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1 Introduction

L.1 Let X be an abelian variety over € and let K be an imaginary quadratic
field with

K CEnd(X)® Q.

The action ¢ of K on TyX, the tangent space at the origin of X, can be
diagonalized thus, w.r.t. a suitable basis of TpX:

(k) = diag(a(k),...,a(k),a(k),...,5(k)), (k€ K)

with o : K — € an embedding of K. We say X is of type (p,q) if there are
p entries o(k) and g entries T(k).

In case X has type (p, p), Weil [W] constructed a two dimensional sub-
space W C BP(X) := H?(X,Q) N HP?(X). For general X, dimX > 2, of
type (p, p) one has in fact:

dmNS(X)g =dimB'(X)=1, BP(X)=DP(X)® W,

here DP(X) := Im(B'(X)? — BP(X)), (®1,...,@p) + @1 A -+ A w,. In
particular such an X has Hodge classes which are not obtained as intersections
(cup products) of divisors classes. In [vG2] we gave an elementary introduction
to these abelian varieties.

1.2 For certain abelian varieties X of Weil-type with field K = Q(i), Q(w),
@® = —1, C. Schoen [S] gave a construction for algebraic cycles on X whose
classes span W.

In this paper we use theta functions to construct algebraic cycles on certain
abelian 4-folds of Weil type. In fact we show that in the case under consid-
eration the abelian varieties allow a rational map onto a smooth quadric Q in
IPS, the classes of the inverse images of the rulings of Q give classes which
do not lie in D?.
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Theorem 3.7 Let X be an abelian 4-fold of Weil-type (2,2), with field Q(i)
and det H = 1.

Then the space W of Weil-Hodge cycles is spanned by classes of algebraic
cycles.

1.3 We refer to 2.1 and [vG2] for the explanation of ‘det /. It turns out, see
5.2, that the abelian varieties we consider are among those studied by Schoen
[S], however, our method is different. We don’t know how the cycles obtained
by us and Schoen are related.

2 The abelian varieties

2.1 The abelian varieties of Weil-type we consider were introduced in [vGl],
10.6,10.7. Let Sy, be the Siegel upper half space of (2n) x (2n) complex,
symmetric matrices whose imaginary part defines a positive definite quadratic
form on R?" and let

T T12 ¢
Hy, ==t = €Sy, :TI ES,, T2 =112

—T12 T

o)

We will write vectors as row vectors. The abelian varieties are then defined
by: X = X, := C*"/(Z*Q.) with T € Hy,. The equality:

and

0 I
. -1 0 0 I
MQ, = Q.A, with M = , A:= ,
0 I
-1 0
shows that X; has an automorphism ¢ of order four with:
¢: X, — Xy, ¢. =M € End(H(X:,Z)), dp = A € End(ToX:) .

Note that the eigenvalues of d¢ are i and —i, both with multiplicity n, thus
the X, are of Weil-type (n,n).

The principal polarization E : AN H{(X,Z) — Z on X, is given by an
alternating 4n x 4n matrix of the same shape as 4, but with four 27 x 2n blocks
rather than n x n blocks. A simple computation verifies that ¢. preserves the
polarization:

E(¢ux,$xy) =E(x,y) (Vx,y € Hi(X,Z)).

The space H;(X, Q) has the structure of a Q(i)-vector space via the action
of ¢.. Define:

H:H(X,Q) x Hi(X,Q) — Q();  H(xy):=E(x ¢xy) +iE(xy).
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Then H is a Hermitian form (H(x,y) = H(y,x) and H(x,¢$,y) = iH(x, y))
and its determinant (modulo norms of elements of @*) is an isogeny invariant.
An easy computation shows that

detH=1.

