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1 Introduction

1.1 What is known as the Hitchin system is a completely integrable hamiltonian system
(CIHS) involving vector bundles over algebraic curves, identified by Hitchin in ([H1], [H2]).
It was recently generalized by Faltings [F]. In this paper we only consider the case of rank-
two vector bundles with trivial determinant. In that case the Hitchin system corresponding
to a curve C of genus g is obtained as follows. Let

M := {E → C : E a semi-stable rank two bundle, ∧2E ∼= O }/ ∼S

be the moduli space of (S-equivalence classes of) semi-stable rank-two vector bundles on
C. Then M is a projective variety (singular if g > 2) of dimension 3g − 3.

The locus of stable bundles Ms is the set of smooth points of M for g > 2. The
cotangent space ofM at a stable bundle E is :

T ∗
EM = Hom0(E,E ⊗K),with Hom0(E,E ⊗K) := H0(C, End0(E)⊗K)

where End0(E) is the sheaf of endomorphisms of E with trace zero and K is the canonical
bundle on C. A Φ ∈ Hom0(E,E ⊗K) is called a Higgs field. The determinant of a Higgs
field det(Φ) ∈ Hom(∧2E,∧2(E ⊗K)) = H0(C, 2K) gives a map

det : T ∗
EM = Hom0(E,E ⊗K) −→ H0(C, 2K),

which globalizes to a map on T ∗Ms. Hitchin considered the map:

H : T ∗Ms −→ H0(C, 2K), Φ 7→ det(Φ)

∗Research partially supported by NSF Grant DMS-9105221 at Boston University and DMS-9022140 at

MSRI.
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and showed that it is a CIHS in the following sense: the functions on T ∗Ms that one
obtains by choosing any basis in H0(C, 2K) are a complete set of hamiltonians in involution
(with respect to the natural symplectic structure on a cotangent bundle). Since det is
homogeneous of degree two in the fibre variables (det(tΦ) = t2det(Φ)), one can define a
(rational) projective Hitchin map

H : PT ∗Ms −→ PH0(C, 2K) = |2K|

and it is in fact this map that we consider.

1.2 In the first two sections of this paper we define and study a set of Higgs fields
associated to any semi-stable bundle E. These results are then applied to the g = 2 case;
they may also be of independent interest for studying moduli spaces of Higgs bundles,
which are pairs (E,Φ) as above, with certain restrictions.

To studyM as a projective variety (see [NR1], [B1], [B2]) one associates to any E ∈M
a divisor DE in the Jacobian of C using which, questions on rank two bundles are rephrased
in terms of line bundles (and extensions). We exhibit a natural map

φE : Dsm
E −→ PHom0(E,E ⊗K), ξ 7→ Φξ

(with Dsm
E the smooth points of DE) and we are able to compute det(Φξ). The result is

best stated in a diagram (the stable case of Proposition 2.8): For any stable bundle E the
following diagram commutes:

PT ∗
EM

φE ր ց H̄
Dsm
E PH0(C, 2K)

ψE ց ր Sq
PH0(K)

(1.2.1)

here ψE is just the Gauss map of the divisor DE inside the Jacobian and Sq(ω) = ω ⊗ ω.
Thus the divisor DE (rather, its image in PT ∗

EM) plays an important role in the study
of the fibers of H̄ over the quadratic differentials which are squares of one forms. However,
our fiberwise approach (for the map T ∗M→M) is, in a sense, perpendicular to Hitchin’s
approach which studies the fibers of H : T ∗M → H0(C, 2K). That approach establishes
that such a fiber, over a (general) quadratic differential η is the Prym variety associated
with a ‘spectral’ double cover Cη → C defined by η ([H2], [BNR]). It would be interesting
to relate our results to a study of the fibers of H .

1.3 In the remaining sections we apply these results to investigate the case g = 2.
Then the spaceM is isomorphic to P3 ([NR1]), so that we look for a CIHS on T ∗P3 (and
also on the open subset T ∗C3).
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Using information on φE from §3 we work out the maps of the diagram (1.2.1) in the
genus two case in §4. Here we encounter some classical algebraic geometry of curves of genus
two and three. It turns out that finding H explicitly involves a problem in line geometry in
P3 (a sketch of the solution in fact appears in in J.H. Grace’s article “Line Geometry” in
the Encyclopaedia Britannica, 1911). We can thus make an educated guess as to what the
explicit hamiltonians should be. A computer calculation (using the Mathematica system)
showed that our candidates actually define a CIHS. We are not able to show that our
hamiltonians define the Hitchin map, but we can prove that Hitchin’s hamiltonians and
ours differ by multiplication by functions from the base (an open set in P3). For a more
precise result we would have to extend the results of section 4 to enlarge the open set in the
base were those results hold, or we would need further information on Hitchin’s system.

1.4 Acknowledgements. The first named author wishes to thank: the University of
Pavia for a six month stay where much of the work on this paper was done, the NSF
for supporting visits to Boston University under Grant DMS-9105221, and J. de Jong for
helpful discussions.

The second named author wishes to acknowledge: Carolyn Gordon’s invitation to MSRI
for two weeks of the special year in Differential Geometry 1993/94 (research at MSRI
supported in part by NSF grant # DMS 9022140), and participation in the LMS/Europroj
Workshop “Vector bundles in algebraic geometry” (Durham, 1993; organizers N. Hitchin,
P. Newstead and W.M. Oxbury), on which occasion N. Hitchin provided generous insight.

2 Higgs fields

2.1 We fix some notations and recall some basic facts.
In this paper C will be a smooth, irreducible projective curve of genus g > 1 over C

and E will be a rank two semi-stable bundle on C with trivial determinant.
Since ∧2E ∼= O, we have:

E ∧E = OC , so E ∼= E∗ := Hom(E,OC), e 7→ [f 7→ e ∧ f ]

thus E is self-dual. This gives isomorphisms:

E ⊗E ∼= E∗ ⊗E = End(E), S2E ∼= End0(E)

with End0(E) ⊂ End(E) the sheaf of endomorphisms of trace zero. We recall that
End0(E) := H0(C, End0(E)) = 0 for a stable bundle E, the only endomorphisms of E
being scalar multiples of the identity. Thus: H0(C, S2E) = 0.

For a vector space V , we let PV be the space of one dimensional linear subspaces of V .
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2.2 We will construct Higgs fields by relating E to line bundles. Such a connection
is provided by the following results. Let E be a semi-stable rank two bundle on C with
det(E) = O. Associated to E is a divisor ([B1], 2.2):

DE := {ξ ∈ Picg−1(C) : dimH0(ξ ⊗ E) > 0 }.

