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1 Introduction

1.1 In this lecture we give a brief introduction to the Hodge conjecture for abelian
varieties. We describe in some detail the abelian varieties of Weil-type. These are
examples due to A. Weil of abelian varieties for which the Hodge conjecture is still
open in general.

The Mumford-Tate groups are a very usefull tool for finding the Hodge classes in
the cohomology of an abelian variety. We recall their main properties and illustrate
it with an example.

Finally we discuss recent results on the Hodge conjecture for abelian fourfolds.
Most of this material is well known, and we just hope to provide an easy going
introduction.

I am indebted to F. Bardelli for his invitation to give this talk and for stimulating
discussions on the Hodge conjecture and Mumford-Tate groups.

2 The Hodge (p,p)-conjecture for abelian varieties

2.1 Let X be a smooth, projective variety over the complex numbers. We denote
by
Z/(X)q = Z/(X) @7 Q

the group of codimension p cycles on X with rational coefficients. The group of Hodge
classes (of codimension p) is:

BP(X) = H?(X,Q)n H"(X) (C H?(X,()).
The cycle class map ZP(X)q — H?* (X, Q) factors over BP(X) and defines:
W 27 (X)q — B(X),
we will usually write [Z], the cohomology class of the cycle Z, for ¥(Z).

2.2 Hodge (p,p)-conjecture: The map V is surjective.

2.3 The Hodge (p,p)-conjecture is known in case p = 0,1 and thus also in case
p=d—1,d=dim X. In fact, BY(X) is spanned by [X] and for p = 1 the conjecture
is proven using the exponential sequence (cf. [V]). However, for the other p’s very
little is known, [Mu]. It is not easy to determine the groups BP(X) for a given X. If
X varies in a family, the dimension of BP(X) may change for example.
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2.4 One can exploit the ring structure (cup-product) on
B = @,B"(X)

to obtain information on the Hodge conjecture as follows. Let D* C B" be the subring
generated by B%(X) and B'(X). Then DP is spanned by:

[DiJU[Do]U...U[D,] =[Dy-Dy-... D, D; € ZHX),
with D; - D; the intersection product of cycles. Therefore we have the inclusions:
D? C Im(¥) C B’

In particular, if DP = BP?, then the Hodge (p, p)-conjecture is true for X.

2.5 Definition. An exceptional Hodge class (of codimension p) is an element of
BP which is not in DP.

2.6 Example. Let Q C P*"™! be a smooth quadric. Then one has H??(Q) = 0
for p # ¢ and:

B(Q) = H7(Q. X) = { PO

Thus if n > 1 we have B! = D! = Q and thus DP? = Q for all p. Therefore ) has
exceptional Hodge classes in codimension n. It is well known however that the Hodge
conjecture is true for @, in fact such a () has two rulings (= families of P"’s on it),
the cohomology classes of the P™’s span B".

3 Abelian varieties

3.1 Let X be an abelian variety over the complex numbers, that is X = CY/A for
some lattice A, and X is a projective variety. Note that A = m(X) = H(X, Z2)
and CY is the universal cover of X; also CY = Ty X, the tangent space to X at the
origin. Thus H;(X, R) = H1(X,Z) ®z R = To X and multiplication by i € C' on T X
corresponds to an R-linear map:

J:H\(X,R) — H(X,R) with J?=—I.

The map J allows us to recover this structure of complex vector space on H(X, R);
multiplication by a + bi € C, with a,b € R, is given by the linear map al + bJ :
H{(X,R) — Hy(X,R). Thus

ToX = (H,(X,R),J).

3.2 Any embedding 6 : X < P" defines a polarization E := ¢;(6*O(1)) € B}(X) C
H?(X, Q). By the duality, F defines a map, denoted by the same name:

E:NH(X,Q) — Q



and this map satisfies the Riemann Relations (here we extend E R-linearly):
E(Jz, Jy) = E(z,y),  E(z,Jz)>0

for all z,y € H,(X, R), with x # 0 for the last condition. That condition also implies
that F is non-degenerate.

Conversely, C?/A is an abelian variety iff there exists an E : A2A — @Q satisfying
the Riemann Relations.

3.3 The cohomology of X and the Hodge structure on it is completely determined
by H'(X, Q) and its Hodge structure:

HP(X,Q) = NH'(X,Q),  H"M(X)=(NHY(X))® (ANH"(X)).

This remarkable fact can be exploited to determine the B?’s, see section 6.

3.4 One can (almost) recover X from the Hodge structure on H'(X,Q) and the
polarization E. In fact, using the Hodge decomposition:

HY(X,R) — HY(X,C) = HY(X)® H"'(X)

one defines a C-linear map H'(X,C) — H'(X, ) by defining it to be multiplying by
+i on H% and by —i on H%!. This map restricts to an R-linear map:

J :HY(X,R) — HY(X,R), with (J)*=-I
(see [G]). Using the duality: H'(X, R) — H;(X, R)* the map J' defines a dual map:
J:=(J):H(X,R) - H/(X,R) with J*=—I.

To obtain X, we have to take the quotient of the complex vector space (Hi(X, R), J)
by a lattice A C Hy(X,Q) C Hi(X,R). Note that Hy(X,Q) is just the dual of
H'Y(X,Q), but since we are not given H'(X, Z) we cannot reconstruct H;(X, Z), that
is, we don’t know which lattice A C H;(X, Q) to choose. This leads to the following
definitions.

3.5 Definition. Abelian varieties X and Y are said to be isogeneous, X =54 Y,
if there is a finite, surjective map (an isogeny) ¢ : ¥ — X. (If X =~;4,, Y then there
is actually also a finite, surjective map X — Y.)

An abelian variety is said to be simple if X is not isogeneous to a product of
abelian varieties (of dimension > 0).

3.6 Given an isogeny ¢ : Y — X, the group ¢, (m(Y")) is a subgroup of finite index of
m(X), and thus N7y (X) = m(X) C ¢.m1(Y) for some integer N. Therefore one has
a finite, surjective map X — Y. The inclusion ¢, : H1(Y,Z) — Hi(X, Z) extended
Q-linearly and dualized gives an isomorphism:

6" H'(X,Q) — H'(Y,Q),  and ¢p(H"(Y)) C H(X).

