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1 Introduction

1.1 There is a well known procedure which associates to any cusp form f on
the congruence subgroup I,(N) of SL,(Z), which is an eigenform for the
Hecke algebra, a representation a(f) of Gal(@Q/@Q) on a two dimensional
vector space over a finite extension of @, (for any prime number 1) [D].
Moreover, one has an equality of L-series:

L(f,5)=L(a(f),5) .

In case the weight of fis 2, this Galois representation is in H'(Xo(N)g, Q;), the
first etale cohomology group of the modular curve Xo(N). The modular forms
of weight two on I',(N) correspond to the cohomology classes in H!(I',(N), C).

In this paper we give some evidence for the fact that a certain cohomology
class ue H3(I'y(128), ), with now I',(N) the subgroup of matrices in SL;(Z)
with a,; =a3;=0mod N, is related to a (compatible system of i-adic) three
dimensional Galois representation(s) o. Related means that the local L-factors
of u and ¢ coincide for all primes p, 3<p=<67 (cf. Proposition 3.11). (Using
faster programs/computers and/or more patience one could try to verify the
equality for more primes.) In the next section we explain how the local
L-factors of u are computed.

Such a relation between certain cohomology classes u and Galois repres-
entations had been conjectured by Langlands and Clozel, see [C1, Conjecture
4.5]. (In fact, u should correspond to a cuspidal automorphic representation
n, of GL; . In our case, 7, is not selfdual in the sense that 7, Zn, ® (¥ ° det),
with 7, the contragredient of n, and Y a grossencharacter).

Some 10 years ago Ash already tried to find examples, lack of computer
power at that time probably prevented him from finding the example below.
In a subsequent paper we hope to discuss more examples.
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1.2 Assume there is a number field K = €, a prime A in K and a A-adic Galois
representation corresponding to m,. Then one expects it to be unramified
outside p=2 (in general: unramified outside the primes dividing N) and [, with
Al To construct the compatible system of Galois representations we search
for suitable subspaces ¥, = H(Sg, K ) for a certain algebraic variety S defined
over Q, with good reduction outside p=2. These subspaces should be motivi-
cally defined (that is, should be cut out by correspondences). In particular, one
also has a V,, « H'(S(C), K).

Then V,,, ¢:= Ve @ k€ = H'(S(C), €) and one defines the Hodge numbers
of V,, to be h??:=dim V,, ¢ nH?%(S(C)). These Hodge numbers ought to
correspond to the infinity type of ,. In this case they should be: h*°=h'1 =
h®2=1 (cf. [AS, p. 216]).

This suggests looking at the H? of surfaces (in fact by the Lefschetz
hyperplane theorem, the H? of a variety of dimension = 3 maps injectively to
the H? of a suitable surface in it). Since the coefficients of the local L-factors
are in Z[i], we will look for 6-dimensional spaces 7; = HZ(SQ, @Q,), such that
the Hodge numbers of T, are h*°®=h"!=h"2=2 Moreover we want an
automorphism ¢ of order 4 on S, defined over @Q (so on H?, ¢* commutes
with the action of Gal(Q/®)) and which has the eigenvalues i and —i, each
with multiplicity 3, on T; ® ¢, Q;. Then we get three dimensional Gal(Q/Q)-
representations of the desired type on each of the two eigenspaces. The
construction of a suitable S and ¢ is given in section 3. In the last section we
discuss variants of our constructions and related questions.

Finally we would like to mention that in [APT] a (unique) Galois
representation p: Gal(@Q/@Q)—-GL;(IF;) is constructed which has the same

L-factors (mod ./ — 3) for small primes as a certain automorphic representa-
tion on GL;, this provided the first evidence that there might be Galois
representations on A-adic vector spaces associated to such automorphic
representations.