With its natural scheme structure, DE is linearly equivalent to 2Θ. Here Θ is the natural
theta divisor:

Θ := {ξ ∈ Picg−1(C) : dimH0(C, ξ) > 0 }, DE ∈ |2Θ|.

On Picg−1(C) there is a natural involution:

ι : Picg−1(C) −→ Picg−1(C), ξ 7→ K ⊗ ξ−1.

All divisors in |2Θ| are invariant under the involution ι. For a DE that is easy to check
since by Riemann-Roch and Serre duality:

dimH0(ξ ⊗E) = dimH1(ξ ⊗ E) = dimH0(ξ−1 ⊗K ⊗ E).

Note that H0(ξ−1⊗K ⊗E) = Hom(ξ, E⊗K) and that, since E is self-dual, H0(ξ⊗E) =
Hom(E, ξ). Thus we have:

ξ ∈ DE ⇐⇒ Hom(E, ξ) 6= 0⇐⇒ Hom(ξ, E ⊗K) 6= 0.

2.3 For any semi-stable E (cf. [L], Cor. V.6):

ξ ∈ Dsm
E =⇒ dimH0(ξ ⊗ E) = 1.

Thus for ξ ∈ Dsm
E there are unique (up to scalar multiple) maps:

π : E −→ ξ, τ : ξ −→ E ⊗K.

The composition
τ ◦ π : E −→ E ⊗K

is an element of Hom(E,E ⊗K), defined (up to scalar multiple) by ξ.

2.4 Definitions. Let E be a semi-stable rank-two bundle on C with det(E) = O. We
define rational maps:

φE : Dsm
E −→ PHom0(E,E ⊗K),

ξ 7→ Φξ := τ ◦ π − (1/2)(idE ⊗ tr(τ ◦ π)) : E ⊗O −→ E ⊗K

and
ψE : Dsm

E −→ PH0(C,K) = PHom(ξ, ξ ⊗K),

ψE(ξ) = (π ⊗ idK) ◦ τ : ξ
τ
−→ E ⊗K

π⊗1
−→ ξ ⊗K.
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2.5 Now we have a large supply of Higgs fields, the Φξ’s. It is surprisingly easy to
determine ψE . In Proposition 2.8 we will see how that already determines the Hitchin map
to a large extent.

Recall that the cotangent bundle to Picg−1(C) is trivial:

T ∗Picg−1(C) ∼= Picg−1(C)×H1(Pic0(C),O)∗.

For a smooth point ξ in a divisor D ⊂ Picg−1(C) the tangent space to D at ξ is then
defined by an element of H1(Pic0(C),O)∗, unique up to scalar multiple. The corresponding
morphism Dsm → PH1(Pic0(C),O)∗ is called the Gauss map.

2.6 Proposition. The map ψE is the Gauss map on DE ⊂ Picg−1(C).

ψE : Dsm
E −→ PH1(Pic0(C),O)∗ = PH0(C,K).

In particular, ψE is a morphism.

Proof. By [L], Prop. V.2, we know that for ξ ∈ Dsm
E the space

TξDE ⊂ TξPic
g−1(C) = H1(Pic0(C),O) = H1(C,O)

is defined by the image of the cup-product map

H0(C,E ⊗ ξ)⊗H0(C,E ⊗ ι(ξ)) −→ H0(C,K) ∼= H1(C,O)∗.

This map coincides with the composition:

Hom(E ⊗K, ξ ⊗K)⊗Hom(ξ, E ⊗K) −→ Hom(ξ, ξ ⊗K) ∼= H0(K),

and in our case we recover the definition of ψE :

(π ⊗ 1)⊗ τ 7→ (π ⊗ 1) ◦ τ = ψE(ξ).

(One may in fact also consider Hom(E, ξη) where ξη is a deformation of ξ given by
η ∈ H1(C,O). Then η ∈ TξDE iff π ∈ Hom(E, ξ) lifts to Hom(E, ξη) iff π ∪ η = 0 ∈
Ext1(E, ξ) = H1(E ⊗ ξ), which gives the statement above. The justification for this
argument is given in [L], II.) 2

2.7 We are interested in computing the determinant of the Higgs field Φξ. Since the
maps in 2.4 are only defined up to scalar multiple, we consider

det : Hom0(E,E ⊗K) −→ PH0(C, 2K), Φ 7→ 〈det(Φ)〉.

Let
Sq : H0(C,K) −→ H0(C, 2K), ω 7→ ω⊗2.
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2.8 Proposition. For a semi-stable E and ξ ∈ Dsm
E we have:

det(Φξ) = ψE(ξ)⊗2 (∈ PH0(C, 2K)).

Thus, the compositions det ◦ φE and Sq ◦ ψE coincide:

det ◦ φE : Dsm
E

φE−→ PHom0(E,E ⊗K)
det
−→ PH0(C, 2K),

Sq ◦ ψE : Dsm
E

ψE−→ PH0(C,K)
Sq
−→ PH0(C, 2K).

Proof. Since ψE : Dsm
E → PH0(C,K) is a morphism, ψE(ξ) is (represented by) a non-zero

differential form for each ξ ∈ Dsm
E . Define a canonical divisor on C by:

Kξ := (ψE(ξ)), let U := C − Support(Kξ),

On the open set U , the map (defined by) ψE(ξ) : ξ → ξ ⊗ K is an isomorphism. Its
inverse, composed with τ : ξ → E ⊗K, gives a map ξ ⊗K → E ⊗K which splits the map
π ⊗ 1 : E ⊗K → ξ ⊗K.

ξ ψE(ξ)

τ




y ց

E ⊗K
π⊗1
−→ ξ ⊗K

Thus over U , the bundle E splits:

E|U
∼= L⊕ ξ|U , with L := ker(πU : E|U −→ ξ|U)

and L is a line bundle on U . Since Φξ := τπ − (1/2)tr(τπ), we get Φξ|U(L) = 0 so that:

Φξ|U =

(

−(1/2)ψE(ξ) ∗
0 (1/2)ψE(ξ)

)

.

Then det(Φξ|U) = −(1/4)ψE(ξ)⊗2, which does not vanish at any point of U .
If DE is irreducible, the image of the Gauss map on Dsm

E contains an open subset of
PH0(C,K). Thus, for general ξ on such a DE , 2Kξ is the only divisor in PH0(C, 2K) with
support in C − U . Since det(Φξ) ∈ H

0(C, 2K) and since its divisor must have support in
C − U , we conclude that

(det(Φξ)) = 2Kξ.

