+ we also found that for ℓ ∈ Ωs⊥ this complex torus has an integral

odge class (the Cayley class) cs ∈ H 2,2(Tℓ,Z). Now we assume that (s, s)S+ > 0
nd we fix another, non-isotropic, class h ∈ s⊥ with (h, h)S+ > 0. Hence the rank two
ublattice ⟨h, s⟩ ⊂ S+ generated by h, s is positive definite for the bilinear form on

S+. For ℓ ∈ ⟨h, s⟩⊥ ∩ Ω , the torus Tℓ turns out to be an abelian variety of Weil type
nd the Cayley class cs is a non-trivial Hodge class. This result, Theorem 4.6, is due to
’Grady [15, Theorem 5.1] and Markman [12, Corollary 12.9, Theorem 13.4]. First we

ecall the basic facts on abelian varieties of Weil type.

.2. Abelian varieties of Weil type

Let A be an abelian variety and let K = Q(
√

−d), with d ∈ Z>0, be an imaginary
uadratic field. An abelian variety of Weil type (with field K ) is a pair (A, K ), where A
s an abelian variety and K ↪→ End(A)Q is a subalgebra of the endomorphism algebra of
A, such that for all x ∈ K , x /∈ Q, the endomorphism of T0 A defined by the differential of
x = a +b

√
−d ∈ K , with a, b ∈ Q, has eigenvalues x = a +b

√
−d and x̄ = a −b

√
−d

with the same multiplicity. Equivalently, the eigenvalues of x∗ on H 1,0 have the same
ultiplicity. In particular, if (A, K ) is of Weil type, then dim A is even.
Please cite this article as: B. van Geemen, Fourfolds of Weil type and the spinor map,
Expositiones Mathematicae (2023), https://doi.org/10.1016/j.exmath.2023.04.006.
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Given an abelian variety of Weil type (A, K ), there exists a polarization ωK ∈

H 1,1(A,Z) on A such that for all x ∈ K its pull-back is

x∗ωK = Nm(x)ωK , Nm(x) = x x̄,

here Nm(x) is the norm of x ∈ K (see [17, Lemma 5.2.1]). We call such a 2-form a
olarization of Weil type and (A, K , ωK ) is called a polarized abelian variety of Weil
ype.

.3. The Weil classes

For a general abelian variety of Weil type (A, K ) of dimension 2n, the spaces of
Hodge classes

B p(A) := H p,p(A,Q) := H 2p(A,Q) ∩ H p,p(A)

have dimensions [21], see also [17, Theorem 6.12]:

dim B p(A) = 1, (p ̸= n), dim Bn(A) = 3.

ince dim B1(A) = 1, any ω ∈ B1(A), ω ̸= 0, defines (up to sign) a polarization on A
which will be of Weil type.

The action of the multiplicative group K ×
:= K −{0} on H 1(A, K ) := H 1(A,Q)⊗QK

as an eigenspace decomposition into two 2n-dimensional K subspaces

H 1(A, K ) = Zκ ⊕ Zκ , x∗(v, w) = (xv, xw)

that are conjugate over K . Since A is of Weil type, the complexifications of these
eigenspaces both have Hodge numbers h1,0

= h0,1
= n. Thus in H 2n(A, K ) =

∧
2n H 1(A, K ) there are two 1-dimensional K -subspaces ∧

2n Zκ , ∧
2n Zκ of Hodge type

(n, n). Since they are conjugate, their direct sum is defined over Q, that is, there is a
2-dimensional Q-subspace WK of Hodge classes

WK ⊂ H n,n(A,Q), WK ⊗Q K = ∧
2n Zκ ⊕ ∧

2n Zκ .

There is also a natural identification of WK with ∧
2n
K H 1(A,Q) where H 1(A,Q) is

iewed as a 2n-dimensional K vector space.) The subspace WK is called the space of
eil classes. For any A of Weil type one has

Qωn
K ⊕ WK ⊆ Bn(A)

here ωn
K is the n-fold exterior product of ωK with itself. For a general A of Weil type

ne has Bn(A) = Qωn
K ⊕ WK .

An element x ∈ K acts with eigenvalues (x x̄)n , x2n , x̄2n on Qωn
K ⊕ WK . Thus if a

on-zero element c in the three dimensional Q vector space Qωn
K ⊕ WK is algebraic and

t is not an eigenvector for the K -action (so it is not a multiple of ωn
K ) then all classes

n Qωn
K ⊕ WK are algebraic since ωn

K is and so is x∗c for all x ∈ K .

.4. The Hermitian form

The Q vector space H1(A,Q) is also a K vector space for the action of K given
y x for x ∈ K ⊂ End(A) . A polarization of Weil type ω ∈ H 2(A,Q) defines an
Please cite this article as: B. van Geemen, Fourfolds of Weil type and the spinor map,
Expositiones Mathematicae (2023), https://doi.org/10.1016/j.exmath.2023.04.006.
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lternating form on H1(A,Q) and it also defines a K -valued Hermitian form H on this
K -vector space by:

H : H1(A,Q) × H1(A,Q) −→ K ,

H (x, y) := ωK (x, (
√

−d)∗y) +
√

−dωK (x, y).