2 The automorphic representation
2.1 The automorphic representation of GL; we consider is defined by a cus-
pidal cohomology class in H3(I,(128), €). The subspace of all cuspidal classes

is denoted by H, (I'5(N), €) (cf. [AGG, Sect. 2 and the references given there]).
There is a surjective map [AGG, Lemma 3.5]:

Hy(Io(N), ©)—~H (Io(N), ©)*

(with a ‘known’ kernel). The space H;(IH(N), €) can be computed explicitly
using results of [AGG]:

2.2 Proposition. For any integer N, we define a complex vector space
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W (I5(N))
———{]PZ(Z/NZ)—I*C f(X, A Z)zf(Z, X, Y)=—f(‘y, X, Z), } )
f(x, Vs Z)+f(_y’ X—Y, Z)+f(y“X, —X, Z)=O

Then there is a natural isomorphism

@: W (Io(N))=Hs(I(N), T) .

2.3 The (commutative) Hecke algebra 7y is generated by linear maps
E,, F,: H3(Io(N), €)= H>(IH(N), €)

for primes p, (p ¥ N) [AGG, Proposition 4.1]. The action on H;(I',(N), C) of
the adjoint of a Hecke operator can be computed, using Proposition 2.2, with
modular symbols [AGG, Sect. 4, 6B].

2.4 Let ueHgs(I“ o(N), €) be an eigenclass for all Hecke operators, and define
complex numbers (actually algebraic integers) by

Eju=ayu, then L(n, s)=(1—a,p *+ap' >*—p3 3!
is the L-factor at p of the cuspidal automorphic representation =, correspond-

ing to u (and F,u=a,u).

2.5 By explicit (computer) computation we determined in this way the exist-
ence of a unique (up to scalar multiples) eigenclass ue H (I, (128), €) which
satisfied:

Eju=au, Q(...,a,...)=Q(3).
The explicit values we found are listed below (the a, are all in Z[2i]):

las | as |a7 l agy l a3 lanl Qg Iazs | Qazg |

|1+2i | —1—di [1+4i [—7-100 |~ 1441 | 7 |1-14i [17-4i |—9—12i]

‘a31| aszq |a41| Qa3 | (Y] | as3 | Qsg | Qae1 I Qae7 |

| 1| —25+28i] =57+ 30i |17+ 40 [23 - 20i | — 39 + 22i 63 + 20i |65 — 221

(m, is not selfdual since there is no Dirichlet character y with a,=x(p)a,for all p.)

3 The Galois representation

3.1 A minimal surface S with h?°=dim H°(S, 23)=2 has a (rational) canoni-
cal map

K: S—»PHO(S, Q3 )=P' .
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The fibers of k are the effective canonical divisors on S. If F is such a fiber, the
adjunction formula shows that F2=p,(F)— 1, with p,(F) the arithmetic genus
of F [BPV, IL.11). If the fibers are elliptic curves, F2=0 and so the canonical
pencil is base point free. In that case k is thus actually a morphism.

If the fibration is not isotrivial (that is, the period map is not constant),
then there are no non-constant maps from S to an abelian variety X and thus

0=dim Albanese(S)=dim H(S, 24)=h"°, so h'(S)=h3(S)=0.

(A map S—X must factor over a map IP'— X, which is constant; otherwise
either X is isogeneous to k™ !(t) x X', but as the moduli of the x~!(t) are
non-constant this is impossible or x ~ ! (£) maps to a curve of geometric genus 0,
but these always map to a point in an abelian variety (consider the induced
map on the Picard varieties).) Thus we have y(0s)=1—0+2=3, and the
Noether formula x(0s)=(1/12)(cZ(S)+c5(S)) (cf. [GH, Chap. 4.1]) (with
c2(S)=0 since K2=0 and c¢,(S)=yx(S) since S is a surface (Gauss—Bonnet
formula, [GH, Chap. 3.3])) we find:

x(S)=36, so h3S)=34.

If S is such a fibration with a section, there is an involution on S, fiberwise — 1
on the elliptic curve, and S modulo that involution is a rational surface.
Examples might thus be found among double covers of P? ramified along
a curve of degree at least 8 (to get h2'°> 1) and suitable singularities (to get
h?°<3).

3.2 The following surfaces were first studied by Ash and Grayson (actually we
have a slightly modified form). Let S, be the (projective) minimal model of the
2:1 cover of IP? defined by the (affine) equation:

2=xy(x*=1)(y* =) (x> —y*+axy) (aeZ—{0}).