For general C, the rank of the Néron-Severi group of Picg−1(C) is one, and then the
reducible divisors in |2Θ| are a subvariety of dimension g (they are unions of two translates
of Θ). Since ∆(M) (see 3.1) has dimension 3g− 3 ([B1]), the divisor DE is irreducible for
general C. Thus if we work in a family of DE ’s over a general family of curves containing
the given DE, the maps ξ 7→ det(Φξ) and ξ 7→ ψE(ξ)⊗2 agree on a non-empty open subset,
hence must agree everywhere. 2
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3 The map φE

3.1 In this section we consider only stable bundles E and we study the map φE :
Dsm
E → PT ∗

EM. We use the codifferential of the map:

∆ :M−→ |2Θ|, E 7→ DE

to relate the cotangent bundles ofM and of the projective space |2Θ|. First of all we recall
some facts on the cotangent bundle to a projective space and on the dual of |2Θ| (following
[NR2], § 3).

3.2 Let V be a vector space. The dual of the Euler sequence on PV gives:

0 −→ T ∗PV −→ V ∗ ⊗O(−1) −→ O −→ 0,

the last non-trivial map is given by (. . . , si, . . .) 7→ . . .+xisi+ . . . over (. . . : xi : . . .) ∈ PV .
Taking the associated projective bundles we have an isomorphism:

PT ∗PV ∼= I := { (x, h) ∈ PV ×PV ∗ : x ∈ h },

the variety I is called the incidence bundle.

3.3 To identify the dual of |2Θ| we use the map:

δ : Picg−1(C) −→ |2Θ0|, ξ 7→ Dξ := L∗
ξΘ + L∗

ι(ξ)Θ,

here Θ0 is (any) symmetric theta divisor in Pic0(C) (the linear equivalence class of 2Θ0 is
independent of the choice) and

Lα : Pic(C) −→ Pic(C), β 7→ α⊗ β

is translation by α in Pic(C).
Pulling back the linear forms on |2Θ0| gives an isomorphism

δ∗ : H0(|2Θ0|,O(1)) = H0(Pic0(C), 2Θ0)
∗ ∼=−→ H0(Picg−1(C), 2Θ).

Projectivizing gives δ∗ : |2Θ0|
∗

∼=−→ |2Θ|. In fact, there is a commutative diagram:

|2Θ|∗
ν ր

Picg−1(C) ↓ (δ∗)∗

δ ց
|2Θ0|

where ν is the natural map (see [NR2] and [B2] §2 for a variant). From now on, I will be
the incidence bundle:

I := PT ∗|2Θ| ⊂ |2Θ| × |2Θ0|.

We will denote by (d∆)∗ the projectivized codifferential of ∆ (see 3.1):

(d∆)∗ : PT ∗|2Θ| = I −→ PT ∗M.
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3.4 Lemma. Let D ∈ |2Θ| and let ξ ∈ Picg−1(C). Then

(D,Dξ) ∈ I ⇐⇒ ξ ∈ D.

Proof. For ξ ∈ Picg−1(C), ν(ξ) ∈ |2Θ|∗ is the hyperplane in |2Θ| consisting of the
divisors passing through ξ. Thus D ∈ |2Θ| and ξ ∈ |2Θ|∗ are incident iff ξ ∈ D. The dual
of the isomorphism δ∗ maps ν(ξ) to Dξ so the result follows. 2

3.5 We recall that for non-hyperelliptic curves, the map ∆ has degree one over its image
[B1] (so it is locally an isomorphism with its image for generic E) and is an embedding for
the general curve as recently announced by Y. Laszlo and also by S. Brivio and A. Verra
jointly. In case g = 2 the map is an isomorphism [NR1] but for hyperelliptic curves of
genus greater than two the map is 2:1 and ‘ramifies’ along a subvariety of dimension 2g−1
[B1].

3.6 Proposition. Let E be a stable bundle such that the map ∆ is locally at E an
isomorphism with its image. Then the rational map

φE : DE −→ PT ∗
EM, ξ 7→ Φξ,

is the left-hand column in the diagram:

DE →֒ Picg−1(C)








y









y

δ

PT ∗
DE
|2Θ| →֒ |2Θ0|

(d∆E)∗








y

PT ∗
EM

where the last vertical arrow is a linear projection given by the dual of the differential of
∆ at E ∈M.

Proof. Let ξ ∈ DE. Then δ(ξ) = Dξ ∈ |2Θ0| = |2Θ|∗ corresponds to a hyperplane
Hξ ⊂ |2Θ|. By Lemma 3.4, ξ ∈ DE implies DE ∈ Hξ ⊂ |2Θ|. This says that Hξ passes
through DE = ∆(E) ∈ ∆(M) ⊂ |2Θ| and (by the assumption on local isomorphism)
defines a codimension ≤ 1 subspace in TEM. We must show that Φξ (∈ T ∗

EM) is the
defining equation for this subspace.

We first determine Hξ∩∆(M); the pull-back ∆∗Hξ will be the divisor D̃ξ defined below;
in particular, the subspace of TEM defined by Hξ is TED̃ξ.
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We recall from [B1] that

Pic(M) ∼= Z, and L := ∆∗(O(1))

is the ample generator of this group. Moreover, the natural map

M−→ PH0(M,L)∗

actually coincides with ∆.
Define for ξ ∈ Picg−1(C):

D̃ξ := {E ∈ M : H0(C,E ⊗ ξ) 6= 0 }.

This divisor, with its natural scheme structure, is defined by a section of H0(M,L).
Restriction to the Kummer variety of Pic0(C) (= locus of non-stable bundles) in M

induces the isomorphism ([B1]):

PH0(M,L)
∼=−→ |2Θ0|, and D̃ξ 7→ Dξ

(indeed, for L ∈ Pic0(C) one has H0((L ⊕ L−1) ⊗ ξ) > 0 iff L ∈ L∗
ξΘ or L ∈ L∗

ι(ξ)Θ

iff L ∈ Dξ). Now, by definition, the hyperplane Hξ intersects Pic0(C) in Dξ so that Hξ

intersects M in D̃ξ, as desired.
We must now show that Φξ defines the subspace TED̃ξ of TEM. The divisor D̃ξ is (the

closure of) the image of the (rational) map:

ρ : PH1(ξ−2) −→M, ǫ 7→ [Eǫ]

where Eǫ is the extension defined by ǫ ∈ Ext1(ξ, ξ−1) = H1(ξ−2),

0 −→ ξ−1 −→ Eǫ
π
−→ ξ −→ 0.(3.6.1)

These maps were studied in detail by Bertram in [Be]. We will now assume π : E → ξ
to be surjective, so ξ−1 is a subbundle of E. By specialization the result follows for all
ξ ∈ DE , all E.