2.2 We recall the definition of theta functions with characteristics m,m’ € IRY
(cf. (1], p. 49):

Omm(1,2) = 3 exp(mi[(k + m)t'(k + m) + 2(k + m)'(z + m")]),
kezs
here 1 € Sy, z € €Y. The zero locus of the function 00,0(t,z) (Riemann’s
theta function on X;) in €Y defines a symmetric divisor ©, C X,. The pair
(X1, 0(©,)) is a principally polarized abelian variety. Thus the Riemann theta
function is the pull-back of a global section of O(0.) to €Y. If X, = X,/ one has
0(20.) = O(20.), thus this line bundle is canonically defined (intrinsically:
the unique totally symmetric line bundle algebraically equivalent to twice the
principal polarization).
We define theta functions with half integral characteristics:

0 [;",] (t,2) 1= Oppmp(t.z)  for mym' € {0,1)9 .

Let o the point of order two in X, defined by (m + tm’)/2 € €7 and let
(©;), be the translate of @, by a. Then the function 0,1 is a basis of
H°(X;,0((0;),)). The 29 functions:

0 [’(’;] (21,2z), me {0,1)¢

are a basis of H(X;, 0(20,)).

From the definition of the theta function one easily proves the following
lemma, which gives the action of ¢* on global sections of certain line bundles
on X; and which gives a formula for the maps

(1-¢)" : H'(X,0(0,)) — H(X,0(26)),
for the translates @, of ® with « € ker(1 — ¢).
2.3 Lemma. For ¢, ¢; € {0,1}", z € €, 1 € Hy, and N € Zx( we have:
1.
9[2 EZ](NT,ZA)z(—IYHB{Z z,i](N‘c,z).
2.

¢ & A= _qyererdg[ P P TE
oy ylowau—an= = e o[l " ang ).

Proof. First we prove the second statement. For © € IHy, (and ‘4 the transposed
of A):

A* =], 4= -4, A4 =1, At+174=0.
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Note that these relations remain valid upon replacing 7 by Nt, we will suppress
N in the rest of the proof.
We compute 0(,,,1’,,,2),(,,,:1 ) mé)(r,z(l —A4)). Using the relations, we can write:

1= + A1) A +4), I=1/2)I+A)I—-A4).
and we get:
(k +m)d'(k +m) = (k + m){I + A)(1/2)7'( + A (k + m)
(k +mY (U —A)+m'T) = (k +m)I +A)(z+ (m'/2)T + 4)).
Writing k = (ki,kz), m = (my,my), m' = (m},my) € Z" x I" we get:
(k+m)I +A4)= (ki — ka +my —ma, k1 +ky +my +my)
=QRIL+p+m —m2l+p+m +m),

with p € {0,1}" defined by ki +k; € p+2Z" and I, := (k1 — k2 — p)/2, I :=
(ky + ky — p)/2 € Z". Then:

(k+m)t'(k+m) = (I +(p+m —m)/2, 4+ (p+mi +mp)/2)20) (L +--)
and in the second term we get:

(z + (' /2)(I + 4)) = 2z + (m) — my,m} +m))/2),
thus by summation of the terms over p € {0,1}",1,/; € Z" we have:

Oy m), () (7,2 = A4))

= Z o(m,—‘m2+p,m1+m2+p)/2,(m; —mé,mq +m£)/2(27, 2z).
pe{0,1}"

The isogeny formula follows from this, but since we want (00) rather than
(0¢') in the second row of the characteristic, we get the sign (cf.[1], 6.2, p.49).
For the first formula, we observe that

(k+m)(zAd+m') = (k+m)d'(z+md™"),
(k + m)t'(k +m) = (k + m) At4'(k + m),
and that
(k+m)d=(ky+my—ki —my), mA™" =(ky+my—kn—m).
Thus we have:
e(ml,mz),(m’l,m;)(T,ZA) = 0(,,,2’_,,,1),(,,,;’_,,,/1)(1,2) .