Over @, the branch curve B is a union of 8 lines, it has 16 double points,
2 triple points ((1:0:0),(0:1:0)) and one fourfold point (P:=(0:0:1)). The
fourfold point imposes one adjunction condition, so h?°(S,)=2, and the
(rational) canonical map is given by the pencil of lines through P. The fibers of
the canonical map are thus elliptic curves, so h%(S,)= 34, h'(S,)=0.

Let S, be the (singular) double cover of IP? defined by the affine equation
above. Over the double and triple points of B it has singularities of type
Ay and D, respectively, resolving them gives a P! respectively 4 IP*’s in
S, over such a point (if we call these P'’s Dy, ..., D3 then Dy-D;=1 and
D;-D;=0if 1<i, j<3), see [BPV, IIL.7]. Using the method of desingulariz-
ation described there one obtains an elliptic curve Ep over the fourfold point.
The equation of Ep is easily found since Ep maps to the exceptional fiber
D over P in the blow up of IP? in P and ramifies over the four points where
D meets the strict transform of B.
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3.3 The Neron-Severi group NS(S,) of S, contains, over @, a 28-dimensional
space Ng spanned by the following divisors: the pull-back of a line on IP?, the
16 P*’s mapping to the 16 double points of B, the 2-4 IP'’s mapping to the
2 triple points, the fiber Ep over the fourfold point, a IP! mapping to the
diagonal x =y and a IP! mapping to the ‘anti-diagonal’ x = — y (note that the
inverse image of the diagonal and ‘anti-diagonal’ are reducible in S,). That
these divisor classes are independent in NS(S,) ®z Q follows from the fact
that the matrix of their intersection numbers has rank 28, which is not hard to
verify.
For any I, we define a Gal(Q/Q)-subrepresentation of H %(Sq, g, Qi) by:

Ng,:=Image(Ng ®z Qi—>H?*(S4,q, Q) -
Let T, be the orthogonal complement of Ng, w.r.t. the intersection form, then:
Hz(sa,Q, Ql)z TQ, ® NQ, 5

a direct sum of Gal(Q/®Q)-representations, in particular dim Tg,=6.

3.4 The map:
(x, y, )—(y, —x, t) induces ¢: S,—S,,

an automorphism of order 4, defined over Q. Let 7,, be the orthogonal
complement of NSg in HZ?(S,(C), @), then its Hodge numbers are
h*%=p'1=hp%2=2, in particular H>°(S,) = T,;, ¢-

Since

H>°(S,)=H(S,, Q5)=H (P2, O(1)(— P))=<x, )

(cf. [BPV, I1I, Theorem 7.2) the map ¢ has eigenvalues i, —i on H>'°(S,)) (and
thus also on H%2(S,)). To show that the remaining two eigenvalues of ¢ on
T,, are also i and —i it suffices to show that ¢2>= —I on T,,. Note that the fixed
point set R of ¢ on S, consists of the (disjoint) union of Ep, E,, and two P'’s,
one over each triple point. Thus y(R)=4 and since y(S)=2y(X)—x(R) (with
X =S/$?*) we have y(X)=20. Since H'(X, Q)= H(S, Q)**=/, ¢* has 18 eigen-
values + 1 and thus 16 eigenvalues — 1 on H2(S, Q). It is easy to check that ¢ 2
has trace 8 on Ng (in fact, the only contributions come from the pull-back of
a line, two IP*’s (only one of which is pointwise fixed by ¢ 2) over each triple
point, Ep, the P! over a diagonal and the IP! over an anti-diagonal). Thus
there are 18 eigenvalues + 1 and 10 eigenvalues — 1 on Ng. Therefore we have
¢2=—Ion T,.

3.5 Using the basis of Ng and h' =0 it is easy to find a formula for the trace
of Frobenius acting on Tg, using the Lefschetz trace formula. Let E:
w2=0v(v2+av—1),it is the curve in S, over the line at infinity in IP2, moreover
Ep~gE,. Then we have:
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3.6 Proposition. Let F,eGal(Q/Q) be a Frobenius element at p, with
p ¥ 2a(a®+4). Then:

Trace(Fj | Tg,) =Ny (Sa) +2N,(E,,)—q*—2q(1 +6") ,
with q=p", the Legendre symbol 6:=(%) and
Ny(Sa)=#{(x, y, )1 2 =xy(x> =) (y> = (x>~ y*>+axy)} ,
NJEp)=#{(v,weF2 w2=v(w*+av—1)} .