We tensor the sequence 3.6.1 by E, obtaining the following sequence for S2E:

0 −→ ξ−2 −→ S2E −→ ξ ⊗ E −→ 0.

Since End0(E) ∼= S2E, the differential of ρ is the natural map:

dρ : H1(ξ−2)/H0(ξ ⊗E) −→ H1(S2E) = TEM, so TED̃ξ = Im(dρ).

Dualizing the sequence above and tensoring it by K we get:

0 −→ ξ−1 ⊗ E ⊗K −→ S2E ⊗K −→ ξ2 ⊗K −→ 0.

9



Now we have:

〈Φξ〉 = Im(H0(ξ−1 ⊗ E ⊗K) = 〈τ〉 −→ H0(S2E ⊗K))
= ker(H1(E ⊗ ξ)←− H1(S2E))∗

= Im(H1(S2E)←− H1(ξ−2))∗.

Therefore we have indeed, as claimed:

TED̃ξ = ker(Φξ).

2

3.7 The previous proposition shows that the line bundleOPicg−1(C)(2Θ)|DE
∼= ODE

(DE)
plays an essential role as regards the map φE. Recall that the divisor DE is invariant under
the involution ι (see 2.2). The following lemma shows how ι acts on the global sections of
this line bundle.

3.8 Lemma. The involution ι gives a splitting in an invariant and an anti-invariant
part:

H0(DE,ODE
(DE)) = H0(DE,ODE

(DE))+ ⊕ H0(DE,ODE
(DE))−

∼= H0(Picg−1(C),O(DE))/〈sE〉 ⊕ H1(Picg−1(C),O).

Here sE ∈ H
0(Picg−1(C),O(DE)) is a section with divisor (sE) = DE .

The map φE factors over the natural map

DE −→ PH0(DE ,ODE
(DE))∗+ (∼= PT ∗

DE
|2Θ|).

The map ψE (the Gauss map) is the natural rational map:

DE −→ PH0(DE ,ODE
(DE))∗−

∼= PH1(Picg−1(C),O)∗.

Therefore both φE and ψE factor over D̄E.

Proof. The exact sequence of sheaves on Picg−1(C):

0 −→ O
·sE−→ O(DE) −→ ODE

(DE) −→ 0

gives the cohomology sequence:

0 −→ H0(Picg−1(C),O(DE))/〈sE〉 −→ H0(DE ,ODE
(DE)) −→ H1(Picg−1(C),O) −→ 0.

It is well known that ι∗ acts as the identity on H0(Picg−1(C),O(DE)) and as minus the
identity on H1(Picg−1(C),O). The remaining assertions are standard. 2
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4 The genus two case

4.1 To determine the Hitchin map in the genus two case, we study first the divisors
DE for general stable E and we study three of the four maps from the diagram 1.2.1 (see
4.5, 4.6). This leads to quite classical geometry involving for instance étale double covers
and tangent conics. Then we can easily determine the fourth map, which is Hitchin’s map
(projectivized and restricted to PT ∗

EM). We then ‘rigidify’ our construction using the
classical Proposition 4.10.

From now on, C will be a genus two curve.

4.2 The main result of [NR1] is that the map

∆ :M
∼=−→ |2Θ| ∼= P3, E 7→ DE

is an isomorphism, so M∼= P3.
In particular, any element in |2Θ| is a DE for some E. Since this linear system is base-

point free, the divisors, now in fact curves, DE are smooth and have genus 5 for general
stable E (a description of the singular curves in |2Θ| can be found in [V]).

4.3 Each divisor in |2Θ| is fixed by ι and for general E, the involution ι restricted to
DE is a fixed-point free involution on a smooth curve. The induced covering

πE : DE −→ D̄E := DE/ι

is an étale 2:1 covering (the associated Prym variety is Jac(C), see for example [V], p.
438). In particular, for general E, D̄E is a smooth genus three curve. From now on we will
consider only such E.

4.4 The kernel of the map π∗
E : Pic(D̄E)→ Pic(DE) is generated by a point α of order

two. One has:
π∗
EKD̄E

∼= KDE
, πE∗ODE

∼= OD̄E
⊕ α.

The adjunction formula on Picg−1(C) shows ODE
(DE) ∼= KDE

. The involution ι gives a
splitting in an invariant and an anti-invariant part:

H0(DE , KDE
) ∼= H0(D̄E, π∗KDE

) ∼= H0(D̄E, KD̄E
)⊕H0(D̄E , KD̄E

⊗ α),

(projection formula) which coincides with the splitting given in Lemma 3.8. In particular,
since H1(Picg−1(C),O) ∼= H1(C,O) ∼= H0(C,K)∗, we have a natural identification

H0(C,K) ∼= H0(D̄E, KD̄E
⊗ α)∗.

11



4.5 We will now write C3 for D̄E, K3 for KD̄E
. The Gauss map on DE then factors

over C3, and on C3 coincides with the natural map

C3 −→ PH0(C3, K3 ⊗ α)∗ ∼= PH1(Picg−1(C),O)∗ ∼= P1

which is therefore also essentially ψE .
The map Sq : |K| → |2K| from diagram 1.2.1 corresponds to the second Veronese map

which embeds P1 as a conic in P2. The (three dimensional) space S2H0(C3, K3⊗α)∗ may
be identified with a quotient of the (six dimensional) H0(C3, 2K3)

∗ (note 2(K3⊗α) ≡ 2K3),
thus we have a diagram (where the last map is a linear projection):

DE
ψE−→ |K|

Sq
−→ |2K|

∣

∣

∣

∣

∣

∣





y

∼=




y

∼=

DE
πE−→ C3 → PH0(C3, K3 ⊗ α)∗ −→ PS2H0(C3, K3 ⊗ α)∗ ← PH0(C3, 2K3)

∗.

4.6 As ∆ : M→|2Θ| = P3, is an isomorphism, the cotangent bundle to M is the
incidence bundle. The map (d∆)∗ induces an isomorphism.

(d∆)∗ : I = {(x, h) ∈ P3 × (P3)∗ : x ∈ h }
∼=−→ PT ∗M and PT ∗

DE
|2Θ| ∼= PT ∗

EM.