If Ψ ∈ Mn(K ) is the Hermitian matrix defining H w.r.t. some K -basis of H1(A,Q)
hen det(Ψ ) ∈ Q×

= Q − {0} and the class of det(Ψ ) ∈ Q×/Nm(K ×), called the
iscriminant of H , is independent of the choice of the basis. Given two non-degenerate
ermitian forms H, H ′ on K n , there is a K -linear map M : K n

→ K n such that
H ′(x, y) = H (Mx, My) for all x, y ∈ K n if and only if H , H ′ have the same signature
nd the same discriminant.

The discriminant of a polarized abelian variety of Weil type (A, K , ωK ) is the
iscriminant of H .

In Markman’s approach, the real part of H , which is a bilinear form, is (up to the
uality between H1(A,Z) and H 1(A,Z) and up to a scalar multiple) the bilinear form
·, ·)V , cf. Section 4.8. In particular, it is the same for all families of Weil type, for all
elds, considered in [12] and in Theorem 4.6 below.

.5. Complete families

Given a K vector space U of dimension 2n and a Hermitian form H : U × U → K ,
ny 2n-dimensional abelian variety of Weil type A with field K and discriminant equal
o the discriminant of H is obtained by choosing a free Z-module Λ ⊂ U of rank 4n
nd a complex structure J on ΛR := Λ ⊗Z R such that J commutes with K , the two
igenspaces of x ∈ K , x /∈ Q, on (ΛR, J ) have the same dimension and finally the
maginary part ωK of H defines a polarization on the complex torus (ΛR, J )/Λ.

The unitary group U (H )R ∼= U (n, n) of the Hermitian form H on the C = K ⊗Q R
ector space ΛR acts by conjugation g · J := g Jg−1 on these complex structures. From
his one obtains a complete family of abelian 2n-folds of Weil type parametrized by

Hermitian symmetric domain isomorphic to U (n, n)/(U (n) × U (n)), so of complex
imension n2. The unitary group SU (H ) ⊂ GL(ΛQ), viewed as algebraic group over Q,
s the special Mumford Tate group of the general abelian variety in the family, see [17].

We discuss the proof of the following theorem in the remainder of this section.

.6. Theorem

Let h, s ∈ S+ be perpendicular and such that ⟨h, s⟩ ⊂ S+ is a positive definite rank
wo sublattice. Let d := (h, h)S+ (s, s)S+ ∈ Q>0 and let ℓ ∈ Ω{h,s}⊥ , where

Ω{h,s}⊥ := {ℓ ∈ Ωs⊥ : (ℓ, h)S+ = 0 } = {ℓ ∈ Ω : (ℓ, s)S+ = (ℓ, h)S+ = 0 }

s a complex manifold of dimension four. Then we have:

(a) The complex four dimensional torus Tℓ has endomorphisms by K = Q(
√

−d),
that is K ⊂ End(Tℓ)Q.

(b) The complex torus Tℓ has a polarization ωK ∈ H 2(Tℓ,Z) and (Tℓ, K , ωK ) is
polarized abelian fourfold of Weil type.
Please cite this article as: B. van Geemen, Fourfolds of Weil type and the spinor map,
Expositiones Mathematicae (2023), https://doi.org/10.1016/j.exmath.2023.04.006.
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(c) The discriminant of the polarization ωK ∈ H 2(Tℓ,Z) is trivial.
(d) The Cayley class cs ∈ H 2,2(Tℓ,Z) is not contained in the subspace Qω2

K where
ω2

K = ωK ∧ ωK .
(e) The four dimensional family of these fourfolds of Weil type parametrized by

Ω{h,s}⊥ is complete.

.7. Endomorphisms of Tℓ

Since the sublattice ⟨h, s⟩ is positive definite, we may assume that the restriction
of the quadratic form on S+ is given by q(xh + ys) = ax2

+ by2, with both
= (h, h)S+ , b = (s, s)S+ ∈ Q positive. Hence d = ab > 0. The zero locus of q is

efined by a−1((ax)2
+ aby2) = 0, showing that there are two isotropic lines in ⟨h, s⟩C

efined by ax ±
√

−d y = 0. These two lines are conjugate over K where the conjugation
n K is x + y

√
−d = x − y

√
−d with x, y ∈ Q. In PS+

C they correspond to the two
points of intersection of the line P⟨h, s⟩C with the spinor quadric Q+ ∼= I G(4, VC)+,
which we denote by κ, κ:

{κ, κ} = Q+
∩ P⟨h, s⟩C (⊂ PS+

C ).

As Q+
= γ (I G(4, VC)+), these two points define two maximal isotropic subspaces

n VK := V ⊗Q K denoted by Zκ , Zκ . Since the points κ, κ are conjugate over K , so are
these subspaces: if w = v +

√
−dv′

∈ Zκ with v, v′
∈ VQ then w = v −

√
−dv′

∈ Zκ .
The plane ⟨h, s⟩C is not contained in Q+, hence these two subspaces have trivial

intersection ( Lemma 1.11, [3, III.1.12]):

VK = Zκ ⊕ Zκ , (v1, v2) = (v2, v1) (v1 ∈ Zκ , v2 ∈ Zκ ).