Proof. We will calculate the number of IF,»-rational points on S, in two ways.
Firstly, the Lefschetz trace formula implies that it equals

1+p2"+Trace(F}| Ng,) + Trace(F}| Tg,) -

The 8 elements in Ng, coming from the IP'’s over (x, y)=(+1, £ 1), (+1,0),
(0, +1) each contribute p" to this trace w121i1e the other 8 IP!’s over double
points bring in a contribution 4p”"(1+(“5*)"). One pair of such double

points is for example Q. =(£./a*+4, 1); thus the IP!’s over them are inter-
changed by Fj if a>+4 is not a square in IF,», and then their contribution to
the trace on Ng, is zero. In case a®+4 is a square, the IP!’s over them are
defined over IF - and thus their classes are multiplied by p" by F}. (Note that if
a?+4 is not a square in IF,, then there are no IF,-rational points over Q)
Next we obtain 8p” from the IP!’s over the two triple points and p" from the
curve Ep. The contribution from the remaining three cycles is (1+2(5)")p"
(the two components C;, C, over a (anti)diagonal being rational iff a is
a square in JF,», and the sum of the two components is the class H of the
pull-back of a line; thus if two such components are interchanged, F;C, =
p"C,=p"(—C;+H) and the contribution to the trace is —p"). Hence the
number of rational points is:

2 4 n n
1+p2"+18p"+4<1+<a : > )p"+2<3p> p"+Trace(Fp| Tg,) -

Now we simply try to count points. On the elliptic curve over infinity we find
Np(E,)+1 of them. Each of the configurations over the triple points yields
4(p"+ 1)— 3 points (the points on the 4 D;’s, minus the points counted double).
On the affine part minus what is above the (rational) double points arzld the
fourfold point of the configuration one finds N,»(S,)—9—4(1+(%52)")
points. Then there are the contributions one obtains over the double points,
which add up to 8(p"+ 1)+ 4(1+(%5%)") (p"+1). Lastly, on the elliptic curve
Ep there are Np»(E, )+ 1 points. Adding everything yields as a second expres-
sion for the number of IF,--rational points on S,

2 4 n
2Np»(Ew)+Np-(Sa)+16p"+4<1+<a : > >p"+1 .

Combining the two formulas proves the proposition.
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3.7 To determine the eigenvalue polynomial of F, on Ty, one would have to
compute the number of points over IF, for i=1,.. ., 6, but in fact one can
take i < 3. Indeed, if « is an eigenvalue of F,, then so is & and a@ = p>. Moreover
Det(F,| To,)=p®, in fact by the previous remark it remains to show that the
number of eigenvalues — p is even. Take a prime [ with \/ —1¢@,. Then Tg, is
a three dimensional @Q,(¢) vector space since ¢p*>=—1I on Tp,. As ¢ and
F, commute, the kernel of F,+p is also a Q,(¢) subspace and thus has even
dimension as @, vector space.

Therefore the eigenvalue polynomial of F, on Tg, looks like:
Hy=X%—c; X+, X*—c3X3+p2c, X2 —p*c; X +p°.

Since the Galois representation on Tg, is reducible (after adjoining an i=./—1
to @, if necessary), say

To=V1®V,, let o;: Gal(Q/Q)>GL(V;)

be the corresponding Galois representation. Then we have a factorization (in

ZL1X]):
H,=(X3—7(p)b,X*+px(p)*b, X —x(p)*p*)
(X3 —1(p)b, X 2+ pr(p)2b, X —1(p)*p?) -

Here y is a Z[i]*-valued Dirichlet character unramified outside 2a(a?+4)
(it is a Tate-twist of the determinant of the Galois representation on V) and
we write x(p)b, rather than b, to emphasize that we consider g, to be a twist of
the desired representation.

In the case a=2, computing points on S, over IF,. for p=3,5and i=1, 2, 3
determined H,; and Hs and revealed that y(3)= — 1, y(5)= + 1. This suffices to
determine y (note that for a=2 it is ramified only at 2) and one has

1(p)=1 ifp=1,3mod8, x(p)=-1 if p=5Tmod8.