From Lemma 3.8 and 4.4 we get:

φE : DE
πE−→ C3

κ
−→ PH0(C3, K3)

∗ ∼= PT ∗
EM

where κ is just the canonical map.

4.7 We show how the various C3’s (= D̄E ’s) fit together as E moves over P3 (=M).
The image S of the map

δ : Picg−1(C) −→ S ⊂ |2Θ0| = PH0(Picg−1(C), 2Θ)∗ = (P3)∗.

(see 3.3) is the Kummer surface of Picg−1(C):

S ∼= Picg−1(C)/ι, ι : L 7→ K ⊗ L−1.

The surface S is a quartic surface and its singular locus consists of the 16 fixed points of ι
(which are the theta characteristics on C).

Moreover, we can view PT ∗
EM as a plane in (P3)∗:

PT ∗
EM = {h ∈ (P3)∗ : E ∈ h }.

Proposition 3.6 shows:

PT ∗
EM∩ S = φE(DE), (with φE : DE −→ PT ∗

EM).

Thus φE(DE) is a hyperplane section of the Kummer surface S, hence a quartic plane
curve. For general E, this curve will be smooth (i.e. the curve D̄E is non-hyperelliptic).
We consider only these E.
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4.8 The curve C3 is now non-hyperelliptic by assumption, so the canonical map κ is
an embedding, and the image of C3 is a smooth quartic in P2. Pull-back along κ gives an
isomorphism H0(C3, 2K3) ∼= H0(P2,O(2)).

Let s, t be a basis of H0(C3, K3 ⊗ α). We define conics Qi in P2 by:

s⊗ s = Q1, s⊗ t = Q2, t⊗ t = Q3

and the essential part (that is, on DE/ι = C3) of Sq ◦ ψE is now:

C3 −→ PS2H0(C3, K3 ⊗ α)∗ ∼= P2,

x 7→ (s2(x) : st(x) : t2(x)) = (Q1(κ(x)) : Q2(κ(x)) : Q3(κ(x))).

Since Sq ◦ ψE = H̄ ◦ φE , we conclude that the Hitchin map is given by:

H̄ : PT ∗
EM−→ PH0(2K) = |2K|, p 7→ (Q1(p) : Q2(p) : Q3(p))

(since κ(C3) = φE(DE) has degree 4, spans PT ∗
EM and H̄ has quadratic coordinate func-

tions, H̄ is determined by its restriction to φE(DE)). Note that the inverse image in PT ∗
EM

of the conic Sq|K| ⊂ |2K| under H̄ is a quartic curve containing φE(DE) and thus is equal
to φE(DE).

4.9 We study the construction above a little more closely and exhibit natural (up
to scalar multiple) subsets of H0(C3, K3 ⊗ α)∗ and H0(K) which correspond under the
isomorphism H0(C3, K3 ⊗ α)∗ ∼= H0(K) that we found in 4.4.

For any a, b ∈ C we have a section as+ bt ∈ H0(C3, K3 ⊗ α), let:

Q(a:b) := S2(as+ bt) = a2Q1 + 2abQ2 + b2Q3.

The Q(a:b) are a quadratic system of conics, each of which is tangent to C3 (that is, has
even intersection multiplicity at each intersection point) because Q(a:b) cuts out twice the
divisor of the section as + bt ∈ H0(K3 ⊗ α).

There are 6 conics Hi, i ∈ {1, . . . , 6}, in the quadratic system of tangent conics which
split as pairs of bitangents. They correspond to the six points

〈si〉 = 〈ais+ bit〉 ∈ P1 = PH0(K3 ⊗ α), with det(a2
iQ1 + 2aibiQ2 + b2iQ3) = 0

(where we now view the Qi as 3 × 3 matrices). In this way obtain 12 bitangents of C3.
The other 16 bitangents are best seen by identifying C3 with a hyperplane section of the
Kummer surface S (4.7). In fact the divisor Θ and its translates by points of order two
map to conics in S, the plane through such a conic intersects S in a double conic, and thus
intersects the plane in which D̄E lies in a bitangent of D̄E .

The following classical result relates these six points 〈si〉 to the Weierstrass points of
the curve C.

13



4.10 Proposition. Under the natural isomorphism from 4.4:

PH0(C3, K3 ⊗ α)
∼=−→ PH0(K)∗,

the six points which correspond to pairs of bitangents are mapped to the six linear maps
corresponding to the Weierstrass points pi of C:

〈si〉 7→ 〈[ω 7→ ω(pi)]〉 (ω ∈ H0(K)).

Proof. We recall the way DE and C can be recovered from H0(C3, K3 ⊗ α). It will be
shown that the double cover of PH0(C3, K3⊗α) branched over the 6 points corresponding
to pairs of bitangents is isomorphic to C, which proves the Proposition.

Since we have (st)2 = (s2)(t2) on C3, the quartic equation of C3 must be:

C3 : Q1Q3 −Q
2
2 = 0.

The curve C5 defined by:

s2 = Q1, st = Q2, t2 = Q3 (⊂ P4)

is a canonically embedded genus 5 curve in P4 (with coordinates x, y, z, s, t and where
x, y, z are a basis of H0(C3, K3)).

Projection onto P2 defines a 2:1 unramified covering π : C5 → C3 and clearly π∗(K3 ⊗
α) ∼= KC5

, so π is defined by α and C5
∼= DE.

From the theory of Prym varieties we have (cf. [M], § 6):

Nm−1(K3) = P+ ∪ P− with Nm : Pic4(C5) −→ Pic4(C3)

and P+, P− are both isomorphic to J(C), the Prym variety of the cover C5 → C3 ([V], p.
438). Here we have:

P+ := {L ∈ Pic4(C5) : Nm(L) = K3, dimH0(C5, L) ≡ 0 mod 2}, and Θ̃ ∩ P+ = Ξ,

where Θ̃ is the theta divisor in Pic4(C5) and where Ξ is the theta divisor of the Prym
variety (actually the intersection has multiplicity 2), so in our case Ξ = C.

A point of C thus corresponds to a g1
4 on C5 with norm K3. The g1

4’s on C5 are cut
out by rulings of quadrics in the ideal of C5 of rank ≤ 4. The hyperelliptic involution on
C corresponds to the permutation of the rulings in the rank 4 quadrics, so the Weierstrass
points correspond to the g1

4’s from rank 3 quadrics.
To a section as+ bt ∈ H0(K3⊗α) corresponds a quadric of rank ≤ 4 in the ideal of C5

given by:
(as+ bt)2 = a2Q2 + 2abQ2 + b2Q3, so (as+ bt)2 = Q(a:b).
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Such a quadric has rank 3 iff det(Q(a:b)) = 0. Thus these rank 4 quadrics are parametrized
by |K3 ⊗ α| and there are 6 rank 3 quadrics that correspond to the pairs of bitangents.
Each quadric is a cone over a 2:1 cover of the plane s = t = 0 branched along the conic
Q(a:b). The rulings of a rank four quadric are the two irreducible components in the inverse
image of lines tangent to the conic Q(a:b); they are interchanged by the covering involution
(s, t 7→ −s, −t).