We identify the Q vector space VQ with the image of VQ ↪→ VK , it consists of the
points (v1, v1) with v1 ∈ Zκ . Now we define an action of K on VQ (⊂ VK ) by

K × VQ −→ VQ, x · (v1, v1) := (xv1, x̄v1) = (xv1, xv1) (∈ VQ ⊂ Zκ ⊕ Zκ ),

where x̄ is the conjugate of x ∈ K .
To show that this induces an inclusion K ⊂ End(Tℓ)Q, it suffices to verify that any

x ∈ K commutes with the complex structure Jℓ on VR. Since ℓ ∈ Ωh,s⊥ we have
(ℓ, κ)S+ = 0 and similarly the scalar products of any one of ℓ, ℓ and any one of κ, κ are
zero. Therefore the intersection of Zℓ, Zℓ with the complexifications of Zκ , Zκ is not zero
by Lemma 1.11. Since these spaces are parametrized by the same connected component
I G(4, VC)+, their intersection is even dimensional and thus it is two dimensional. From
the eigenspace decomposition for Jℓ, VC = Zℓ ⊕ Zℓ, we obtain the decomposition

VC = (Zℓ ∩ Zκ,C) ⊕ (Zℓ ∩ Zκ,C) ⊕ (Zℓ ∩ Zκ,C) ⊕ (Zℓ ∩ Zκ,C).

he action of Jℓ and x ∈ K on these four summands are scalar multiplications (by ±i and
x, x̄ respectively), hence the action of K indeed commutes with Jℓ. Since each summand
as dimension 2, the eigenvalues of x ∈ K , x ̸∈ Q, on Zℓ = H 1,0(Tℓ) have the same
imension.
Please cite this article as: B. van Geemen, Fourfolds of Weil type and the spinor map,
Expositiones Mathematicae (2023), https://doi.org/10.1016/j.exmath.2023.04.006.



B. van Geemen / Expo. Math. xxx (xxxx) xxx 21

4

l

s

w
<

p

s
(
t
t
s

b

.8. The polarization

The combination of the K -action on VQ = H 1(Tℓ,Q) with the bilinear form (•, •)V

eads a polarization ωK ∈ H 2(Tℓ,Q) on Tℓ. We define a bilinear form E on VQ by:

E : V × V −→ Q, E(v, w) = (
√

−d · v, w)V .

The duality V = H1(Tℓ,Q)dual implies that E defines an element ωK ∈ ∧
2V =

H 2(Tℓ,Q). Similar to the computations for Kähler forms and metrics we establish the
basic properties of E which imply that (Tℓ, K , ωK ) is a polarized abelian fourfold of
Weil type.

First of all, we have for all v, w ∈ VQ and all x ∈ K that

E(x · v, x · w) = x x̄ E(v, w).

To verify this, we extend E K -bilinearly to VK and we use that Zκ , Zκ are isotropic
ubspaces. Thus, with v = v1 + v1, w = w1 + w1 ∈ Zκ ⊕ Zκ we get

E(x · v, x · w) =
(
x
√

−dv1 + x
√

−dv1, xw1 + xw1
)

V

=
(
x
√

−dv1, x̄w1
)

V +
(
x̄
√

−dv1, xw1
)

V

= x x̄
(
(
√

−dv1, w1)V + (
√

−dv1, w1)V
)

= x x̄ E(v, w).

Next we show that E is alternating:

E(v, w) = (
√

−d · v, w)V = (w,
√

−d · v)V =
1
d

(
√

−d · v,
√

−d
2
· w)V

= −(
√

−d · v, w)V = −E(w, v).

To show that the 2-form ωK is of type (1, 1) it suffices to show that E(Jℓv, Jℓw) =

E(v, w) for all v, w ∈ VR:

E(Jℓv, Jℓw) =
(√

−d · Jℓv, Jℓw
)

V =
(
Jℓ(

√
−d · v), Jℓw

)
V =

(√
−d · v, w

)
V = E(v, w).

Finally we verify that E(Jℓv, v) > 0 for non-zero v ∈ VR. That is, we must show
that (

√
−d · Jℓv, w) > 0. The endomorphisms

√
−d, Jℓ of VR are both constructed

from decompositions of VC with two conjugate isotropic subspaces Zκ , Zκ and Zℓ, Zℓ

respectively. The corresponding points κ, κ, ℓ, ℓ ∈ Q+
= I G(4, V )+ span a P3

∈ PS+

C
hich is the projectivization of the complexification of the four dimensional subspace
h, s, ℓ + ℓ, (ℓ − ℓ)/ i >⊂ S+

R (here C = R + iR). Notice that this basis consists of
erpendicular vectors for (•, •)S+ and that the subspace is positive definite.

The group Spin(VR) acts via SO(S+

R ) on S+

R and this action is transitive on such
ubspaces. As Spin(VR) also acts via SO(VR) on VR, we see that it suffices to show that
J1 J2v, v) > 0 for all non-zero v ∈ VR where the linear maps J1, J2 are defined by any
wo orthogonal positive definite 2-dimensional subspaces of S+

R . (Markman shows that
he map J1 J2 is already determined, up to a scalar multiple, by the direct sum of these
ubspaces.)