(The line above is equivalent to saying that ¢ is an isomorphism of Hodge structures.)
Conversely, the existence of such a map ¢* implies that the abelian varieties X and
Y are isogeneous.

An isogeny ¢ : Y — X thus induces isomorphisms BP(X) — BP(Y). Moreover,
using pull-back and push-forward of cycles we have the following consequence.
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3.7 Lemma. Let X ~5, Y. Then the Hodge (p, p)-conjecture for X is true if
and only the Hodge (p, p)-conjecture is true for Y.

4 Overview of results

4.1 With the definitons of the previous sections we can now state some of the results
on the Hodge (p, p)-conjecture for abelian varieties. In the later sections we will discuss
aspects of the proofs.

4.2 Theorem. (Mattuck, [Ma]) For a general abelian variety one has:
BP(X)=D"(X)=Q for all p,

and thus the Hodge (p, p)-conjecture is true for X and all p.

4.3 Theorem. (Tate, [Tat]) For an abelian variety X which is isogeneous to a
product of elliptic curves (one dimensional abelian varieties), one has:

BP(X) = DP(X) for all p,

and thus the Hodge (p, p)-conjecture is true for X and all p.

4.4 These two theorems deal with rather extreme cases and one could wonder
whether one has B° = D for any abelian variety. This is not the case, but it still
happens quite often. Theorem 4.6 is proven using Mumford-Tate groups.

4.5 Theorem. (Mumford, [Po]) There exist simple four dimensional abelian va-
rieties with B2 # D?.

4.6 Theorem. (Tankeev, [Tan|, [R]) For a simple abelian variety X whose dimen-
sion is a prime number one has:

BP(X) = DP(X) for all p,

and thus the Hodge (p, p)-conjecture is true for X and all p.

4.7 The example of Mumford concerned abelian varieties with a large endomorphism
algebra (in fact a CM field L with [L : Q] = 2dim X ). Weil observed that the field
was a composite of a totally real field and an (arbitrary) imaginary quadratic field
K. He found that the imaginary quadratic field was ‘responsible’ for the exceptional
Hodge cycles.

4.8 An endomorphism f : X — X maps the origin 0 € X to itself, and therefore
induces a linear map dfy : ToX — TpX. This extends Q-linearly to a ringhomomor-
phism:

t: End(X)g — End(TpX), fel—t(f®l):=df,
here End(X)q := End(X) ®2 @ is the endomorphism algebra of X.

Similarly, using the maps f* and f., the algebra End(X)g acts on H'(X, Q) and
H,(X, Q) respectively.



4.9 Definition. An abelian variety of Weil-type of dimension 2n is a pair (X, K)
with X a 2n dimensional abelian variety and K — End(X) ® @ is an imaginary
quadratic field such that for all # € K the endomorphism ¢(z) has n eigenvalues x
and n eigenvalues 7:

t(z) ~ diag(x,...,z,T,...,T)

(here we fix an embedding K C C).

is an has

The space of Weil-Hodge cycles of (X, K) is defined to be the two dimensional
(Q-vector space

NCHN (X, Q) — B"(X) c H™(X,Q) = \g H'(X,Q),

where the K-vector space structure on H'(X,Q) is obtained via f*, f € K C
End(X)g. (Note dimg H'(X, Q) = 4n, dimyx H'(X, Q) = 2n).

A polarized abelian variety of Weil-type is a triple (X, K, E') where (X, K) is an
abelian variety of Weil-type and where E is a polarization on X with (v/—d)*E = dE

and K = Q(v/—d).

4.10 That A2?H'(X, Q) — B"(X) follows from the condition 4.9 on ¢(z), see 5.2.6.
Any abelian variety of Weil type (X, K) with field K = Q(v/—d) has a polarization
E with (vV—d)*E = dFE, see 5.2.1.

In the next section we recall that any 2n-dimensional polarized abelian variety
of Weil-type is a member of a n-dimensional family of polarized abelian varieties of
Weil-type. The ‘general’” in the next Theorems refers to the general member of such
a family.

Theorem 4.12 shows that in dimension four, the abelian varieties of Weil-type are
the only simple ones for which the Hodge conjecture needs to be verified. The proof
depends on a detailed study of endomorphism algebras of abelian fourfolds and their
Mumford-Tate groups.

4.11 Theorem. (Weil, [W]; cf. Thm 6.12) For a general 2n-dimensional abelian
variety X of Weil-type (with n > 1) one has B'(X) = @ (and thus D?(X) = Q for
all p) but B"(X) = @, the direct sum of D"(X) and the space of Weil-Hodge cycles.
Therefore:

B"(X) # D"(X).

4.12 Theorem. (Moonen-Zarhin, [MoZ]) Let X be a simple abelian variety of
dimension 4 with B?(X) # D*(X). Then X is of Weil-type.

4.13 Other examples of abelian varieties with B? # DP are the abelan varieties with
an endomorphism algebra of type III, see [Mur], [H]. In these papers also non-simple
abelian varieties are considered. A simple abelian variety of dimension 4 of type III
actually has dim B! = 1, dim B? = 6, however, its endomorphism algebra contains
infinitely many imaginary quadratic fields and B? is spanned by D? and the spaces
of Weil-Hodge cycles for these fields ([MoZ], 7.2). In higher dimensions there exist
abelian varieties X with End(X) = Z but B? # DP (cf. [MoZ], 7.5).



4.14 The following theorem provides some examples of four dimensional abelian
varieties of Weil-type for which the Hodge conjecture has been verified. In 5.2.3 we
will define a discrete invariant

det H € Q*/Nm(K*)

associated to (the isogeny class of) a polarized abelian variety of Weil-type (X, K, F)
(here Nm : K* — Q.,, a — aa is the norm map).

The group on the right is an infinite 2-torsion group, and for any z € Q*/Nm(K™*)
with (—1)"xz > 0 we will construct an n*-dimensional family of abelian varieties of
Weil-type with det H = x.