Since we want characteristics in {0, 1}?", we get the sign in the formula. O
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2.4 Corollary. The automorphism ¢ of order two induces an automorphism
¢* on HY(X,,0(20,)) of order two (in fact, the corresponding theta functions
are even). Let HY(X,, 0(20,))+ be the + eigenspace of ¢*, then

dim H(X,, 0(20.)); = 2""'(2" + 1),
dim H(X,, 020,))_ = 2""'(2" - 1).
Bases of dim H(X,, 0(20.))+ are given by the non-zero

0{80‘ 85](21,2z)i0[802 801](21,2z)
with €1,& € {0,1}".

2.5 Remark. The isogeny formula 2.3.2 implies that each of the functions
0[51(27,22), (6 € {0,1}?") can be expressed as a linear combination of the
22" functions [ 7o 1(t,z(I — A4)), (5, € {0,1}"). Thus these functions also
provide a basis of H(X;, 0(20,)).

3 The cycles

3.1 In this section, X = X; with 7 € H,,. Let N = 22" — 1. We study the
geometry of the Kummer map:

K : X, - P =PH(X,020)),
z (1 0[1Q20,22) 1 ---) (o € {0,1}%).

In case X is indecomposable, the map K embeds X/ + 1 in PV, if the ppav is
a product of ppav’s X = X x --- x X; then K(X) = K(X;) x --- x K(X;).

3.2 The morphism K is equivariant for the action of the automorphism of order
4, which acts on PV by (see 2.3.1):

( : Xeygy i) (o 1 Xopg, 1 --2) (01,02 € {0,1}").
The two eigenspaces of this involution we denote by (cf. 2.4)
P :=PH(X,, 0(20,))+
Let I1_ : PV — IP_ be the projection on to P_ from IP,, and let:
K =0 oK:X—->P_,
be the composition of K with the projection I7_.

3.3 Lemma. For an indecomposable ppav the base locus B of the rational
map K_ : X — IP_ consists of a set of 22" two-torsion points, in fact:

B=ker(¢ — 1) = {x € X : ¢(x) = x} = (Z2Z)*".
Moreover, B is a maximal isotropic subgroup of X[2] and X/B = X.
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Proof. Since K is a morphism, K(B) is base locus of IT_, so K(B) = K(X)N
IP,. As K is equivariant for ¢ and P, is an eigenspace, B is contained in the
set of points x € X with ¢(x) = =£x, that is (p£1)x =0. Note po(¢p+1)=
¢ — 1, so ker(¢ + 1) = ker(¢ — 1); since (¢ — 12 = —2¢ we get B C
ker(¢p — 1) = (Z/2Z)™.

To see that all points in ker(¢ — 1) are mapped to P, (and not to IP_),
note first of all that 0 € X is mapped to P, since 2.3.1 (with N =2 there)
implies that 0[J' §21(27,0) = 0[¢* ¢' 1(27,0).

The map K is equivariant for translations by points of order two (they
act on IPV as the Heisenberg group), thus each a € X[2] gives a projective
transformation U(a) satisfying

K(x+a)=U(a)K(x) (a€X[2]).

Let a € ker(¢ — 1). Then translation by a and ¢ commute (¢(x +a) =
#(x) + ¢(a) = P(x) + a for all x € X). Therefore U (a) maps the eigenspaces
of ¢ into themselves (it cannot interchange them since the dimensions are
different). Thus K(a) = U(a)K(0) also lies in P, and B = ker(¢ — 1).

That X/B = X is trivial since ¢ — 1 € End(X). Note that B = ker(¢p — 1) =
im(¢ — 1), ¢2 = —1 and E(¢.x, d.y) = E(x, y) give:

E((¢n — Dx, (¢4 — 1)) = 2E(x,y) + E($2x, $+¥) — E($ux, y) = 2E(x, ) -

The polarization E defines the Weil-pairing and this formula shows that the
Weil-pairing is trivial on B. [J

3.4 Note that the proof shows that K(X) NIP_ is empty, so the projection of
K(X) to P, is a morphism.

3.5 We recall the basic facts on the quadrics on PY. A basis for the vector
space of these quadrics is provided by the

0[] =S Kor, (8¢ € @22)", £ =0),
a

which are indexed by the 227~!(2%" + 1) even theta characteristics (each Qs
is an eigenvector for the action of the Heisenberg group). '