Any P2 in such a rank 4 quadric thus projects to a line tangent to the conic Q(a:b) and
the divisor cut out by the P2 on C5 maps onto the divisor cut out on C3 by that tangent
line. Hence the norm of the g1

4’s obtained from these quadrics is K3. This shows that C is
indeed the double cover of |K3⊗ α| branched over the six points corresponding to pairs of
bitangents. 2

4.11 The proposition allows us to make ‘consistent’ choices for the coordinate functions
of the Hitchin map asE varies. Let si ∈ H

0(C3, K3⊗α) be the six sections which correspond
to bitangents. Then Hi restricts to s2

i on C3, so if we put:

H̄ : PT ∗
EM−→ P2, p 7→ (H1(p) : H2(p) : H3(p))

then we have a choice of coordinate functions for H̄ which makes sense for any (general)
E.

The only remaining problem is that we can can still multiply each Hi by a function on
M∼= P3 which has poles and zeros in the locus where the map DE → D̄E is not an étale
2:1 map of smooth curves.

5 Computing the Hitchin map

5.1 In the previous section we saw that the polynomials Hi on P3× (P3)∗ defining the
Hitchin map have the property: for any general q ∈ P3,

(Hi = 0) ∩PT ∗
qP

3 = li ∪ l
′
i (PT ∗

qP
3 ⊂ PT ∗P3 = I = {(x, h) ∈ P3 × (P3)∗ : x ∈ h }),

where li and l′i form the pair of bitangents to the smooth curve

C3 := S ∩PT ∗
q P

3

(see 4.7) corresponding to si ∈ H
0(C3, K3 ⊗ α) (i.e. (s2

i ) = C3 ∩ (li ∪ l
′
i)). Here S ⊂ (P3)∗

is the Kummer surface of Picg−1(C) and α is the bundle of order two defined by the étale
double cover of C3 obtained by pull-back from the map Picg−1(C)→ S.

We now consider the problem of finding such polynomials.
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5.2 This problem was actually solved a century ago using the relation between Kummer
surfaces and Quadratic line complexes. The classical solution is as follows.

A line in (P3)∗ with Klein coordinates (see 5.3) (x1 : . . . : x6) ∈ P5 is a bitangent to
the Kummer surface S occurring in one of the six pairs iff there is an i ∈ {1, . . . , 6} such
that the following two equations are satisfied (see Proposition 6.7):

xi = 0,
∑

j 6=i

x2
j

λi − λj
= 0 (j ∈ {1, . . . , 6}),

where the λi correspond to the Weierstrass points of the curve C:

C : y2 = (x− λ1) . . . (x− λ6).

We will show in 5.4 how to derive theHi by ‘restricting’ these two equations to the incidence
bundle I.

5.3 We start with some definitions from line geometry. The Plücker coordinates of the
line l = 〈(Z0 : . . . : Z3), (W0 : . . . : W3)〉 ⊂ (P3)∗ are:

pij := ZiWj −WiZj and G : p01p23 − p02p13 + p03p12 = 0

is the equation of the Grassmannian of lines, embedded in P5. The Klein coordinates of a
line are:

X1 = p01 + p23, X3 = i(p02 + p13), X5 = p03 + p12

X2 = i(p01 − p23), X4 = p02 − p13, X6 = i(p03 − p12).

Note that each Xi corresponds to a non-degenerate alternating bilinear form in the Zi, Wi.
These six bilinear forms give sections Φi of the bundle projection PT ∗P3 −→ P3:

Φi : P3 −→ PT ∗P3 = I ⊂ P3 × (P3)∗, q 7→ (q, ǫi(q)) := (q,Xi(q,−)).

That Φi(q) ∈ I follows from the fact that Xi is alternating: Xi(q, q) = 0. Explicitly, if
q = (x : y : z : t) ∈ P3, then the ǫi = ǫi(q) ∈ P3∗ have the dual coordinates:

ǫ1 = (y : −x : t : −z), ǫ3 = (z : t : −x : −y), ǫ5 = (t : z : −y : −x)
ǫ2 = (y : −x : −t : z), ǫ4 = (z : −t : −x : y), ǫ6 = (t : −z : y : −x).

5.4 We show how to take care of the first equation. Let q = (x : y : z : t) ∈ P3. As
the incidence bundle is the cotangent bundle we have:

T ∗
q P

3 = {(u : v : w : s) ∈ (P3)∗ : xu+ yv + zw + ts = 0 }.

Note that we can rewrite the equation to obtain:

T ∗
q P

3 = {p ∈ (P3)∗ : Xi(ǫi(q), p) = 0 }.
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This implies that the lines in T ∗
q P

3 with Xi = 0 (which form a linear line complex) are
exactly the lines passing through the point ǫi(q) (cf. [GH], p. 759-760).

In particular, if T ∗
q P

3 ∩ S is a smooth quartic curve, and li, l
′
i are a pair of bitangents

as before, then both lines have Xi = 0 and thus they must intersect in ǫi(q).
Let now p ∈ T ∗

q P
3, p 6= ǫi(q). The condition that p ∈ li ∪ l

′
i is equivalent to demanding

that the line 〈ǫi(q), p〉 is one of these two bitangents. The i-th Klein coordinate of this line
is zero because it passes through ǫi(q).

Thus for these lines the first equation is verified. We conclude:

p ∈ li ∪ l
′
i ⊂ PT ∗

q P
3 ⇐⇒ Hi(p, q) :=

∑

j 6=i

x2
j

λi − λj
= 0, with xj := Xj(〈ǫi(q), p〉),

the Klein coordinates of the line 〈ǫi(q), p〉 ⊂ (P3)∗.
The coordinates of ǫi(q) are linear in those of q and so the Plücker coordinates of

〈ǫi(q), p〉 are homogeneous of bidegree (1,1) in those of q and p. Thus Hi is given by a
homogeneous polynomial of bidegree (2,2) on P3 × (P3)∗.