4.15 Theorem. (Schoen, [S]) The Hodge (2,2)-conjecture is true for the general
four dimensional abelian varieties of Weil-type (X, Q(v/—3)), (X,Q(i)) with det H =
1.

of

4.16 The method of Schoen uses the theory of Prym varieties, and can also be used
to find cycles on certain abelian varieties of Weil-type also in higher dimensions. In
[vG] we use theta functions to give another proof of Theorem 4.15 for the field Q(7).

We will sketch the proof of the last theorem in section 7. The theorem implies
easily that for any four dimensional abelian variety (X, K) of Weil-type with field
K = Q(v/=3) or Q(i) and det H = 1, the space of Weil-Hodge cycles of (X, K) is
spanned by cohomology classes of algebraic cycles.

5 Abelian varieties of Weil-type

5.1 As we saw in the previous section, the abelian varieties of Weil type provide
an interesting test case for the Hodge conjecture. In this section we first study these
abelian varieties (Lemma 5.2) and then we will construct families of such abelian
varieties.

Let (X, K) be an abelian variety of Weil type. The action of K on H;(X, Q) gives
H(X, Q) the structure of a K-vector space. The space H;(X, R) has the structure of
complex vector space via its identification as ToX = (Hy(X, R), J) (see 3.1).

5.2 Lemma. Let (X, K), with K = Q(v/—d) C C be an abelian variety of Weil-
type of dimension 2n.

1. There exists a polarization £ on X such that (X, K, E) is a polarized abelian
variety of Weil-type.

2. Let (X, K, E) be a polarized abelian variety of Weil-type. Then the map:
H:H(X,Q)x H(X,Q) — K, H(z,y) = E(z,(V—d)wy) + V—dE(z,y)

is a non-degenerate Hermitian form on the K-vectorspace H;(X, Q). (Hermitian
means that H is K-linear in the second factor and H(y,x) = H(z,y)).




3. Let U € M, (K) be the Hermitian matrix which defines H w.r.t. some K-basis
of Hi(X,Q). Then
detV € Q*/Nm(K™)

does not depend on the choice of the K-basis, nor the lattice defining X. Thus
det W is an isogeny invariant of (X, K, E') and will be denoted by det H (cf. 4.14).

4. The signature of the Hermitian form H is (n,n).

5. Let W C To(X) be the n-dimensional complex subspace on which K acts via
scalar multiplication by x € K C C. Then

H|W >0,

where H is extended R-linearly to ToX = (H(X, R), J).
NEH(X.Q) — B'(X) = H*(X.Q) N H"(X),

Proof. For the first statement we observe that (v/—d)* acts on B'(X), with eigen-
values in {—d, d} (use that B'(X) ¢ H"(X) = H"*(X)® H%'(X)). Thus any polar-
ization can be written as £ = E, +E_ with By € BY(X) and (v/—d)*E. = £dEy. We
claim that £, is in fact a polarization. Since E, € B'(X), the first Riemann condition
is satisfied. The second one follows from adding the inequalities dE(x, Jx) > 0 and
E((V—d).x, J(vV—d).x) = dE,(z, Jr) — dE_(z, Jx) > 0 shows that 2dFE, (z, Jx) > 0
for x # 0 (note (v/—d). commutes with J since it is an endomorphism of X). Note
that for the general abelian variety of Weil-type X one has B'(X) = @ (see Theorem
4.11), so the polarization is unique and must be of Weil-type.

That H is Hermitian is an easy computation, using E((v/—d),z, (v —d).y) =
dE(x,y).

The form H is thus given by H(x,y) = 'z¥y and ' = ¥. Changing the K-basis
by linear map A changes ¥ to AUA and thus det ¥ changes to Nm(a) - det ¥ where
a=detA. Let ¢:Y — X with (X, K, E') of Weil-type be an isogeny. Since isogenies
are isomorphisms on (H;)g which preserve Endg, also (Y, K, ¢*E) must be of Weil-
type, and the map ¢* : H'(X,Q) — H(Y,Q) is an isomorphism of K-vector spaces.
Thus det Hy = det Hy+ .

The map (v/—d), is a C-linear map on Ty(X) = (Hy (X, R),J) (since it com-
mutes with J), and has two eigenspaces W, each of dimension n, on which it acts
as +£v/—d = +v/dJ. Thus restricted to Wi we have H(z,z) = E(z,v/—dz) =
+/dE(z, Jz). Since E(z, Jz) > 0 for x # 0 by the second Riemann condition, H is
positive definite on W, (and negative definite on W_). Note that W, and W_ are
perpendicular w.r.t. H since

dH (x4, 2_) = H(V—=d)wz4, (V—d)yz_) = HVdJz,, —VdJz_) = —dH (x4, z_)

with x+ € Wi (we use that H(Jz, Jy) = H(z,y) which follows from the fact that J
and (v/—d). commute and the first Riemann condition).



First we show there is an inclusion AFFH'(X,Q) C AZHY(X,Q) = H**(X,Q).
Let V be a finite dimensional K-vector space and let W = V* := Homg (V, K) be its
dual, note V.=W*. Let Tr : K — @), z — z + Z be the trace map, then:

W* = Homg (W, K) — W*? := Homg (W, Q), f=Trof

is an isomorphism of Q-vector spaces (reduce to W = K™ and then W = K (and
f(2) = az), now use that for a € K one has: Tr(az) =0 for all z € K iff z = 0, which
proves injectivity, surjectivity follows by comparing dimensions).

Using that ALW* = (ALW)* and that K-linear maps are in particular Q-linear
we obtain:

ARV = Homg (N W, K) — Homg(ALW, K) 7% Homg(ALW, Q),

where we compose with the trace in the last map. The space on the right is (/\gW)*Q
AG(W*?) and is thus isomorphic to ABW*, so

NV — Homgq (AW, Q) = AGW™ = A{V.

Actually A%V is naturally a direct summand of AV, since the @Q-linear, alternating
map V" — ARV, (vi,...,0,) = v1 Ak ... Ak v, factors over a map AQYV — AR V.

To get the Hodge type, we tensor by R (note K ®g R = C') and consider the
space AZPHY(X,R) C AZHY(X,R). The eigenspaces W, C Hy(X,R) of (v/—d)*
(the duals of the W,’s) are K ®¢ R stable, thus AZ*H'(X, R) = AZ'W| & ANZ'W'.
Since W, are also stable under J’, and the eigenspaces of J' in H'(X,C) are H'®
and H®' (with eigenvalues i and —i), we have dim W, ®z C N H'Y = n and thus
(ANEWL)@r C C H™™(X).