The pull-back of a quadric Q along K gives a section of (((4@) and, since
the 6[31(27,2z) are even functions in z, this section will also be given by an
even theta function. A basis of H(X;, 0(40)),., the space of these even theta
functions, is given by the 6[ 51(t,2z) with &'¢’ = 0. The following theta relation
([1], IV.1) expresses the pull-back of the Q[Be,]’s in this basis:

K*Qps) =3 (~1)"0 [‘(’)] (21,22)0 [”: 8] (21,22)

=0[’] @[] 2.
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In particular, K(X) lies in Q[:., 1 (we denote the quadric in PV and its defining
equation by the same symbol) iff the corresponding theta constant vanishes,
ie. 0[5](z,0) = 0.

From Lemma 2.3.1 we have that on X; the 2"~ (2" —1) even theta constants
[5 %] with ¢ =1 mod?2 vanish.

In the case n = 2 the 6 even theta constants with the following character-
istics vanish:

1010 1010 1111 1111 0101 0101

1010 |1111]° 1010f° [o0101]  [o0101]  [1111]
Therefore K(X) lies in 6 independent quadrics. We will show, by explicit
computation, that there exists a (unique) quadric Q which is linear combination

of these 6 quadrics and which is the cone over a smooth quadric in IP°. This
implies that the image of K(X) in IP3 is in this quadric.

3.6 Proposition. Define a quadric Q in IP'° by:

1010 1010 1111 1111 0101 0101
Q"_Q[mm]_g[uu]—Q{mm]+Q[mm]_Q[mm]+Q[nu]'
Then for any t € Hy, we have K(X;) C Q and Q is the cone over a smooth
quadric Q in 5 =IP_, thus:

K. :X-B—-QcCP.

Proof. Using the definition of Q[ 5], it is clear that Q[159] and Q[1919] involve

the same 8 monomials (XGX¢+(1010) = X0000X1010, - - -) With coefficients £2. The
signs differ iff ¢'c = (1010) - ‘6 = —1, and thus:

1010 1010
o [1010] -0 [11”] = 4(Xoo01X1011 + Xo100X1110 — Xoo11X1001 — X1100X0110) -

Similarly, one finds:

1111 1111
o [ ] -0 [0101} = 4(Xo001X1110 + Xo100X1011 — Xoo10X1101

1010
- Xi000Xo111) >
0101 0101
¢ [0101] ¢ [1111] = 4(XooroXo111 + X1000X1101 — Xoo11X0110
— X1100X1001) -

As coordinates on P’ = IP, we take:

Zala = Xs0 +X0201
2 192
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with the convention that in Z,,5, With 61 = (a1,b), 62 = (a2,b2) € {0,1}*
we have that 24, + b; < 2a; + by, and on IP° we take:

Yo1 := Xooo1 — Xo100 Yoz := Xoo10 — X1000 Yo3 := Xoor1 — X1100 »
Y12 := Xot10 — X001, Y13 := Xoin — Xnot, Yoz := Xio11 — X110 »
it is convenient to agree that Y,, = —Y3, if @ > b. Using the identity
2(ZstZuv + Ztstu) = (Zst - Zts )(Zuv - Zvu) + (Zst + Zts )(Zuv + Zvu) ’

with s,t,u,v € (Z/2Z), we get:

1010] 1010]
Q [1010- -0 [1111_ =2(Yo1 Yoz + Yo3 Y12 + Zo1Z23 — Zp3Z12)

1111] 1111]
0 [1010_ -0 [0101. =2(=You Y + Yoo Vi3 + Zo1Zaz — ZonZ13)

0101] 01017
0 [0101. -0 [1111_ =2(Y02Y13 — Y Y12 + Z02Z13 — Zo3Z12) -

the equation for Q is then:
0 =4(Yo Y23 — Yo Y13 + Y3 Y12)

so Q is the cone over a quadric O in IP°. Since K(X) C Q we get K_(X) C 0.
O

3.7 Theorem. Let X be an abelian 4-fold of Weil type (2,2), field Q(i) and
detH = 1.

Then the space W of Weil-Hodge cycles is spanned by classes of algebraic
subvarieties.