In particular, the number of points over IF, and IF,: determines the b,’s for
larger primes. For each p we then have a set {b,, b,}, but a more careful
analysis is necessary to determine which cubic factor of H, is (minus) the
eigenvalue polynomial on ¥;. This will be done in 3.8-3.10 below.

3.8 To find out which factor of H, is the eigenvalue polynomial of a,(F,),
assume for simplicity that /=1mod4 and fix i=,/—1€@Q,. (Without this
assumption one needs to adjoin a square root of — 1 to Q;; this doesn’t change
to following argument.) Note that 1 —i¢ as a linear map on Tg, has as image
V1, and it acts by multiplication by 2 on V;. Hence for a Frobenius element
F,eGal(Q/Q) at p one finds

2 Trace(F,|V,)=Trace(F,|(1—i$)Tg,)
=Trace(F,| Tg,) —iTrace(F,¢ | Ig,) .
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One calculates the second term here by using a comparison isomorphism

HZ(SaQa Ql) = HZ(SHE, Ql)
U U
Ty, 5 T‘)l .

Take fpeGal(E,/ IF,) the usual Frobenius, then
Tace(F,¢ | Tg,)=Trace(f,¢ | Tg,) -

The latter trace is just the trace of Frobenius on a twist of TQ,, namely the one
obtained by taking the quotient

82" = Sa X specqr,) SPEC(IF )/ (¢ X )

and taking the piece in H 2(8:"?, @) corresponding to T&
Recall that an affine equation for S, is given by

t2=xy(x?—y?+axy)(x2-1)(y*-1).

A similar equation for S;* is obtained as follows. Put IF,+=1IF,(x). Then
t, u:=ozx+oc”y—o¢”2x—ap3y=(oz-apz)x+(oc"—oc”3)y and vi=ay—alx—
aP’y+aP’ x=—(@’—aP’)x+(x—aP’)y generate the function field of S* over
F,. Note that u, v are the I s(x, y)/IFps(x, y)<**/»’-traces of ax, ay, respect-
ively. Since u, v are linear expressions in X, y, the equation for S, yields by
substitution the desired equation for S;*, namely

t2=G(u, v)

with G(U, V)eFF,[U, V'] of degree 8. This leads to the following analogue of
Proposition 3.6.

3.9 Proposition. With notations as above, for primes p ¥ 2a(a®+4) one has
Trace(F,¢ | Tg)=N,(S:*)—p? .
Here N,(St*)= #{(t, u, v)eF " | t2=G(u, v)}.

Proof. We proceed as in the proof of Proposition 3.6. Apart from a change of
the action of Frobenius, the configuration of lines in IP? is identical. Note that
Frobenius permutes the 16 double points here in cycles of length 4 (both in the
case that a + 4 is, or is not a square in IF*). Similarly Frobenius interchanges
the two triple points. This implies that on the 24-dimensional space in H?
generated by the cycles over these points Frobenius has trace 0. From the fact
that in this twisted case Frobenius interchanges the pull backs of the lines
x=y and x= —y one concludes that the trace on the 3-dimensional space
generated by components of these pull backs we have trace p. There is also
a contribution p from the elliptic curve Ep, hence the number of IF -rational
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points equals
14 p?+2p+Trace(F,¢ | Tg,) -

Now we count points in the more naive way. First observe that there is no
contribution from any of the cycles over double or triple points. The contribu-
tion from the two elliptic curves E,, and Ep turns out to be remarkably easy
here: using the transformation from (x, y) to (u, v) coordinates one finds that
the two curves are not isomorphic as in the previous case, but they are
non-trivial quadratic twists of each other. Hence the sum of their rational
points (over IF,!) equals 2p+2. So a second formula for the number of
IF,-points is

N(S)—1+2p+2=Ny,S¥)+2p+1.
This easily implies the proposition.
3.10 We consider again the representation o; on V;cTp, and let
1(p)b,eZ[i] be the trace of g,(F,) as in (3.7). Then we just found:
x(p)b,=4%Trace(F,| Tg,)—%i Trace(F,¢ | Ty,) ,

and the Propositions 3.6 and 3.9 provide easy formulas to compute these
numbers explicitly at least for small primes p.