We use the conventions from Section 1.10. A point z = (z1, . . . , z8) ∈ S+ ∼= U 4 will
e written as

z =

((
z1
)

,

(
z2
)

,

(
z3
)

,

(
z4
))

, (z, z)S+ = 2(z1z5 + · · · + z4z8).
Please cite this article as: B. van Geemen, Fourfolds of Weil type and the spinor map,
Expositiones Mathematicae (2023), https://doi.org/10.1016/j.exmath.2023.04.006.
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The following four points ν1, . . . , ν4, where ν := (1
1) ∈ U , in S+ are perpendicular and

pan a positive 4-plane in S+

R since (νi , νi )S+ = 8 and we also define ℓ1, ℓ2 ∈ S+

C :

ν1 = (ν, ν, ν, ν),
ν2 = (ν, ν,−ν, −ν),
ν3 = (ν, −ν, ν,−ν),
ν4 = (ν, −ν, −ν, ν),

ℓ1 := (ν1 + iν2)/(1 + i) = (ν, ν,−iν, −iν),

ℓ2 := (ν3 + iν4)/(1 + i) = (ν, −ν, −iν, iν).

Then ℓ1, ℓ1 and ℓ2, ℓ2 are all isotropic vectors and they span ⟨ν1, ν2⟩C and ⟨ν3, ν4⟩C
espectively. Isotropic vectors are in Q+

= γ (I G(4, VC)+) and since these four all have
rst coordinate z1 = 1 they are in the image of the open set I G(4, VC)+0 parametrized
y the alternating 4 × 4 matrices. Using the explicit description of γ one finds

ℓk = γ (Z Bk ) (k = 1, 2), B1 =

⎛⎜⎜⎝
0 1 −i −i

−1 0 i −i
i −i 0 −1
i i 1 0

⎞⎟⎟⎠ ,

B2 =

⎛⎜⎜⎝
0 −1 −i i
1 0 −i −i
i i 0 1

−i i −1 0

⎞⎟⎟⎠ .

he eigenspace with eigenvalue −1 = i2
= (−i)2 of the endomorphism J1 J2 of VR is

he direct sum of Zℓ1 ∩ Zl2 and its complex conjugate. Let ck, dk denote the kth column
f the matrix (B1

I ), (B2
I ) respectively, then Zℓ1 , Zℓ2 are spanned by the ck and the dk

k = 1, . . . , 4) respectively. Their intersection is spanned by

c1 − ic3 = d1 − id3, c2 − ic4 = d2 − id4 (∈ Zℓ1 ∩ Zℓ2 ).

onsidering (c1 − ic3)± (c1 − ic3) etc., one finds a basis of the −1-eigenspace of J1, J2.
ts perpendicular is the +1-eigenspace. Recall that e1, . . . , e8 are the basis vectors of V
s in 0.1, then the eigenspace decomposition is:

VR = V+ ⊕ V− = ⟨e1 + e5, e2 + e6, e3 + e7, e4 + e8⟩R ⊕ ⟨e1 − e5, e2 − e6, e3 − e7, e4 − e8⟩R.

otice that (•, •)V is positive definite on V+ and negative definite on V−. Writing
v = v+ + v− as sum of J1 J2 eigenvectors, one has (J1 J2v, v)V = (v+, v+)V − (v−, v−)V

nd thus indeed (J1 J2v, v)V > 0 for all non-zero v ∈ VR.

.9. The discriminant

We refer to [12, Lemma 12.11] (cf. [15, Theorem 5.1]) for the computation of the
iscriminant. See also Proposition 6.5 for a proof of the triviality of the discriminant
sing results from Lombardo [10].

.10. The Cayley class and the Weil classes

We define two subgroups of Spin(V ). Let Spin(V )s be the subgroup which fixes
∈ S+ and let Spin(V ) be the subgroup which fixes all elements in ⟨h, s⟩. Then one
Please cite this article as: B. van Geemen, Fourfolds of Weil type and the spinor map,
Expositiones Mathematicae (2023), https://doi.org/10.1016/j.exmath.2023.04.006.
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an show that the Cayley class cs is the unique Spin(V )s-invariant in ∧
4V and that ωK

s the unique Spin(V )s,h-invariant in ∧
2V . This implies that cs ̸∈ Qω2

K (cf. [14, Prop
], [12, Thm 13.4] and Section 3.2).

One can also use that the K ⊗Q C ∼= C × C-action on VC has the eigenspaces
Zκ )C, (Z κ̄ )C. The one parameter subgroup h R of Spin(VC) which acts as multiplication

by t, t−1 respectively on these eigenspaces fixes E , and thus it fixes ωK ∈ ∧
2V and also

ω2
K ∈ ∧

4V . On the other hand, h R has eigenvalues t2, t−2 on ⟨κ, κ̄⟩C = ⟨h, s⟩C ⊂ S+

C by
emma 2.6. Therefore cs , the image of s ⊙ s in ∧

4V , is not invariant under h R and thus
it cannot be a multiple of ω2

K .
The Cayley class cs is thus a Hodge class on any abelian variety of Weil type Tℓ with

ℓ ∈ Ω{h,s}⊥ , for any h ∈ s⊥ such that ⟨h, s⟩ is positive definite. Such cohomology classes
were found in a different context in [19], see Remark 5.3 of that paper for the relation
with Markman’s construction.

4.11. Complete families

The Lie group Spin(VR)h,s acts on Ω{h,s}⊥ . This action induces an action of Spin(VR)h,s

on the orthogonal complex structures on VR by Jg·ℓ = g Jℓg−1. The fixed points
, κ̄ ∈ Q+

∩ ⟨h, s⟩C of the action of Spin(VR)h,s on Q+ correspond to the eigenspaces
Zκ,C, Z κ̄,C of the K -action, which are thus mapped into themselves. This implies that
he image of Spin(VR)h,s in SO(VR) commutes with the K action on VR. This image
hus preserves the Hermitian form H and therefore Spin(V )h,s maps to the algebraic
roup SU (H ) which is the Mumford Tate group of the general Tℓ with ℓ ∈ Ω{h,s}⊥ . For
imension reasons this map is surjective on the real points of these groups and thus the
amily of abelian fourfolds of Weil type is complete.