~

|

5.3 In the remainder of this section we will construct and investigate n? dimensional
families of polarized abelian varieties of Weil type.
Such a family is constructed from data

(V,K,H,A\).

Here V is a vector space over an imaginary quadratic field K = Q(v/—d) C C with
dimg V' = 2n. Furthermore A C V is a lattice in Vi := V ®¢ R. Finally H is a
Hermitian form on V| with signature (n,n).

Note that a polarized abelian variety of Weil-type of dimension 2n (X, K, E) pro-
vides such data. In fact one takes V' = H{(X,Q), K = K, H as in Lemma 5.2 and
A = H{(X, Z). If, in the construction below, one puts V; := W, with W as in Lemma
5.2.5, one obtains again (X, K). In particular, any (X, K, E) is a member of an n?
dimensional family of polarized abelian varieties of Weil-type.

5.4 Given the Hermitian form

H:VxV—K
of signature (n,n), there exists a K-basis of V', on which H is given by:
(5.4.1) H(z,w) = azjw;+ ...+ Zyw, — (Zoi1Wpa1 + ... + Zopay,),

with a € Q- (see [L]). Conversely, taking V = K" and defining H by this formula
with a € ()., we obtain a Hermitian form on V of signature (n,n) with det H =
(—1)"a.



5.5 Let K = Q(v—d) C C, so K ®¢g R is naturally identified with C' and thus
Ve =V ®gR= C*". More precisely, multiplication by:

i=vV—=d® (1/Vd): Vg — Vg

defines structure of complex vector space (Vg,i) on Vx.

The abelian varieties which we construct are all obtained as Vz/A. What changes
will be the complex structure on Vi. Such a complex structure is just an R-linear
map J : Vg — V. The polarization F will also be fixed, it will be given by the
imaginary part of H:

E=ImH:VxV —Q

which is an alternating map since H is Hermitian.
To define the complex structures, we choose a complex subspace V. C Vi (with
its complex structure (Vg,)) with dimg V, = n such that:

Hy, >0, define V_ := Vj,

here we extend H R-linearly from V to Vi. Thus H is positive definite on V, and
therefore negative definite on V_, the perpendicular w.r.t. H of V.. Then we have:

VR = V+ © V,.
Now we define the complex structure on Vi corresponding to V. as follows:
J = JV+ : VR — VR, JU+ = iUJH Ju_ = —iwv_

for all vy € V. Clearly J? = —I and thus we obtain a complex vector space (Vg, J).
We note that J is in fact C-linear on (Vg, ), since J and i commute. Therefore J also
commutes with the action of K on Vx (via multiplication on the left on Vix = V®¢g R).

5.6 With this choice of complex structure on Vg, it remains to show that F satisfies
the Riemann Relations, i.e. that

E(Jzx,Jy) = E(z,y), E(z,Jx) >0 forz #0.

The first condition is clear when we write x = x, + x_ etc. with x4 € VL, use
that Jxr4 = +ivy, and that £ = Im H for a Hermitian form H for which V, 1 V_.
For the second we recall that given £ = I'm H one recovers (the R-linear extension
of) H as H(x,y) = E(z,iy) + iE(z,y) (just write H(z,y) = A(z,y) + iE(x,y) with
R-valued forms A, F and expand both sides of iH (x,y) = H(xz,iy)). Writing = as
before we get

E(z,Jz) = E(zvy,izy) — E(x_jiz_)=H(xy,24) — H(x_,z_) >0

for x # 0 since H is positive definite on V, and negative definite on V_.

5.7 Thus from the data (V, K, H,A) and a V., C Vg we have constructed a polarized
abelian variety (X := V/A, E), with complex structure J on V. F

Moreover, since the complex structure JJ commutes with the action of K, we have
K C End(X)g. The complex vector space (Vg, J) is the tangent space at the origin
of X. The subspaces V. are stable under the action of J and are thus also complex
subspaces of (V,.J). Since i = +.J on Vi and i := v/—d® (1/V/d), the action of z € K
on V., is scalar multiplication by x whereas on V_ it is scalar multiplication by 7.
Thus (X, K, F) is a polarized abelian variety of Weil-type.
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5.8 The triple (X, K, E) we constructed is thus determined by the choice of V,
in the Hermitian vectorspace ((Vg,i), H). The only condition on V. is that H is
positive definite on V,, which is an open condition (in the analytic topology on the
Grassmanian of n-dimensional subspaces in the 2n dimensional space (Vg,)). Thus
X is a member of an n? = dim Grass(n,2n) dimensional family of abelian varieties
of Weil-type.

5.9 The global structure of this family can also be derived easily. Let
SU(n,n) :={A € GL((Vg,1)) 2 GL(2n,C) : H(z,y) = H(Az, Ay), det(A) =1}

for all z, y € Vg (we supress H from the notation, a more accurate notation would
be SUg(R), see the next section).

5.10 Lemma. The group SU(n,n) acts transitively on the set
H, :={W C (Vg,i) 2 C*: W=C", Hw >0}.

The stabilizer of a W € H,, is isomorphic to the group S(U(n) x U(n)) (pairs of
unitairy matrices with product of the determinants equal to one). Thus:

H, =2 SU(n,n)/S(U(n) x U(n)).

Proof. Given any two n-dimensional subspaces V., W, on which H is positive defi-
nite, we can choose orthonormal bases (w.r.t. to H) ey,...,e, of Vi and fi,..., f, of
W, which can be extended with orthonormal bases e,,1,...,e2, of W_and f,.1,...,
fon of W_ to C-bases of (Vg,7). On each of these bases of (Vg, i), the form H is then
given by the formula 5.4.1 with @ = 1. Thus the matrix relating the e; and the f;
preserves H and, after multiplying say f; by a suitable A € C', || = 1, the matrix will
be in SU(n,n). Thus the group SU(n,n) acts transitively on the set of n-dimensional
subspaces on which H is positive definite.