5.5 On the open subset T ∗C3 = C3 × (C3)∗ of T ∗P3 one can obtain a CIHS from the
polynomials Hi as follows.

Let (x, y, z) be coordinates on C3 and let (u, v, w) be the dual coordinates on C3∗.
Then, the inclusion of cotangent bundles followed by the (rational) projectivization map
is given by

T ∗C3 −→ T ∗P3 −→ PT ∗P3

(q, p) := ((x, y, z), (u, v, w)) 7→ (q̃, p̃) := ((x : y : z : 1), (u : v : w : −(xu + yv + zw))).

(Note that the last coordinate is obtained from the incidence condition.) Now we define:

Ha
i (p, q) =

∑

j 6=i

Xj(〈ǫi(q̃) , (u : v : w : −(xu+ yv + zw))〉)2

λi − λj
.

The Hi are homogeneous of degree (2,2), and the last coordinate has degree one in x, y, z
so the Ha

i will have degree ≤ 4 in the x, y, z (and need not be homogeneous in these
variables), but they are still homogeneous of degree 2 in the u, v, w.

With the help of a computer, one can explicitly write down the polynomials Ha
i (the

expressions are rather long though). To verify that these polynomials actually Poisson
commute (with respect to the standard two form dx ∧ du + dy ∧ dv + dz ∧ dw) we again
used the computer (after normalizing three of the λi’s by a linear fractional transformation).
This then allows us to conclude that the map Ha : T ∗C3 → C3 (whose coordinate functions
are any three of the six Ha

i ’s) is a CIHS.
It seems reasonable to expect that the CIHS defined by these Ha

i is actually Hitchin’s
system, but we could not establish that.

17



6 Quadratic Line Complexes

6.1 In this section we recall how the equations for the bitangents are determined. We
summarize the results we need from [GH], Chapter 6 and follow [Hu].

Let G ⊂ P5 be the Grassmannian of lines in P3, so G is viewed as a quadric in P5. For
x ∈ G we denote by lx the corresponding line in P3. For p ∈ P3 and h ⊂ P3 a plane we
define

σ(p) := {x ∈ G : p ∈ lx}, σ(h) := {x ∈ G : lx ⊂ h}.

Both σ(p) and σ(h) are isomorphic to P2, in fact any (linear) P2 in G is either a σ(p) or
a σ(h). Let L be a line in G, then L is the intersection of a (unique) σ(p) with a (unique)
σ(h):

L = σ(p) ∩ σ(h) = {x ∈ G : p ∈ lx ⊂ h}.

We will sometimes write h = hL, p = pL and L = Lp,h. Thus the points on the line L (in
G) correspond to the lines (in P3) in a pencil in h with ‘focus’ p.

6.2 A quadratic line complex X is the intersection of G with another quadric F ; we
assume X to be smooth.

X := G ∩ F.

For any p ∈ P3, the intersection of σ(p) = P2 ⊂ G with the quadric F is a conic in σ(p).
Let

S := {p ∈ P3 : σ(p) ∩ F is singular},

then S is a Kummer surface.

6.3 If σ(p) ∩ F is singular, it is the union of two lines L, L′ or it is a double line. The
double lines correspond to the 16 singular points of S. The points x ∈ L correspond to
the lines in a plane hL passing through p, similarly the points in L′ correspond to lines in
a plane hL′ passing through p. These pencils are called confocal pencils (having the same
focus p). Note that the line l = hL∩hL′ lies in both these pencils; it is called a singular line
of the complex X. This line l corresponds to the intersection of L and L′ in G: [l] = L∩L′.

The singular lines of X form a smooth surface Σ in G.

Σ := {x ∈ X : lx is a singular line in X}.

The set Σ is determined in [GH], p. 767-769:

x ∈ Σ ⇐⇒ TxF = Tx′G for some x′ ∈ G.
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6.4 In Klein coordinates Xi the relation between the points x and x′ above assumes a
very simple form. Any quadratic line complex X can be given by ([GH],p. 789):

G : X2
1 +X2

2 + . . .+X2
6 = 0, F : λ1X

2
1 + λ2X

2
2 + . . .+ λ6X

2
6 = 0, X = G ∩ F.

Then S is the Kummer variety associated with the genus two curve

C : y2 = (x− λ1) . . . (x− λ6).

The equations defining the surface Σ are then ([GH], p. 769)

Σ = G ∩ F ∩ F2, F2 : λ2
1X

2
1 + . . .+ λ2

6X
2
6 = 0.

Let now

x = (x1 : . . . : x6) ∈ Σ =⇒ TxF : λ1x1X1 + . . .+ λ6x6X6 = 0.

Defining

x′ := (λ1x1 : . . . : λ6x6), =⇒ x′ ∈ G, Tx′G : λ1x1X1 + . . .+ λ6x6X6 = 0,

so TxF = Tx′G and x′ satisfies the required condition.

6.5 Lemma. Let x ∈ Σ ⊂ G and let x′ ∈ G as above. Define a line:

L := 〈x, x′〉 ⊂ P5.

Then we have L ⊂ G and

L = Lp,h with p ∈ S, h = TpS,

so that the points y ∈ L correspond to the lines ly ⊂ P3 with p ∈ ly ⊂ TpS. For
i ∈ {1, . . . , 6} let

{[li]} := (Xi = 0) ∩ L (∈ G ⊂ P5).

Then li is a bitangent line to S. Moreover, if p is a general point of S then any bitangent
to S passing through p is one of the six li’s.

Proof. Since x ∈ Tx′G we have L ⊂ G (this is also easily verified using the three equations
defining Σ). Then L = Lp,h with p = lx ∩ lx′ . We claim that p ∈ S. Since σ(p) is a linear
subspace in G passing through x′ we have σ(p) ⊂ Tx′G, and thus also σ(p) ⊂ TxF (= Tx′G).
Thus σ(p) is tangent to F at x, so σ(p)∩F is singular in x. Therefore p ∈ S (and lx is the
singular line of X passing through p).
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Any point on L, distinct from x, can be written as:

xλ := λx+ x′ = (. . . : (λ+ λi)xi : . . .) (λ ∈ C).

It is easy to check by substitution that x ∈ Σ⇒ xλ ∈ Σλ with:

Σλ := G ∩ F (λ) ∩ F
(λ)
2 , (λ 6= −λi)

and where we define:

F (λ) : (λ+λ1)
−1X2

1 +. . .+(λ+λ6)
−1X2

6 = 0, F
(λ)
2 : (λ+λ1)

−2X2
1 +. . .+(λ+λ6)

−2X2
6 = 0.