. Moduli spaces of sheaves on an abelian surface

.1.

The constructions considered thus far have a natural geometrical interpretation in
erms of moduli spaces of sheaves on abelian surfaces. We now briefly recall the basic
efinitions and results, due to Mukai and Yoshioka. The notation used thus far is now
dapted to this context, for example, the free Z-module W of rank four will become

W = H 1(X,Z) for an abelian surface X etc.
We conclude with a brief outline of Markman’s proof of the Hodge conjecture for the

eneral abelian fourfolds of Weil type with trivial discriminant.

.2. The Mukai lattice of an abelian surface

Let X be an abelian surface and let X̂ = Pic0(X ) be the dual abelian surface. Let

W = H 1(X,Z), W ∗
= H 1(X̂ ,Z) = H 1(X,Z)∗, V := W ⊕ W ∗.

he Chern character of a coherent sheaf on X takes values in

S+
:= ∧

even H∗(X,Z) = H 0(X,Z) ⊕ H 2(X,Z) ⊕ H 4(X,Z),
Please cite this article as: B. van Geemen, Fourfolds of Weil type and the spinor map,
Expositiones Mathematicae (2023), https://doi.org/10.1016/j.exmath.2023.04.006.
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and we will identify H 0(X,Z), H 4(X,Z) with Z, using the generators 1 and a volume
form compatible with the orientation on the complex manifold X .

The Mukai lattice of X is the (free, rank 8) Z-module S+ with the bilinear form given
y (this bilinear form coincides up to sign with (•, •)S+ ):

(r, c, s) · (r ′, c′, s ′) := −(rs ′
+ r ′s) + c ∧ c′.

For v = (r, c, s) ∈ S+, with r > 0, c ∈ N S(X ) ⊂ H 2(X,Z) and v2
≥ 6 the moduli

pace of sheaves E on X with ch(E) = v, denoted by M(v), is a smooth holomorphic
ymplectic manifold of dimension v2

+ 2.

.3. The case v = sn

We now take v = sn = (1, 0, −n), such that v2
= 2n ≥ 6 and dim M(v) = 2n + 2.

et Z ⊂ X be a subscheme of length n. Then its ideal sheaf IZ has ch(IZ ) = v (for
n abelian surface, the Chern character ch(E) is the Mukai vector v(E) of the sheaf E).
his induces an inclusion of complex manifolds

Hilbn(X ) = X [n] ↪→ M(v) (v = sn = (1, 0, −n)).

or L ∈ X̂ and IZ ∈ X [n] one also has L ⊗ IZ ∈ M(v).
The Albanese map α : X [n]

→ X of X [n] fits in a diagram:

X [n]

↓ ↘ α

X (n) Σ
−→ X

Σ ([p1, . . . , pn]) := p1 + · · · + pn,

ere X (n) is the nth symmetric power of X and [p1, . . . , pn] ∈ X (n) is the image of
p1, . . . , pn) ∈ Xn in X (n).

The generalized Kummer variety Kn−1(X ), of dimension 2n − 2, is the irreducible
olomorphic symplectic manifold obtained as

Kn−1(X ) = α−1(0) ⊂ X [n].

Using locally free resolutions of sheaves one defines a determinant map det : M(v) →

X̂ and one has det(L ⊗ IZ ) = L for L ∈ X̂ . Yoshioka [22] showed that

M(v) ∼= X̂ × (det−1)(OX ) ∼= X̂ × X [n] ∼= X̂ ×

(
(X × Kn−1(X ))/X [n]

)
here X [n] ⊂ X is the subgroup of n-torsion points. In particular, the Bogomolov
ecomposition of M(v) is the product of the abelian fourfold X × X̂ and the irreducible
olomorphic symplectic manifold Kn−1(X ).

.4. The cohomology of the generalized Kummer variety

The composition of the Mukai homomorphism [22, Section 1.2] and the restriction
ap

v⊥
−→ H 2(M(v),Z) −→ H 2(K (X ),Z)
Please cite this article as: B. van Geemen, Fourfolds of Weil type and the spinor map,
Expositiones Mathematicae (2023), https://doi.org/10.1016/j.exmath.2023.04.006.
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nduces a Hodge isometry (for the weight two Hodge structure on v⊥ defined by (v⊥)2,0
=

H 2,0(X ) and with the BBF quadratic form on H 2(Kn−1(X ),Z)) [22, Thm. 0.2].
This implies, by the surjectivity of the period map and with v = sn = s, that Ωs⊥

s the period space of deformations of Kn−1(X ), these deformations are called Kummer
ype varieties.

Moreover, h3,0(Kn−1(X )) = 0 so that H 3(Kn−1(X ),C) = H 2,1
⊕ H 1,2 is essentially

he first cohomology group of its intermediate Jacobian H 3(C)/(H 2,1
⊕ H 3(Z)) and one

as ([22, Prop. 4.20]):

H 3(Kn−1(X ),Z) = H 1(X,Z) ⊕ H 3(X,Z) ∼= H 1(X,Z) ⊕ H 1(X̂ ,Z) = V .