Proof. Since X is isogeneous to an X, (cf. [vG2]), it suffices to prove the result
for these varieties. We show that for a general X; the rational map K_ : X; — 0
is dominant and that the (strict) pull-back of a general linear subspace IP? C 0
has a cohomology class which is not in D?(X). Using the action of Q(i)*
by pull-back on BX(X) = D*X) ® W, so x - (v,w) = ((xX)*v,x*w), with
W = /\32(:')}1 I(X,@Q) = K, it then follows that W is spanned by classes of
cycles. Since any two points in IH4 can be connected by a holomorphic curve,
the closure of such a cycle in the generic fiber specializes to a cycle with a
class not in D*(X) for any X; for © € Hj.

To show that K_ is dominant and to compute the cycle class, we specialize
to the case that X 2 Y x Y with Y a general abelian surface. In terms of the
period matrix for X that means we take v € Hy with 7 = 0. One has:

H'(X,020x)) = H(Y,0(20y)) ® H(Y,0(267y))
(in fact, from the definition one has: 0[{!21(27,2z) = 0[7'1(271,221)0[;?]

00
(211,22;) with z = (21,22) € €2 x €?). The coordinate functions Y;; on IP°
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(cf. proof of 3.6) pull back along K_ to a basis for A2HO(Y, 0(20y)) C
H(X,0(26y)).

Therefore we get the following diagram:

K

YxY —— QcCPs

P(CY) x P(C*) 5 G(1,3) C P(A2C%)

(note that the horizontal maps are not everywhere defined), here G(1,3) is the
Grassmanian of lines in IP3 and P is the Pliicker map which sends a pair of
points to the line connecting them. Note that the base locus of P is exactly
the diagonal of IP* x IP3. Since K(Y) = Y/(£1), the base locus of K_ is the
union of the diagonal A4 of ¥ x ¥ and 4~ := {(»;—y) : y € Y}. (The base
locus of K_ is now larger (cf. 3.3) since K : X — IP'5 factors over the group
generated by idy x (—idy) and (—idy) x idy.)

The equation for Q is just the quadratic Pliicker relation, it is identically
zero in P> x IP*. We will from now on identify 0 = G(1,3).

It is clear that K_ is dominant: to a general / € G(1,3) corresponds a line
in P> which intersects the Kummer variety K(Y) in 4 points, over each pair of
these points there lie 4 elements in ¥ x ¥ mapping to / under K_. Therefore
K_ is dominant for the general X; with t € H,.

A basis for H*(Q,Q) is given by the classes of a P2 C D, parametrizing
lines through a point P € P(C*), and a P} € O, parametrizing the lines in a
plane ¥ = IP> C IP(C*). Another basis is given by IP? and H?, with H the
hyperplane section.

The (strict) pull back of IP}, along P is ¥ x ¥  IP* x IP* and this pulls back
to Z :=(20y) x (20y) in ¥ x Y. The pull-back of H is 20y = ¥ x 20y)+
(20y) x Y, twice the product polarization on ¥ x Y. For general © € Hy, one
has D*(X,) = (©?), which specializes to (©%). Therefore we must show that

[2] (6%, [41,[47]) CHY(Y x ¥, Q) = @ H(Y,Q)® H**(Y,Q).

Note that [Z] € H*> ® H? (with H* := H*(Y,@)). On the other hand,
(0%.[4L[47]) N H*®H? = (6% — ([4] + (471,

in fact, @ = 2({P} X Y + Oy x Oy + ¥ x {P}) has no (3,1), (1,3) Kiinneth
components, and [4] + [47] = 2({P} X Y + &,, + ¥ x {P}), with [4] =
Y 045 the Kiinneth decomposition of [4]. Since 02, has a non-trivial com-
ponent in H>%(Y)® H%%(Y), whereas [Z] = [0y x @y] € H"'®H"! has a
trivial component there, we conclude that [Z] ¢(0%,[41,[471).