Thus xλ corresponds to a singular line for the quadratic complex Xλ := G ∩ F (λ).
As above, there exists thus a point x′λ ∈ G with:

Txλ
F (λ) = Tx′

λ
G, x′λ := (. . . : xi : . . .) = x ∈ G.

Therefore xλ and x′λ lie on the line L ⊂ G and thus the point p is a point of Sλ, the
Kummer surface associated to the quadratic line complex Xλ. This holds for all singular
lines x of X (and thus for all points p ∈ S), therefore we conclude:

S = Sλ.

In particular, there is a one-dimensional family of quadratic line complexes Xλ which give
rise to the same Kummer surface, the so called Klein variety (see [NR1] for a modern
treatment).

Now we can determine h. Each xλ ∈ L is a singular line for a quadratic line complex
defining S. Then the line in P3 corresponding to it is tangent to S at the (unique; cf.
the verification on p. 767 of [GH]) point pλ ∈ S with xλ = Sing(σ(pλ) ∩ F ) (cf. [GH], p.
764-765, p. 791). In our case, pλ = p for all λ, so we conclude that L is the pencil of lines
in P3 that are tangent to S at p, which implies h = TpS.

The lines from L that are bitangent to S are thus the bitangents of the curve TpS ∩ S.
This is, in general, a plane quartic curve with a node at p, so there are six bitangents to S
in the pencil L. These must then correspond to the values λ = −λi, since for other values
the lines xλ are singular lines of a smooth quadratic line complex and cannot be tangent
to S at other points. Thus the bitangent lines in TpS passing through p correspond to the
points on L with exactly one Klein coordinate equal to zero. 2

6.6 Remarks. Viewing S as Picg−1(C)/ι, the divisors TpS ∩ S (for p smooth) corre-
spond to the divisors

Dβ := L∗
βΘ + L∗

−βΘ ∈ |2Θ|, (β ∈ Pic0(C))
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with 2β 6= O. These are the union of two copies of C (= Θ) meeting in two points.
These two points, and the two copies, are interchanged by ι, the quotient is a nodal curve
isomorphic to C with the two points identified. The normalization of TpS ∩ S is thus
isomorphic with C. The six bitangents to C correspond to the lines spanned by p and (the
image in TpS ∩S) of a Weierstrass point of C. This, once again, establishes the connection
between bitangents to S (and its plane sections) and Weierstrass points on C.

The 16 non-reduced divisors L∗
β(2Θ) ∈ |2Θ| (so 2β = O) map to double conics. A point

on a double conic is ‘exceptional’ for the Lemma since any line tangent to S at a point of
the conic lies in the plane of the conic and is thus a bitangent to S. These (double) conics
are called the tropes of the Kummer surface.

The ‘self’-duality of the Kummer surface S = δ(Picg−1(C)) fits in nicely with the
map δ : Picg−1(C) → |2Θ|0 from 3.1, the duality between |2Θ0| and |2Θ|, and the map
δ′ : Pic0(C)→ |2Θ|, β 7→ Dβ. In fact, it identifies the tangent planes to points of S (which
cut out Dβ) with the points ±β ∈ Pic0(C)/±1 ∼= δ′(Pic0(C)) which is the Kummer surface
of Pic0(C). This surface is isomorphic to S = Picg−1(C)/ι, but the ‘self’-duality is however
not an isomorphism; it is a birational isomorphism which blows up double points and blows
down tropes.

The special case that the line L in the Lemma actually lies in X is studied in [GH], p.
791-796 (note that they fix the quadratic line complex whereas in the proof of the Lemma
we consider a family of complexes).

6.7 Proposition. For x ∈ G the line lx is a bitangent to a general point of S iff for
some i ∈ {1, . . . , 6} one has:

xi = 0,
∑

j 6=i

x2
j

λi − λj
= 0.

Proof. In Lemma 6.5 we saw that any such bitangent lz of S has one Klein coordinate
equal to zero, we will assume it is the first one. Then

z = (0 : (−λ1 + λ2)x2 : . . . : (−λ1 + λ6)x6) with x = (x1 : x2 : . . . : x6) ∈ Σ,

in particular x ∈ X = G ∩ F . Substituting the coordinates of z in the second equation we
get:

(λ1 − λ2)x
2
2 + . . .+ (λ1 − λ6)x

2
6 = λ1(x

2
1 + . . .+ x2

6)− (λ1x
2
1 + . . .+ λ6x

2
6) = 0.

Conversely, let z = (0 : z2 : . . . : z6) ∈ G satisfy also the second equation above, so:

z2
2 + . . .+ z2

6 = 0, (λ1 − λ2)
−1z2

2 + . . .+ (λ1 − λ6)
−1z2

6 = 0.
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Then we define:

xi := (λ1 − λ2)
−1zi, (2 ≤ i ≤ 6), x1 :=

√

−(x2
2 + . . .+ x2

6),

here the choice of the square root does not matter. Define

x := (x1 : x2 : . . . : x6), so x2
1 + . . .+ x2

6 = 0

and we have x ∈ G (the quadric defined by X2
1 + . . .+X2

2 .)
We claim that lx is a singular line of S. For this we verify that x satisfies the other two

quadratic equations defining Σ. First of all:

λ1x
2
1 + λ2x

2
2 + . . .+ λ6x

2
6 = −λ1(x

2
2 + . . .+ x2

6) + λ2x
2
2 + . . .+ λ6x

2
6

= (λ1 − λ2)x
2
2 + . . .+ (λ1 − λ6)x

2
6

= (λ1 − λ2)
−1z2

2 + . . .+ (λ1 − λ6)
−1z2

6

= 0,

so x ∈ F . We use these two relations on the xi’s to obtain the third:

λ2
1x

2
1 + . . .+ λ2

6x
2
6 = (λ2

1x
2
1 + . . .+ λ2

6x
2
6)− 2λ1(λ1x

2
1 + . . .+ λ6x

2
6) + λ2

1(x
2
1 + . . .+ x2

6)
= (λ1 − λ2)

2x2
2 + . . .+ (λ1 − λ6)

2x2
6

= z2
2 + . . .+ z2

6

= 0,

since z = (0 : z2 : . . . : z6) ∈ G. Thus x ∈ F2 and we conclude x ∈ Σ, so we verified that lx
is a singular line. Note that (with notation from 6.4):

x′ = (λ1x1 : . . . : λ6x6), so z = −λ1x+ x′

and thus lz is indeed a bitangent to S (see the proof of the Lemma). 2

References

[B1] A. Beauville, Fibrés de rang 2 sur une courbe, fibré déterminant et fonctions
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