The stabilizer of V, in SU(n,n) consists of maps mapping V,, and thus also
V.= Vj, into itself and preserving the restriction of H on these subspaces, which is
definite on each of them. Thus the stabilizer is isomorphic to S(U(n) x U(n)). O

5.11 The set H, actually has the structure of complex manifold on which the group

SU(n,n) acts by holomorphic maps, in fact it is a bounded Hermitian domain. The

construction of Weil-type abelian varieties shows that there exist embeddings H,, —

San, the Siegel space of positive definite 2n x 2n period matrices, see [Sh] and [Mum].
Using the lattice A C V' C Vi we define a group by:

I'=Ty={A€SU(n,n): AN C A}

Then H := H,/T" is a quasi-projective variety and it parametrizes abelian varietes
of Weil-type (n,n); it is an example of a Shimura variety (although that name is
nowadays in fact reserved for a more sophisticated but related object).

In the case that E is a principal polarization, one has H, C Si, and I' :=
Sp(2g,7) N SU(n,n), and one obtains an algebraic subvariety H C As,, the mod-
uli space of principally polarized, 2n-dimensional, abelian varieties. For a general
polarization one has to make the obvious changes.
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5.12 Example. Usually one describes (principally polarized) abelian varieties via
their period matrix. Here is an example of principally polarized abelian varieties of
Weil-type with K = Q(i) and det H = 1.

Any principally polarized abelian variety of even dimension can be obtained as
C?" /A with the inclusion A 2 Z*" < C?" given by the ‘period matrix’

— _ I 0 71 7o
Q'_(IT)_<0 I ™ 7'22)’

where each block on the right is an n x n matrix. The polarization A x A — Z is
given by the alternating matrix (with 2n x 2n blocks):

b 00).

The Riemann conditions on E are equivalent to 7 € Sy, (the Siegel space), that is, 7
satisfies ‘7 = 7 and Im 7 > 0.

To give an endomorphism of an abelian variety X 22 C*"/A we must give a C-linear
map A : C*" — C*" which satisfies A(A) C A. Define

(0 1 L2
A.—(I 0), then: A°=—1I.

In particular, A has n eigenvalues 7 and n eigenvalues —i. Define
Hyp = {7 € Son: T11 = Toz, To1 = —T12}.

Note that we have (1/2)n(n + 1) parameters for 7; and (1/2)n(n — 1) parameters for
Ti2 since 79 = —Ty; = —'Ti9, thus dim H 4 = n?. For 7 € H 4 one has:

. A 0
AQ=QB  with B._<O A),

which shows that A preserves the lattice. The automorphism B it induces on the
lattice preserves F, so A defines an automorphism of X /A which preserves the polar-
ization.

Thus we have an n? dimensional family of polarized abelian varieties of Weil type,
with K = Q(i), over H 4. An easy computation shows det H = 1.

6 Mumford-Tate groups

6.1 The Mumford-Tate groups were introduced in [Mum]|. In general, they are
associated to @Q-Hodge structures, cf. [DMOS]. Here we restrict ourselves to the case
of abelian varieties and do not discuss nor give general definitions. We use Mumford-
Tate groups mainly to find the (dimensions of the) spaces of Hodge cycles BP.

6.2 Let X be an abelian variety. In this section we write:

V=Vy=H'(X,Q), Vi, =V®qL=H(X,L),
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for any field L D @. In 3.4 we defined the structure of a complex vectorspace on Vg
using a map J’ with (J')? = —I. We define a group:

St={zeC*: |z| =1}
and a representation of this group on Vi:
h=hx:S"— SL(Vg), h(a + bi)v := (al +bJ" v,

with a,b € R and v € V. So h just gives the scalar multiplication by complex
numbers of length one on the complex vector space (Vg, J').

That det(h(z)) = 1 follows from the fact that J’ acts as i on H'? so h(z) is scalar
multiplication by z and z on H'Y and H%! respectively. We also have representations

A"h: St — GL(AN"HY(X, R)) = GL(H"(X, R))

and, by C-linear extension, on H"(X, (). The Hodge decomposition on H"(X,C')
can be recovered from A"™h since the action of (A"h)(z) on HP?(X), with p + ¢ = n,
is scalar multiplication by zPz9.

6.3 Recall that an algebraic group defined over a field L is a quasi-projective variety
over L whose group laws are given by morphisms defined over L. For example, the
group GL(n)r, with a field L, is an algebraic group (as a variety it is defined by
t-det(A) —1 =0, which is a polynomial equation in L|. .., a;j,...,t], and the group
laws are given by polynomials in the a;; and ¢ (= (detA)~!) with coefficients in L).

Let G be an algebraic subgroup of SL(n)q, defined over @ (so its ideal I(G) is
generated by polynomials in Q.. .,a;;,...]). The ring of polynomial functions on G
is, as usual,

QG =Q[...,aj,...]/I(G).
For a (Q-algebra L we define

G(L) := Homg_aigerra(Q[G], L),

the set (in fact group) of L-valued points of G. (If ¢ € G(L) maps a;; € Q[G] tol;; € L,
then ¢ defines a matrix with coefficients [;; which satisfies the defining equations of
G conversely, such a matrix defines a ¢ € G(L). Thus G(L) is just the set of matrices
with determinant one with coefficients in L which satisfy the equations defining G.
The group law on G(L) is just the matrix product of matrices with coefficients in L).

6.4 Definition. The Special Mumford-Tate group G (sometimes also called Hodge
group) of the abelian variety X is the smallest algebraic subgroup G C SL(Vy), which
is defined over (), such that:

h(S') € G(R).

(The Mumford Tate group itself is G,, - G, i.e. one also allows scalar multiples of the
identity.)
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6.5 In this definition, note that h(S') C SL(Vx) (thus G C SL(Vy) and that the
intersection of two algebraic subgroups is again an algebraic subgroup, so the definition
makes sense. Since G acts on Vj it also acts on A"V = H*(X, Q) for all k.

