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1 Introduction

1.1 In this paper we study the cusp forms of weight 3 on the congruence
subgroup Γg(2, 4, 8) of Γg := Sp2g(Z) in case g = 2.

Recall that Γg(n) consists of the matrices which are ≡ I mod n, that

Γg(4, 8) =

{ (

A B
C D

)

∈ Γg(4) : diag(B) ≡ diag(C) ≡ 0 mod 8

}

and in [5] the following (normal) subgroup of Γg was defined:

Γg(2, 4, 8) :=

{(

I + 4A′ B
C I + 4D′

)

∈ Γg(4, 8) : trace(A′) ≡ 0 mod 2

}

.

In particular:
Γ(8) →֒ Γ(2, 4, 8) →֒ Γ(4, 8) →֒ Γ(4).

The Siegel upper half plane Hg is the analytic variety consisting of g × g
complex symmetric matrices with positive definite imaginary part. For a function
f : H → C, M ∈ Γg and k ∈ N one defines:

f |k
(

A B
C D

)

(τ) = det(Cτ +D)−kf( (Aτ +B)(Cτ +D)−1 ).

Let Γ′ be a congruence subgroup of Γg, that is Γg(n) ⊂ Γ′ for some n. A
modular form of weight k for Γ′ is a holomorphic function f on Hg satisfying
f |kM = f for all M ∈ Γ′. The C-vector space of such functions is denoted by
Mk(Γ

′).
One defines the Siegel operator Ψ, mapping f ∈ Mk(Γ

′) to a function on
Hg−1, by:

Ψ(f)(τ) := limt→∞ f(
(

τ 0
0 it

)

), τ ∈ Hg−1.

The subspace Sk(Γ
′) of Mk(Γ

′), called the space of cusp forms, is defined by:

Sk(Γ
′) = {f ∈Mk(Γ

′) : Ψ(f |kM)(τ) = 0 ∀τ ∈ Hg−1, ∀M ∈ Γg}.

1.2 In case the group Γ′ acts without fixed points on Hg (for example, if Γ′ ⊂
Γg(n) and n ≥ 3), the space Mg+1(Γ

′) corresponds to the space of holomorphic
1
2
g(g+1)-forms on the quasi-projective variety X0 = Hg/Γ

′. This correspondence
is given by ω 7→ f when

π : Hg −→ X0, π∗ω = f(∧dτij).
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The subspace of those forms which extend to (any) smooth compactification X̃
of X0 is exactly Sg+1(Γ

′). In particular:

Sg+1(Γ
′) ∼= H0(X̃,Ω

1

2
g(g+1)

X̃
).

A remarkable aspect of this result is that the ‘cusp form condition’ need only be
checked at points in the boundary of the Satake compactification which are in
quotients of Hg−1, rather then at all points (which are in quotients of Hk with
0 ≤ k ≤ g − 1 (this can be generalized to other symmetric domains, see [9], Ch.
IV). We will happily exploit this fact.
1.3 In the case g = 2 (where we will omit the subscript g) and Γ′ = Γ(2, 4, 8),
the variety X0 can be described explictly as a Zariski open subset of a projective
variety X ⊂ P 13. The embedding of X0 into P 13 is given by certain theta
constants. The variety X is the complete intersection of 10 quadrics, which can
easily be written down expicitly. Using this, and combinatorics of theta constants,
we can determine the space H0(X̃,Ω3

X̃
), and thus also the space S3(Γ(2, 4, 8)).

(We use the computer program ‘Macaulay’ for the manipulations with ideals of
polynomials.)

On the space S3(Γ(2, 4, 8)) the finite group Γ/Γ(2, 4, 8) acts, and we determine
the decompostion into irreducible subrepresentations.

In the last sections we study the action of the Hecke algebra on S3(Γ(2, 4, 8)).
The action this algebra is induced by correspondences. In this case these are
codimension 3 cycles on X0×X0 and by ‘pullback-push forward’ they give linear
maps on S3(Γ(2, 4, 8)). The definition of these cycles is in terms of isogenies
of abelian varieties. Similar to the elliptic modular case, one has a congruence
relation which relates the action of the Hecke operators on S3(Γ(2, 4, 8)) to the
action of the Galois groupGal(Q/Q) onH3(X̃,Q

l
). It is therefore of some interest

to determine the eigenspaces and eigenvalues of these operators. We determined
the Hecke polynomials, which describe the Hecke action, for several cusp forms
and for some small primes p.