O’Grady and Markman showed that for ℓ ∈ Ωs⊥ and any deformation Yℓ of Kn−1(X )
ith period H 2,0(Yℓ) = Cℓ ⊂ (s⊥)C, there is an isomorphism of Hodge structures (up

o Tate twist and isogeny) H 3(Yℓ,Z) = H 1(Tℓ,Z). In case the complex manifold Yℓ is
lgebraic and h ∈ H 2(Y,Z) = s⊥ is the class of an ample divisor, hence ℓ ∈ Ω{h,s}⊥ ,
’Grady [15] showed that the torus Tℓ is an abelian variety of Weil type. Moreover, he

howed that for algebraic Yℓ the Kuga Satake variety of the weight two polarized Hodge
tructure of rank six h⊥

⊂ H 2(Yℓ,Z) is (isogeneous to) T 4
ℓ (see also Section 6.4 where

h⊥ ∼= H 2
ℓ ).

O’Grady also makes a detailed study of the cohomology of generalized Kummer
arieties and in particular he observes that there is a natural map (recall dim Yℓ =

im Kn−1(X ) = 2n − 2):

H 3(Yℓ,Z) −→ H 4n−6(Yℓ,Z) −→ H 2(Yℓ,Z)∨,

he last map is Poincaré duality, which relates the Hodge structures on H 3(Yℓ) and
H 2(Yℓ).

.5. Markman’s theorem

Given a sheaf F ′
∈ M(v) (v = sn as in Section 5.3), there is a natural map

ιF ′ : X × X̂ −→ M(v), (x,L) ↦−→ (t∗

x F ′) ⊗ L

here tx : X → X , y ↦→ x + y is the translation by x . Deforming Kn−1(X ) to Yℓ, with
∈ Ωs⊥ , this map deforms to a map

ι : Tℓ −→ Yℓ.

A universal sheaf E on X × M(v) defines a sheaf E on M(v) × M(v) by E :=

xt1
π13

(π∗

12E, π∗

23E) where πi j are the projections from M(v) × X × M(v). For F ∈ M(v)
et EF the restriction of E to {F}× M(v) = M(v). This defines a sheaf on X × X̂ whose
econd Chern class is exactly the Cayley class defined by v = sn ∈ S+ ([12, Prop. 11.2],
ee also Proposition 3.4):

c2(ι∗F ′End(EF )) = cv ∈ ∧
4V = H 4(X × X̂ ,Z).

Markman, using results of Verbitsky, shows that the sheaf EF on M(v) deforms
o a sheaf over any deformation Yℓ of M(v). Thus cv ∈ H 4(Tℓ,Z) is an algebraic
Please cite this article as: B. van Geemen, Fourfolds of Weil type and the spinor map,
Expositiones Mathematicae (2023), https://doi.org/10.1016/j.exmath.2023.04.006.
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an eigenvector for the action of the multiplicative group K × on the Hodge classes in
Qω2

K ⊕ WK ⊂ H 2,2(Tℓ,Z). Thus ω2
K , cv and the images of cv under the K × action span

Qω2
K ⊕ WK . Since any fourfold of Weil type with trivial discriminant is isogeneous to a

Tℓ, for any such fourfold the space WK is spanned by algebraic classes.

6. Kuga Satake varieties and abelian fourfolds of Weil type

6.1. Kuga Satake varieties

Let S+ be the lattice introduced in Section 1.10. As in Theorem 4.6, let h, s ∈ S+ ∼=
⊕4 be two perpendicular elements such that their span is a positive definite sublattice.

Then for any ℓ ∈ Ω{h,s}⊥ the complex torus Tℓ is an abelian variety of Weil type. We now
define a polarized weight two Hodge structure H = Hℓ of rank six with Hodge numbers
dim H 2,0

ℓ = 1, dim H 1,1
ℓ = 4. The Kuga Satake construction associates to Hℓ an abelian

variety Aℓ of dimension 26−1
= 32. We show here, using results of Lombardo [10] and

O’Grady [15], that Aℓ is isogeneous to T 4
ℓ . Moreover, we provide an alternative proof

of the fact that discriminant of the polarization of Tℓ is trivial.
Let H = Hh,s be the rank 6 sublattice of signature (2+, 4−) orthogonal to ⟨h, s⟩:

H := ⟨h, s⟩⊥ = {t ∈ S+
: (t, h) = (t, s) = 0 }.

With this notation we have

Ω{h,s}⊥ = {ℓ ∈ PHC : (ℓ, ℓ)S+ = 0, (ℓ, ℓ̄)S+ > 0 }.

Recall that any ℓ ∈ Ω{h,s}⊥ defines an abelian fourfold of Weil type with underlying
orus Tℓ by Theorem 4.6. Such an ℓ also defines a weight two Hodge structure on H
enoted by Hℓ as follows:

Hℓ,C = HC = ⊕p+q=2 H p,q
ℓ , H 2,0

ℓ := Cℓ, H 0,2
ℓ := Cℓ̄,

H 1,1
ℓ =

(
H 2,0

ℓ ⊕ H 0,2
ℓ

)⊥
.

This Hodge structure is polarized since the restriction of (•, •)S+ to the two dimensional
real subspace (H 2,0

ℓ ⊕ H 0,2
ℓ ) ∩ HR is positive definite.