Let Sp(E) be the algebraic subgroup of SL(Vy) which fixes a polarization E €
A*Vg of X. Note that Sp(FE) is defined over @ and that h(S') C Sp(E)(R), in
fact, this is equivalent to E(h*(2)z, h*(2)y) = E(z,y) for all z,y € Hy(X, R) (with
h*(z) = al + bJ the dual representation of h), which follows from J? = —I and the
Riemann Relation E(x,y) = E(Jz, Jy) = E(x,y).

Therefore:

G C Sp(E).

A generalization of this argument gives the main result:

6.6 Theorem. For all p, the space of Hodge cycles is the subspace of G-invariants
in H*(X,Q):
BP(X) = H”(X,Q)“.

Proof. (Sketch.) First we show B?(X) C H*(X,Q)%. Let pp : GL(V) — GL(AFV)
be the k'"-exterior power of the standard representation p; of GL(V). Since BP(X)
is a Q-subspace of H*(X,Q), the subgroup P = P, C SL(Vy) which via py, acts as
the identity on BP(X), is an algebraic subgroup defined over Q. Because (A?Ph)(z)
acts as 2Pz, that is, as the identity on HP? D B, we have (A*h)(S') = pa,(h(S?)) C
pap(P(R)) and thus h(S') € P(R). Therefore G C P and thus B? C H?(X,Q)? C
H*(X, Q)°.

To show BP(X) D H*(X, Q)¢ we must show HP? > H**(X,Q)% and H*(X,Q) D
H?(X,Q)%. The last is trivial, the first follows from the fact that h(S') C G(R), so
G(R)-invariants must be h(S!)-invariants. Since h(S') acts as 2%z” on H*®, the space
of h(S')-invariants in H?(X, () is just HPP(X). 0

6.7 The Special Mumford-Tate group itself can be somewhat subtle, however one
has

BP(X)®qC = (H*(X,Q)%) @ C = H*(X,0)%,

The group G(C'), a complex Lie group, is known to be a connected reductive Lie
group [DMOS] (here one uses the polarization in an essential way) and thus it, and
especially its Lie algebra, is well understood. To compute the space of Hodge cycles
one determines the representation of G(C') (or its Lie algebra) on Vi and then, using
representation theory, one tries to find the invariants in A??V.

6.8 Example. For a general abelian variety of dimension g one has G = Sp(E),
the proof is similar to the one sketched in 6.11. Then G(C) = Sp(2¢g,C) and the
representation of Sp(2g, C') on V¢ is just the standard representation. It is well known
that the subspace of invariants of Sp(2g, C') in AV is one dimensional and is spanned
by APE (where E € H*(X, Q) is the polarization), cf. Thm 17.5 from [Fu]. Thus we
obtain another proof of Mattuck’s result 4.2.
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6.9 Example. Letnow (X, K, E) be a 2n-dimensional polarized abelian variety of
Weil-type with K = Q(v/—d). Then V = H'(X, Q) has the structure of a Hermitian
K-vector space, with H the Hermitian form associated to E. We will construct
algebraic groups Uy and SUp, defined over (). The group SUy will be the Special
Mumford Tate group of a general abelian variety of Weil-type.

For convenience, let Bx := {ey,...,ea,} be a K-basis of V' for which H is given
by a diagonal Hermitian matrix ¥, so:

U ="0 € My, (Q).

The condition that a 2n X 2n matrix A = (a;;) is unitary (that is "TAVA = ) is
not given by polynomials in K[. .., a;,...], since conjugation x — Z is not given by a
polynomial in K[X]. However, viewing the K-vector space V as a Q)-vectorspace we
can define an algebraic group Uy over ) with the property that Uy (Q) is isomorphic
to the K-linear maps on V' which preserve H.

A Q-basis of V is given by Bg := {ei, ..., €4}, With es,1; := (v/—d)*e;. Since the
K-linear maps are just the Q-linear maps which commute with (v/—d)*, we consider
the algebraic group R of such (invertible) maps:

R:= { TR = < g _dg ) € GL(VQ)},

where each block is an 2n x 2n matrix (in fact R = Resk;o(GL(Vk))). Note that on
the basis B, the map (v/—d)* is given by 795 € R(Q). One easily verifies, for any
Q-algebra L, that:

R(L) = {A S GL(4TL, L) : ATOJ = ’I“()JA},

thus R(L) consists of the invertible L-linear maps commuting with (v/—d)* ® 1, i.e.
(vV—d)* ® 1-linear maps, on Vy ®¢ L. In particular:

K R(Q) — GL(VK)(K) 2 GL(2n,K)  rpe — B+ V/—dC.

Next we observe that (in Q[...,bij, ..., ¢ij,...]):

YB —V=dC)¥(B +V—dC) = V¥

‘BUB +d'CYC =V
‘BYC —d'CYB =0.

This shows that the equations on the right define an algebraic subgroup of R, denoted
by Upg, defined over @), with the property that x(Uy(Q)) are the K-linear maps
preserving H.

The conditions above are moreover equivalent to:

tTB,CE\I;TB,C = E\p with qu = ( _\g \I(l] ) .

This is not so surprising, since the Hermitian form H is determined by its imaginary
part £ which is given by the alternating matrix F'y on the basis Bgy. Thus we have:
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For any Q-algebra L, Uy(L) C GL(Vy)(L) = GL(4n, L) is thus the subgroup of
matrices which commute with the action (\/—_d)* ®1on Vg :=V®qgL, which preserve
the L-linear extension of the @-bilinear form E.

Finally we define SUy to be the subgroup of Uy defined by the two polynomial
equations (‘real’ and ‘imaginary part’) in Q[...,b;,..., ¢y, ...] obtained from the
condition:

det(B + v—dC) = 1.
Then one has SUy(R) = SU(n,n), as in 5.8.

6.10 Lemma. With the notation from above, we have:
SUR(C) = SL(2n,C).

Moreover, the representation of SUy(C) on V ®¢ C' is isomorphic to the direct sum
of the standard representation of SL(2n,C) and its dual representation.