By specialization, this proves that [Z] ¢ (0% ) for any X,. O
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4 An isogeny
4.1 In this section we give another description of the map K_ from theorem

3.7, using an isogeny on X;. This new description relates the quadratic relation
between certain theta functions to geometrical properties of X;, see 4.4.

4.2 A basis of H(X,0(40)) is given by the 49 = 2% functions
€ , g
0[8,](1,22) &€ €{0,1}9.

Let ¥ C H°(X, 0(4@)) be the subspace spanned by the six even theta functions
with vanishing Nullwert:

g0
Vi=(n0] 27 (022 e oy ionrny © HOX.046))
oo
4.3 Proposition. The image of X = X, under the rational map:
g o
Dy : X - PV, z (00, 1(n22):.00)
o o

is a smooth quadric Q C P5. The quadratic relation on the six theta functions

AN
1010 1010 1111 1111 0101
2 2 ) 2 2
(0 [1010} o [1111] o [1010}“’ [0101] o {0101]

0101
+02[1111]>(1,22)=0.

There is a commutative diagram:
K_. —_
X — Qcw

1-¢ { /" oy

X

Proof. We consider the subspace I'(0(20))- where ¢* = —I. Remark 2.5
shows that the functions 6[ & % ](t,z(/ — 4)) give a basis of I'(0(20)). From
formula 2.3.1 we have:

o[£ et =] o

and thus a basis for I'(0(20))_ is given by the 2"~!(2" — 1) functions
0[ & % 1(z,2( — A)) with ¢'¢’ = 1 mod 2. Since (I —A)? =1 —24+ 4% = -24
we get:

V=(1-¢)TQoe)_.
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In the case n = 2 we used the basis with the six Y,;’s. One easily finds,
with O[c] := 0[3](27,2z2):

0 Egig} (t,2(I — 4)) = —©[0010] — ©[0111] + O[1000] + O[1101]

=Y -V,

0 E?m (1,2( — 4)) = —6[0010] + O[0111] + O[1000] — O[1101]

=-Yn+ Y3,
similarly one has:

1111

1010

0101
0 [0]01] (t,z(I —A))=-Yo1 — Y3 6 [

] (1,2(I = 4)) = —Yo3 + Y12

0101 1111
9[ ](T,Z(I—A))=~Y01+Y23 9[ (r,z(I —A))=—-Yy3— Y5

1111 0101:|

From these equations one can express the Y,’s in the 6] o ul(t,z(I — A)).

The quadratic relation between the Yar’s then gives the relation in the
proposition. [J

4.4 Remark. The existence of a quadratic relation between the six even theta
functions with a vanishing Nullwert can also be obtained from the following
observations.

First of all, each vanishing Nullwert corresponds to a singular point on the
theta divisor @ of X, the singular point is a point of order two in X. Thus @
has at least six singular points. Furthermore, for x € Sing(®) we have that

Jx = 00,0(t,2 = x)bo,0(7,z +x) € Too := {s € H'(X, 020)) : po(s) = 4},

where puo(s) is the multiplicity at 0 € X of the section s. The six functions
Sx € ['yo we obtain are the six theta functions [ % 91%(,z) with ¢'¢’ = 1.

Since the general X we consider is not a product of lower dimensional
ppav’s, one has (see [vGvdG]):

dimlg =2*-1-10=5.

Thus the six functions 0[ ¢, % 1%(,z) € Iy are linearly dependent and therefore
one has also a linear relation between the six 0[ ¢, 2,1(z, 22).

The results of Debarre [D] imply that Sing(®;), for general t € IH, consists
of exactly 6 points (that the general X; is not the jacobian of a hyperelliptic
curve follows from the fact that the sum of any three vanishing theta charac-
teristics of X; is even, rather than odd).