As dim H 2,0
ℓ = 1, there is a Kuga Satake (abelian) variety Aℓ, of dimension 16,

associated to Hℓ (see [4,8,18]). In general, it has the property that Hℓ is a Hodge
substructure of H 2(A2

ℓ,Q), but in this case there are actually several copies of Hℓ in
H 2(Aℓ,Q), see Section 6.4. The even Clifford algebra C(H )+ of H is a lattice in
the real vector space C(H )+ ⊗Z R of dimension 25

= 32. A complex structure on
(H )+R is defined by left multiplication by f1 f2 ∈ C(H )+R , with f1, f2 ∈ HR such that

( f1, f1)S+ = 1 and H 2,0
ℓ = ⟨ f1 + i f2⟩ (cf. [18, Section 5.6]). The abelian variety Aℓ is

the quotient (C(H )+R, f1 f2)/C(H )+.
In [10, Cor. 6.3, Thm 6.4] it is shown that Aℓ is isogeneous to B4

ℓ , where Bℓ is an
abelian fourfold of Weil type with trivial discriminant. The following proposition, due
to O’Grady ([15, Section 5.3]), shows that Bℓ and Tℓ are isogeneous. In [15] one finds
a more explicit description of this result, as well as applications to generalized Kummer
varieties.
Please cite this article as: B. van Geemen, Fourfolds of Weil type and the spinor map,
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.2. Proposition

For ℓ ∈ Ω{h,s}⊥ the Kuga Satake variety Aℓ of the polarized weight two Hodge
tructure Hℓ is isogeneous to T 4

ℓ , where Tℓ is the abelian fourfold of Weil type defined
y ℓ.

roof. The right multiplication on C(H )+R by an element of C(H )+ preserves the lattice,
ommutes with the complex structure and thus defines an element in End(Aℓ). The Q
ector space HQ is not a direct sum of two maximally isotropic subspaces and, whereas
(H )+C ∼= M4(C) ⊕ M4(C) (as in Section 1.2), one now has an isomorphism of algebras

([10, Thm. 6.2]), where M4(K ) are the 4 × 4 matrices with coefficients in K ,

C(H )+Q := C(H )+ ⊗Z Q ∼= M4(K ) ⊆ End(Aℓ)Q, K := Q(
√

−ab).

This implies that any Aℓ is isogeneous to B4
ℓ , where Bℓ is an abelian fourfold with

K ⊂ End(Bℓ)Q (Bℓ is only determined up to isogeny).
It remains to show that Bℓ and Tℓ are isogeneous. The inclusion Spin(H ) ⊂

Spin(S+) = Spin(V ) defines a representation of Spin(H ) on V which is its spin
representation. The isomorphism C(H )+Q ∼= M4(K ) implies that

C(H )+Q ∼= V ⊕4
Q

as Spin(H )-representations. The same holds with Q replaced by R. The weight two
Hodge structure on the Spin(H )-representation Hℓ is defined by the one parameter
subgroup hℓ of Spin(H )R ⊂ Spin(S+)R introduced in the proof of Proposition 2.7.
In fact, hℓ(t) acts on S+ as multiplication by t2 on Cℓ, by t−2 on Cℓ̄ and it is trivial on
⟨ℓ, ℓ̄⟩⊥. The complex structure on C(H )+R ∼= V ⊕4

R , which defines the Kuga Satake variety
Aℓ ∼ B⊕4

ℓ , is also defined by hℓ ([18, Prop. 6.3]), now acting on V 4
R. As ρV (hℓ) = hV,ℓ,

the complex structure is Jℓ on VR. It follows that Bℓ and Tℓ are isogeneous. □

6.3. Remark

The proof of Proposition 6.2 uses the (algebraic) subgroup Spin(H ) = Spinh,s of
Spin(S+) = Spin(V ). The decomposition S+

Q = HQ⊕ RQ, with R := ⟨h, s⟩, implies that
we actually have two commuting subgroups Spin(H ), Spin(R) ⊂ Spin(S+).

Recall from Section 4.7 that RC = Cκ ⊕ Cκ̄ with κ, κ̄ ∈ Q+. The decomposition
of VC = Zκ,C ⊕ Z κ̄,C in the two isotropic eigenspaces for the K -action defines, as in
Lemma 2.6, a one parameter subgroup h R of Spin(S+

R ). As h R(t)κ = t2κ , h R(t)κ = t−2κ̄ ,
his identifies the subgroup Spin(RR) with this one parameter subgroup, h R(U (1)) =

Spin(RR). In particular, the K -action on VQ is generated by Spin(R) and the scalar
ultiples of the identity.
The fact that Spin(H ), Spin(R) ⊂ Spin(S+) commute implies that the subspaces

Zκ,C, Z κ̄,C are Spin(HC)-invariant subspaces. Thus the spin representation of Spin(HC)
n VC is reducible. These two subspaces are the two half-spin representations of

Spin(HC).
There is an isomorphism Spin(HC) ∼= SL(4,C) and the half-spin representations

are identified with the standard representation C4 of SL(4,C) and its dual (C4)∗. The
Please cite this article as: B. van Geemen, Fourfolds of Weil type and the spinor map,
Expositiones Mathematicae (2023), https://doi.org/10.1016/j.exmath.2023.04.006.
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representation HC is identified with ∧
2C4 ∼= ∧

2(C4)∗, the isomorphism follows from the
airing, defined by the wedge product, (∧2C4) × (∧2C4) → ∧

4C4 ∼= C.