Proof. The action of (v/—d)* on V can be diagonalized on V ®¢ C-
VC:W@W, with W .= <~-->€i®\/_d+€i+2n®1a--->i=1 77777 mn

(use €12, = (v —d)*e;). Since the SUy action on V' commutes with (v/—d)*, we see
that both W and W are invariant subspaces of SUx(C). In terms of matrices one
has, with rg ¢ € SUy C R: rp ¢S = SD, with

D::<B+\o/__dc B—\O/—_dC>’ S‘:<\/?[ _\/I__CH>'

Thus we have an injective homomorphism of groups:
7: SUH(C)— SL(W)xSL(W) = SL(2n, C)?, rgc — (B+V—dC, B—v—d(C).

The spaces W and W are isotropic subspaces w.r.t. the C-linear extension of F.
In fact, since (X, K, F) is of Weil-type we have E((v/—d)*z, (v —d)*y) = dE(z,y) and
for x € W one has (v —d)*x = /—dz. Thus if z,y € W we have:

dE(z,y) = E((V—=d)*z, (V=d)'y) = E(V—dz,V—=dy) = —dE(x,y),

and so Hyyxw = 0, the same with W. Therefore E induces a duality between W and
W. Since F is invariant under SUg(C) C Sp(E)(C), the representations induced on
W and W are dual.

Since Ejwxw = 0, any C-linear map @) : W — W preserves the restriction of £
to W. Using the duality of W and W defined by E, one gets a map Q' : W — W
such that the pair (Q,Q’) € GL(W) x GL(W) is in (the image of) Uy (C). Taking
Q € SL(W) we get the isomorphism SL(2n,C) = SUL(C).

(To show the map SUy(C) — SL(W) is surjective, we can use also a dimension
argument. The dimension of SL(2n,C) (as a complex manifold) is (2n)? — 1. The
dimension of SU(n,n) (as real manifold) is also (2n)? — 1, as is easily seen by a Lie
algebra computation.)

Another way to prove the Theorem is to show that su(n,n) ®g C, with su(n,n)
the Lie algebra of SU(n,n), is isomorphic to the Lie algebra of SL(2n,C), which is
the vector space of matrices with trace zero. O
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6.11 Theorem. (Weil, [W]) The Special Mumford-Tate group of a general polar-
ized abelian variety (X, K, E) of Weil-type is SUy.

Proof. (Sketch.) First we show h(S') C SUx(R). Recall that Ug(R) = R(R) N
Sp(E)(R). Since the complex structure J' commutes with (v/—d)* ® 1, we have
J' € R(R) and then also h(S') € R(R). That h(z) fixes the polarization E we have
already seen. Finally, the fact that h(z) has n eigenvalues z and n eigenvalues z on the
complex vectorspace (Vg, i) with i = (v/—d)* ® (1/v/d) shows that h(z) € SUx(R).

Next we must show that in general SUp is the smallest algebraic subgroup of
GL(V) defined over @ containing h(S') for the general X of Weil type. With z =
cos ¢ +ising € S, we have (since (J')? = —1):

h(z) = (cos @)l + (sin¢)J' = exp(pJ'), with exp: End(Vg) — GL(VR)

the exponential map (exp(M) = >0°, M™/(n!)). For an algebraic subgroup G’ of
GL(Vy), the group G'(R) is a Lie group and we thus have:

h(SY) C G'(R) <= J € Lie(G")g := Lie(G') ®¢g R.

The complex structure J’ is determined by V. C (Vg,i). For g € SU(n,n) =
SUx(R) the complex structure gJ’g~! is then determined by the subspace g(V).
The manifold H,, = SU(n,n)/S(U(n) x U(n)) from 5.10, parametrizing V., C (Vg, 1),
may thus be identified with the submanifold of Lie(SUg)g:

H,={g9J'g': g€ SUy(R)} C Lie(SUg)r.

The Adjoint representation of SUg(R) on its Lie algebra Lie(SUy)r C End(Vg) (via
g+ M :=gMg') is irreducible (one may use for example that SUg(R) C SUy(C) =
SL(2n,C) is Zariski dense and that the Adjoint representation of SL(2n,C') is irre-
ducible). Therefore H,, does not lie in any (proper) linear subspace of Lie(SUg)x.
Thus if G' ¢ SUy (so Lie(G')r ¢ Lie(SUg)R), then H,, N Lie(G')g (¢ H,) is a
real analytic submanifold of H,. The algebraic group SUp has only countably many
(connected) algebraic subgroups G’ defined over @ (because these are determined by
their Lie algebra, which is a @)-vector space in the finite dimensional Lie algebra of
SUy). Since H, is not a countable union of lower dimensional submanifolds, the
general J' € H,, defines an abelian variety with Special Mumford-Tate group equal
to SU H- O

6.12 Theorem. (Weil [W]) Let (X, K) be an abelian variety of Weil-type of di-
mension 2n. If the Special Mumford-Tate group of X is SUpy, then:

dim BP(X) = { ; i 7 Z and B"(X)=D"®AZH'(X,Q).

Proof. Since BP = B?~P it suffices to consider the p < n. In view of the previous
results we have:

dimg B?(X) = dimg((A*V) @q C)¥F(©).
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Let W be the standard 2n-dimensional representation of SLs,(C) and let W* be its
dual. Then:
Vo =VeeC=WaeW* ' 2WeaeA"'W

(use the pairing A¥W x AZ"KV — AW 22 O to identify AKW* =2 A=K1Y, Thus

(APV)®q C = AP(W @ W)
= B (ATTW) @ (AW,

Viewing W as (standard) GL(2n, C') representation, the decomposition of (A?P~*W)®
(A?"=2W) into irreducible GL(2n, C) representations is given by formula (6.9) of [Ful.
The SL(2n,C)-invariants correspond to the one dimensional GL(2n,C') representa-
tions. The formula (6.9) combined with Theorem 6.3.1 of [Fu| shows that:

>SL(2n,C):1 lff n+p_a:kjn (kGN)7

dim (A~W) ® (AW

and in the other cases there no invariants.

In fact, the irreducible representations in A®W ® A’W, with, say a > b, correspond
to partitions of a + b of the form A = (2,...,2,1,...,1), with A\;4; < 1 and with
Aont1 = 0. The dimension of the corresponding representation is equal to one iff
Ai = Aj forall 1 <i,j < 2n. The only such partitions are thus A = (1,...,1) (and
a+b=2n)or A=(2,...,2) (and a = b = 2n).