Geometrically, the argument above shows that K(Sing(®)), which in gen-
eral consists of 6 points, spans at most a IP* C P'5, in fact the map K may
also be given by (cf. [vGvdG]):

K : X, —» PH(X,,0(20,))*, x> 6,0(t,z — x)00,0(1,z +x) .
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4.5 Remark. We indicate an alternative derivation of the quadratic relation in
the previous proposition, using the identities (with a1,0; € {0, 1}?):

g 02 _ g 01
0[0 . ](21,0)_0[0 . ](21,0) € Hy, .
The multiplication formula for theta functions ([I], Chapter IV, Thm. 2, p.139)
shows that the expression for 6? % 51(t,z) in terms of the standard basis of
r(0(20e,)) is given by:

e g2
9[8’ 8’] (v,2)
oy+¢e0oy+¢

_ _ (a,uz)'e' gy 07
= Y (=)@ 9[ R ](21,0)9[00](21,22).

61,0,€{0,1}2

It is now a straight-forward computation to verify the relation. One can
also use the proof of 3.6 as follows. Define:

Bo,(X,Y) =3 (—1)o' Xs Y5y, withm=1[}]
[

an even theta characteristic. Note that By, is just the bilinear form associated
to the quadratic form Q, in the proof of Proposition 3.6. Upon substituting
Y, := 0[3](27,0) one obtains linear forms in the X,, these 6 forms are linearly
dependent exactly when there is a linear relation between the 0% % % 1(x,2).

In the proof of 3.6, we showed that a certain linear combination Q of the six
Ow’s is a quadric in the coordinates Y, of IP°. Thus Q is a linear combination
of terms (X5 — X;5)(Xuo — Xiu), and therefore its associated bilinear form By is
a linear combination of terms (Y, — Yo )Xs. Since we have 0[7! 02] = 0[72 '],
upon substituting Y, := 0[§](27,0) in By we get zero.

5 Prym varieties

5.1 Let C,,1 be a smooth curve of genus n + 1. A subgroup G = Z/4Z C
PicO(C,,+|) defines a cyclic etale 4:1 covering of C,;; and an intermediate etale
2:1 cover: :

Cut1 < Cony1 — Capy -

The Prym variety P of the Cay+1/Cant1 is a principally polarized abelian variety
of dimension 2n. The covering automorphism of C4n41 over C,iq induces an
action of Z[i] on P.

5.2 Schoen constructs cycles on P by taking the inverse image of IP" = |K| C
) in €, (with C® = Sym'C), which is reducible, and mapping the
components to P. He shows that suitable linear combinations of these cycles
span the space of Weil-Hodge cycles W C H (P, Q).

In the case n = 2 we show below that the general X;,7 € IHy, is such a
Prym variety.
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5.3 Theorem. Let P be as in 5.1. Then:

1. The abelian variety P is of Weil type (n,n), with field Q(i) and
detH = 1.

2. There exist bases of H\(P,Z) and H,(P,R) (which has the structure of
a complex vector space via its identification with ToP) such that the period
matrix Q satisfies:

Q= (i) PHI(P,Z) = Z" — Hi(X,R) = ToP =~ C* with 7 € Hy, .
In particular, P is isomorphic to an X, with t € H,,.

3. In case n =2, the general abelian variety of Weil type (2,2) and field
Q(i) with detH = 1 is isogeneous to a Prym variety as in 5.1.

Proof. We consider the action of the automorphism ¢ of order 4 on H,(P,Z).
According to [F], p. 62, there is a symplectic basis 4;, B; (0 < i < 4n) of
H\(Csnt1,Z) with:

$d) =divin,  $*Bi)=Biyw (1 <i <n).

Since H\(P,Z) = Hy(Capy1, Z)*+="1 (the classes anti-invariant under ¢, ), a
basis of H|(P,Z) is given by

o :=A; —Aiyom, Bi:=Bi—Biy (15i< 2n).