Most of the forms we consider appear to be obtained via liftings from modular
forms on subgroups of SL2(Z). In one case the Hecke polynomials suggest that
the modular form is related to a Hecke character of the field of eight roots of
unity (the form g1). There is one case in which the Hecke polynomials of the
cusp form do not allow one of these interprations (the form g2). In this paper we
do not actually try to prove that most of the forms are indeed liftings.
1.4 We are indebted to J.Top and R.Weissauer for helpful comments and to
H.J.Imbens for assistence with computer programs.

2 Combinatorics of theta characteristics

2.1 The modular forms we consider are linear combinations of products of theta
constants. For m = 1

2
(m′,m′′) ∈ R2 × R2 with m′

j, m
′′
j ∈ {0, 1} we define the
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theta constant θm : H2 → C with (half -integral) (theta) characteristic m by:

θm(τ) :=
∑

k∈Z2 exp
(

2πi[1
2
(k + m′

2
)τ t(k + m′

2
) + (k + m′

2
)t(m′′

2
)]
)

.

The theta constant is not identically zero iff the theta characteristic m is even i.
e. m′tm′′ ∈ 2Z. There are 10 even theta characteristics. If m = 1

2
(a, b, c, d) we

will also write:
θm(τ) = θ[ab

cd](τ).

Under the action of Γ on H2 these 10 theta null’s are permuted (upto a root
of unity times a commen factor, cf. 5.2). Therefore Γ acts on the set C1 of the
10 even characteristics. The action of M ∈ Γ is given by (cf. [7] V.6):

M : C1 → C1, M ∗m := n, n = mM−1 +
1

2
( (CtD)0, (AtB)0) mod 1.

Here M ∈ Γ is the matrix with blocks:

M =

(

A B
C D

)

,

where (CtD)0, (AtD)0 are the diagonals of the matrices CtD and AtB respec-
tively, viewed as row vectors.

This action of Γ factors over Γ/Γ(2) ∼= S6, the group of permutations of the
set S = {1, 2, . . . , 6}. The 10 even theta characteristics then correspond to the
1
2

(

6
3

)

= 10 partitions of S into two subsets with 3 elements each (cf. [8]); such
a partition is called a triadic syntheme. The action of S6 on C1 is then easy to
follow.
2.2 Associated to each m ∈ C1 there is a quadratic form Qm in the variables
X0, X1, X2, X3 and a quadric Vm = V (Qm) in P 3 = P (X0, X1, X2, X3). The Qm’s
are defined by the relation (cf. [7], IV.1):

θ2
m(τ) = Qm(θ[0000](2τ), θ[

01
00](2τ), θ[

10
00](2τ), θ[

11
00](2τ)).(2.3)

3



m triad Qm

1 [0000] 156 234 X2
0 +X2

1 +X2
2 +X2

3

2 [0001] 134 256 X2
0 −X2

1 +X2
2 −X2

3

3 [0010] 146 235 X2
0 +X2

1 −X2
2 −X2

3

4 [0011] 135 246 X2
0 −X2

1 −X2
2 +X2

3

5 [0100] 124 356 2(X0X1 +X2X3)

6 [1000] 145 236 2(X0X2 +X1X3)

7 [1100] 126 345 2(X0X3 +X1X2)

8 [0110] 125 346 2(X0X1 −X2X3)

9 [1001] 136 245 2(X0X2 −X1X3)

10 [1111] 123 456 2(X0X3 −X1X2)

The 10 quadrics determine an interesting configuration of 30 lines (15 pairs
of skew lines) and 60 points (vertices of 15 tetrahedrons). By a tetrahedron we
mean the algebraic variety consisting of the union of 6 lines, the edges, meeting
in 4 points, the vertices, as in the figure.
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We let Ci be set of subsets of cardinality i of C1 and we put C = ∪iCi. We
describe the orbit structure of S6 on C and that part of the geometry of the
quadrics which is relevant for our purposes.

2.4 Proposition. The orbits of the S6 = Γ/Γ(2) action on the sets Cn are as
follows:

1. The group S6 acts transitively on C1; ♯C1 = 10.

2. The group S6 acts transitively on C2; ♯C2 = 45.

Two quadrics Vm and Vn intersect in a 4-gon of lines, thus determining a
tetrahedron.

3. There are 2 orbits on C3, denoted by C+
3 and C−

3 .