Thus, if p < n we must have a = p, and (the dual of ) the map (APW)@(A*"PW) —
AW = (O provides the invariant. In case p = n we can take a = 0, n, 2n.
The cases a = 0, 2n give the invariant subspaces A?"W and A?"W?*, which span
(A H (X, Q)) @ C.

Since we have B"(X) D A#H' (X, Q)® D"(X) for any abelian variety of Weil-type
the equality now follows for dimension reasons. O

7 Sketch of proofs of Theorem 4.15

7.1 The method of Schoen to verify the Hodge conjecture is based on a geometrical
construction. First of all, the abelian varieties are constructed in a geometrical way.
A curve Cj of genus 3 and a subgroup Gj of order three of Jac(Cs) define an
unramified cyclic 3:1 covering;:
m:Cr — C4

with C%7 a genus seven curve. The map 7 induces a map m, on divisors which again
induces the norm map Nm : J(C7) — J(C3). The connected component of 0 €
J(C7) of ker(Nm) is called the Prym variety P = P(C7/Cs5) of the covering. Then:

J(Cr) Rigog J(Cs) X P.

The Prym variety P is an abelian variety of dimension 4. Let a € Aut(C;) be a
generator of the covering group of 7. Then « induces an automorphism o of order
three on P, and thus Q(y/—3) C End(P)q. Using the holomorphic Lefschetz trace
formula, one finds that P is Weil-type (2,2). With the polarization £ on P which is
induced by the natural polarization on J(C7), (P,Q(v/=3), E) is a polarized abelian
variety of Weil-type.
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An explicit computation, using for example the description of the action of a on
the homology of C7 given in [Fay|, chap. IV, shows that det H = 1 (this remark was
omitted in Thm 3.2 of [9)]).

The construction (C5, G3) — (P, E) extends to a morphism, the Prym map:

P:Msz/32 — Aug,

where M3 z/37 is the (6 dimensional) moduli space of genus 3 curves with a subgroup
of order three of J(C3) and Ay g is moduli space of four dimensional abelian varieties
with a polarization like the one on P.

From section 5.11 we know that the image of P lies in a n~ = 4 dimensional
subvariety ‘H of A, g, and Schoen proves that P has a Zariski dense image in H.
Thus the general abelian variety of Weil-type with K = Q(v/=3) and det H = 1 is
isogeneous to such a Prym variety.

2

7.2 Schoen explictly constructs cycles on these Prym varieties with cycle classes
that span the space of Weil-Hodge cycles. The construction is as follows.

USZ‘ C 5407

| |
us; C T
l T l 3:1

|K| C 5403

Since C7 is an unramified cyclic 3:1 covering of Cs, the map 7™ : S*C; — S*C;4
(with S*C the k-fold symmetric product of the curve C) can be shown to factor over
a fourfold T such that 7 : 7' — S*Cjy is an unramified cyclic 3:1 cover. In S*Cj lies a
P? = | K|, the linear system of effective, canonical divisors on Cj. Since P? is simply
connected, 77 (P?) must be reducible, say

T*(PQ) =51+ 52+ 55 (E ZQ(T))

Thus 7Y% K| has at least three irreducible components S; in $*C;. Using the com-
position
qf) : 5407 — J(C7) %isog J(Cg) X P — P,

one obtains cycles ¢,.5; in P. Schoen proves that linear combinations of the cycle
classes of the ¢.S; span the space of Weil-Hodge cycles for the general P, [P] € H.
By specialization (over a one parameter family) one finds that the space of Weil-Hodge
cycles on any P, [P] € H is spanned by cycle classes.

7.3 Similarly, the general 6 dimensional abelian variety of Weil-type with K =
Q(v/=3) and det H = 1 is obtained as the Prym of an unramified 3:1 cover Cg — Cy
(cf. [F]). Schoen’s results imply that the cycles obtained from |K| = P? ¢ S°C, will
again span the space of Weil-Hodge cycles, proving the Hodge (3,3) conjecture for
such an abelian variety.
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7.4 Schoen observed that one can also obtain abelian varieties of Weil-type with
field Q(i) and det H = 1 via a Prym construction. Starting from a curve Cj4; of
genus h+ 1 and a cyclic subgroup of order 4 of J(C}1), one has a tower of unramified
2:1 coverings:

C4h+1 - C2h+1 - Ch+1.

The Prym variety P of the 2:1 covering Cyp11 — Capiq is a (principally polarized)
abelian variety of dimension 2h, of Weil-type with field (7) (note that Cy;41 has an
automorphism of order 4) and with det H = 1. Each P is in fact a member of the
family constructed in Example 5.12 (see [vG]).

A variation on a proof in [S] shows that the general abelian fourfold of Weil-type
with field Q(7) and det H = 1 is isogeneous to such a P (cf. [vG]) with A = 2. The
cycle construction as before gives the proof of the Hodge conjecture for the general
member of this family of abelian fourfolds.

7.5 We sketch the method used in [vG] to prove the Hodge conjecture for the general
abelian varieties of Weil-type with K = Q(i) and det H = 1.

In Example 5.12 (‘universal’) families of such (principally polarized) abelian vari-
eties were constructed. Using the easy description of any member X, one can actu-
ally obtain useful information on the multiplication maps S"H°(X, L) — H°(X, L®")
where L is an ample line bundle on the abelian variety X.

We will now restrict ourselves to the case dim X = 4 and L = O(20), with © a
symmetric divisor defining the principal polarization. The automorphism of order 4
of X acts as an automorphism of order 2 on H°(X, L), splitting it in a direct sum of a
10 dimensional even part H{ and a 6 dimensional odd part H°. Thus, by composing
the natural map with the projection, we have a rational map

d; : X — P¥=PH' X L) — P° = PH°.

The (closure of) the image of X turns out to be a smooth quadric Q ( for this one
computes the kernel of the map S?H°(X, L) — H°(X, L®?) and shows that it contains
a quadric which lies in the subspace S?H® C S*H°(X, L)).

Pulling back the rulings of @) to X along ®; produces cycles whose classes do not
lie in A2B!. Using the action of Q(i)* on H*(X,Q), one finds cycles which span B?
for the general X in the family.
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