An easy computation shows that the action of ¢ on H\(P,Z) is given by the
matrix M, i.e. (o) = tiyn, (i) = Pisn with 1 =< i £ n. Taking the o; as a
C-basis of H,(P,IR), the period matrix must satisfy MQ = Q4, which implies
that t € IHy,. This proves the second point.

Using this result, the first point is easy to verify (cf. 2.1).

For the last point, we consider the Prym map:

P M3 gz — Ay, (GG)—P

where .#3 7,4z is the moduli space of genus 3 curves with a cyclic subgroup
of order 4 in Pic® and ¢4 is the moduli space of principally polarized abelian
varieties. We already proved that Im(2) lies in the 4-fold # := Im(H4 —
S4 — 4). To show that Im(2) is Zariski dense in 2 it suffices to show that
the differential of 2 has rank 4 at some point of .#3 7,4z, or, equivalently,
that the codifferential of 2 is injective at some point of #.

The remainder follows the arguments of Schoen, [S], p. 26-p. 30, we just
show the (obvious) modifications. The cotangent space of .43 z/4z at a smooth
point [(C, G)] is H*(C, QIC®2 ). Let n: Cy — C be the 4:1 etale map, then, using
the action of ¢, we have:

T Qe, = Q0 B (QLRa®?) @ (QL ®u)®(Q ®a®) with G = () .
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Then Tj.s/4 and Tp#, the cotangent spaces of /4 and # at P are given by:
Tr ol s = Sym*(H(C,QL ® a) ® H(C, QL ® ),
TiH = HY(C,QL®a) ® HY(C,Qt ® o)) .

The codifferential of 2 : M3 z/sz — H# is now just the multiplication map:

HY(C, 0L ® ) ® HY(C, QL ® o)) — H(C, QL

The proof that this map injective for general [C] € .#3 follows from the Base
Point Free Pencil trick, as in [S], p.30. O

5.4 Remark. Since dim.#4 = 9 = 32, one might hope that the Prym map:
P . Myguz — A would be generically finite on its image. If that is the
case, then Im(2) is Zariski dense in #¢ and Schoen’s cycles would solve the
Hodge conjecture for the general abelian sixfold of Weil-type with field Q(i)
and detH = 1.

5.5 Remark. The previous Proposition also ‘explains’ the 6 singular points of
order two on the theta divisor of the abelian fourfolds we considered. Recall
that a theta characteristic on a curve C is a line bundle L with L% = Q..

For a curve of genus n+ 1 and a point § € Pic’(C) of order two, there are
27=1(2"—1) pairs of odd theta characteristics L, L’ with L' = L®f (this is most
easily checked using the classical notation for characteristics). Let 7' : C' — C
be the etale 2:1 cover defined by f, then

L= "L,  HYC,n'*L)=HYC,L)® H'C L), (a*L)®*=Q¢,

thus 7’*L is an even theta characteristic with at least two independent sections.

Let now « € Pic’(C) with a®? = B. Then y := n’*a has order two in
Pic(C') and moreover, by Serre duality, H'(C,L ® a) & HY(C,L® a~')* =
HC,L' ® a)*. Therefore, also (n*L) ® y = n’*(L ® ) is an even theta char-
acteristic on C’.

Now it is well known (for example from the classical Schottky—Jung identi-
ties) that pairs M, M ®7y of even theta characteristics on C’ with H(C’,M) > 0
correspond to singular points, of order two and even multiplicity, on the theta
divisor of the Prym variety of the coveting C” — C’ defined by y. These
singular points cotrespond precisely to the vanishing (even) theta nulls.

Starting from a genus n + 1 curve, the 2n-dimensional Prym varieties in-
troduced in 5.1, thus have at least 2"~!(2" — 1) vanishing (even) theta nulls,
in agreement with the fact that X;, for v € IH,, has that number of vanishing
theta nulls (simply put z =0 in 2.3.1).
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