.4. The second cohomology group of Tℓ

In [10] the Hodge structure on the second cohomology group H 2(B,Q) of an abelian
ourfold of Weil type with field K is studied. This group has dimension

(8
2

)
= 28 and

ecomposes under the K -action into a 16 = 1 + 15-dimensional subspace S′

B on which
x ∈ K acts as x x̄ , this subspace includes the polarization of Weil type. There is a
omplementary subspace SB on which the eigenvalues of x are x2, x̄2 of dimension 12.
his subspace can be identified with the six dimensional K vector space ∧

2
K H 1(B, K ).

H 2(B,Q) = SB ⊕ S′

B, S′

B := {ξ ∈ H 2(B,Q) : x∗ξ = x x̄ξ, ∀x ∈ K }.

For a general fourfold of Weil type (so SMT (B)R ∼= SU (2, 2)) the Hodge structure SB

is a simple Hodge structure (so does not admit non-trivial Hodge substructures) if and
only if the discriminant of B is non-trivial [10, Cor. 3.6].

In case the discriminant is trivial, one finds that SB ∼= H⊕2
B , for a weight two, rank

six, polarized, Hodge structure HB which has Hodge numbers (1, 4, 1). Moreover, the
Kuga Satake variety of HB is isogeneous to B4, so one recovers the weight two Hodge
structure HB from its Kuga Satake variety.

The following proposition uses this result to show that the abelian fourfolds of Weil
type Tℓ have trivial discriminant.

6.5. Proposition

For ℓ ∈ Ω{h,s}⊥ , with h, s as in Theorem 4.6, the polarized abelian fourfold of Weil
type (Tℓ, K , ωK ) has trivial discriminant.

Proof. By [10, Cor. 3.6] it suffices to show that (Hℓ,Q)⊕2 is isomorphic to the Hodge
substructure STℓ

⊂ H 2(Tℓ,Q).
As in the proof of Proposition 2.7, the (weight one) Hodge structure on V = H 1(Tℓ,Z)

efines a one parameter subgroup hℓ in Spin(V ) (actually in Spin(V )h,s ⊂ Spin(S+) =

Spin(V )). A representation U of Spin(VR) on a real vector space U defines a Hodge
ecomposition UC = ⊕U p,q , with U p,q = U q,p, given by the eigenspaces U p,q

= {u ∈

: hℓ(z)u = za z̄bu} (but the weight is not uniquely defined since zz̄ = 1).
The representation ρ+ on S+

R has the Hodge decomposition

(S+)2,0
= H2,0

ℓ = Cℓ, (S+)0,2
= (S+)2,0, (S+)1,1

=
(
(S+)2,0

⊕ (S+)0,2)⊥
since these spaces are the eigenspaces for hℓ acting on S+

C (see Lemma 2.6). The Hodge
structure S+

Q is a direct sum of Hodge structures

S+

Q = Hℓ,Q ⊕ RQ, R := ⟨h, s⟩,

where RQ ∼= Q(−1)2 is a trivial Hodge substructure with R1,1
Q = RC.

There is an isomorphism of Spin(V ) = Spin(S+)-representations ∧
2S+

= ∧
2V (both
Please cite this article as: B. van Geemen, Fourfolds of Weil type and the spinor map,
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L1 + L2 − L3 − L4)/2 = L1 + L2). Hence we get a splitting of the Hodge structure
on ∧

2S+

Q (which is again defined by hℓ eigenspaces) in three Hodge substructures which
have dimensions

(6
2

)
= 15, 6 · 2 = 12 and 1 respectively:

∧
2S+

Q = (∧2 Hℓ,Q) ⊕ (Hℓ,Q ⊗ RQ) ⊕ (∧2 RQ).

The Hodge structure S+ has weight two, so the Hodge structure on ∧
2S+ should have

eight four. However, (dim S+)2,0
= 1, so ∧

2S+

Q has trivial (4, 0) and (0, 4) summands
nd thus it is the Tate twist of a weight two Hodge structure.)

Using the isomorphisms ∧
2S+

Q = ∧
2V = H 2(Tℓ,Z) we see that

Hℓ,Q ⊗ RQ ∼= (Hℓ,Q)⊕2 ↪→ H 2(Tℓ,Q)

s a non-simple Hodge substructure of H 2(Tℓ,Q).
It remains to check that x ∈ K has eigenvalues x2, x̄2 on this substructure. One can

educe this from the fact that representation ∧
2VC of the complex Mumford Tate group

SL(4,C) of Tℓ is isomorphic to

∧
2(C4

⊕ (C4)∗) ∼= (∧2C4)⊕2
⊕ C4

⊗ (C4)∗

nd the last summand is the direct sum of a trivial one dimensional representation
nd an irreducible 15 dimensional representation. As the complexification of a Hodge
ubstructure is a subrepresentation, there is a unique subrepresentation of dimension 12.
ence STℓ

= Hℓ,Q ⊗ RQ as desired.
Alternatively, by Remark 6.3, the K ×-action is essentially given by the subgroup

Spin(R) of Spin(S+). This subgroup acts trivially on ∧
2 Hℓ,Q and ∧

2 RQ, so K acts
hrough the norm on these summands. Therefore STℓ

= Hℓ,Q ⊗ RQ = (Hℓ,Q)⊕2. □
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