Since the L-factors of eigenclasses in H 3(I1(128), €) have a term —p3~3¢
and we want a Galois representation with the same L-factors, we define:

&1 Gal(Q/Q)~Gal(Q(/—2)/Q)—{+ 1}, thus: &(F,)=x(p) *(=x(p)) .

The eigenvalues of F, on Tg, ® ¢ (note the abuse of notation) are the ones of
F, on Tg, multiplied by x(p)~*. The 3-dimensional Galois representation to be
considered is:

=0, ® ¢ Gal(Q/Q)-»GL(V; ®¢) .
Let P, be the eigenvalue polynomial of ¢(F,) then
P(X)=X3—b,X?+pb,X—p3, and L,o,s):=P,(p ) ".

(This twisted Galois representation occurs in the H? of the surface S7 whose
equation is obtained by replacing t? by — 2t in the equation defining S, with
a=2)

3.11 Proposition. Let o be the three dimensional Galois representation obtained
from S, as above, let ue H3(I'y(128), €) be as in 2.5 and let m, be the correspond-
ing automorphic representation of GL3 ¢. Then:

L ,(0,s)=L,(n,,s) for 3<p=<67.

3.12 Remarks. 1. Arranging the points on S;” in orbits under ¢ one finds
using Proposition 3.9 that in fact b,eZ[2i] for all p ¥ 2a(a®+4).
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2. In the case a=¢=2 the representation ¢; yields an example of a 3-
dimensional, non-selfdual, irreducible Galois representation which is unrami-
fied outside 2. Indeed, for a general aeZ the surface S, has good reduction at
every prime p ) 2a(a’+4). Hence an inertia group at p acts trivially on
H?*(S,p, @) and on ‘our’ ¥, whenever p 4 2¢a(a®+4). In particular in case
a=¢ =2 one obtains a representation unramified outside 2. Moreover, in that
case the characteristic polynomial of a Frobenius element at the prime p=35 is

Ps=X3+(1+4)X2+5(—1+4i)X —125 .

As remarked earlier, from this one concludes that the representation is
non-selfdual, because (— 1 —4i)/(— 1 +4i) cannot be the value at 5 of a Dirich-
let character.

If the representation were reducible, then it would have a one dimensional
quotient or a one dimensional subrepresentation. Now one dimensional
Gal(Q/@Q)-representations are up to a finite character given by a power of the
cyclotomic character. However, one can verify that the zeroes of Ps are of the
form —1—=2(*—=¢*+{540)=2i(1 +L+ {1 +L5+ (%), for a primitive
13th root of unity {. Such a zero generates a cubic extension of Q,(i), and is
not a power of 5 times a root of unity. This shows the (absolute) irreducibility
of the representation.

4 Generalizations and problems

4.1 Besides the surfaces S, we have various other families of surfaces which
have sub Galois representations of the desired type in H2. For example, let
&, be the Neron model of the elliptic surface

E Y2=X(X2+2a(t2+ )X +1).

It has 5 singular fibers, one of type I and 4 of type I, and it has a section of
infinite order. Next one pulls back & along a 3:1 or 4: 1 Galois cover P! > P}
branching over two of the I, fibers. The Neron-Severi group of the pull back
has rank (at least) 28, and we can again define Tg’s as before. In this case
however, the representations we find seem to be selfdual (we found b,=b, for
small p, if true for all p this would imply ¥; = V,), and in one case we could
actually find a 2-dimensional Galois representation p such that Sym?(p) has
the same b,’s for small p’s.

4.2 Another example is provided by the Neron models of the elliptic surfaces
ELyi=x3+a(x+t2(t—1))2.

These have one I¢, one I3 and three I, fibres as well as a section of infinite
order. Pulling them back as in the previous example one again obtains
6-dimensional Galois representations, which split in two 3-dimensional pieces,
which now are not selfdual in general (actually for the 4:1 cover, one has to
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modify the construction of T since the surface itself has #2°°=3 in that case).
We hope to relate also these surfaces to automorphic representations of GL.

4.3 One can also try to generalize Serre’s work and conjectures on mod p
Galois representations and mod p modular forms from GL, to GL;. Promis-
ing experimental evidence has been found by Ash and McConnell, [AM].
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