C3 = C+
3 ∪ C−

3 , ♯C3 = (10
3 ) = 120, ♯C+

3 = ♯C−
3 = 60.
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A triple {m1,m2,m3} is in C+
3 iffm1+m2+m3 is an even theta characteristic

(such triples are called syzygeous).

A triple {m1,m2,m3} is in C−
3 iffm1+m2+m3 is an odd theta characteristic

(such triples are called asyzygeous).

The quadrics of a syzygeous triple intersect in 8 points, vertices of two
tetrahedrons.

The quadrics of an asyzygeous triple intersect in a pair of skew lines.

4. There are 3 orbits on C4, denoted by C+
4 , C

−
4 and C∗

4 .

C4 = C+
4 ∪ C−

4 ∪ C∗
4 , ♯C4 = (10

4 ) = 210, ♯C+
4 = ♯C−

4 = 15, ♯C∗
4 = 180.

A 4-tuple {m1,m2,m3,m4} is in C+
4 iff any sub-triple is in C+

3 . (One can
also characterize 4-tuples in C+

4 by m1 +m2 +m3 +m4 = 0.) We call such
4-tuples syzygeous.

A 4-tuple is in C−
4 iff any sub-triple is in C−

3 . We call such 4-tuples asyzy-
geous.

A 4-tuple is in C∗
4 iff the sum of two sub-triples is even and the sum of the

other two sub-triples is odd.

The sets C+
4 and C−

4 are in natural 1-1 correspondence with the set of the
15 tetrahedra and the set of 15 line pairs respectively as follows:

For S ∈ C+
4 , the complementary set S ∈ C6 consists of 6 characteristics

whose corresponding quadrics pass through the vertices of a unique tetra-
hedron TS. The union of the four quadrics Vm, m ∈ S, contains 24 of the
30 lines, but none of the 6 lines of the tetrahedron TS.

For S ∈ C−
4 , the quadrics Vm, m ∈ S, all pass through a line pair lS.

Conversely, any of the 15 line pairs is cut out by 4 quadrics, thus setting
up a 1-1 correspondence. The union of the four quadrics contains all the
15 line pairs.

5. There are 3 orbits on C5, we denote them by C+
5 , C

−
5 and C∗

5 .

C5 = C+
5 ∪ C−

5 ∪ C∗
5 , ♯C5 = (10

5 ) = 252, ♯C+
5 = ♯C−

5 = 90, ♯C∗
5 = 72.

A 5-tuple is in C+
5 iff it contains a (unique) syzygeous 4-tuple.

A 5-tuple is in C−
5 iff it contains a (unique) asyzygeous 4-tuple.

A 5-tuple is in C∗
5 iff the sum of the 5 characteristics is odd.

For any S ∈ C∗
5 , the union ∪m∈SVm also contains all the 15 line pairs.
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6. For n ≥ 6 the orbit structure of Cn can be obtained by taking complements
from the above. We use the notation C+

10−i := {S : S ∈ C−
i }, C−

10−i := {S :
S ∈ C+

i }.

Proof. This follows easily from [7], V.6, especially prop. 2. The transitivity
of S6 on C2 is in fact the corollary of prop. 2. Note also that the sum of an
even number of theta characteristics transforms linearly, so orbits may be dis-
tinguished by such a sum being 0 or not, whereas the sum of an odd number of
theta characteristics transforms like a theta characteristic, so such orbits may be
distinguished by the sum being even or odd. 2

2.5 The complete incidence structure between points, lines and quadrics is
easily obtained, and is left to the reader as amusing time passing. We only note:

A line pair lS, S ∈ C−
4 , lies on a quadric Vm, m ∈ C1, iff m ∈ S.

Furthermore, on each line there are 6 points, thus on each line pair there are
12 points, and these 12 points make up 3 tetrahedra. Conversely, through each
point there are 3 lines and each tetrahedron is formed out of a triple of line pairs,
etc. etc. . .

2.6 Lemma. The S6-orbit structure on the Ci, i = 2, . . . 8 is given by:

C+
4 (15)

1→ C+
5 (90)

6→ C+
6 (15)

4 ր ց 1

C+
3 (60) 4 ր ց 2 C+

7 (60)
3 ր 2 ց ր 6 ց 4

C2(45) C∗
4(180)

5→ C∗
5(72)

2→ C∗
6(180) C8(45)

3 ց 2 ր ց 6 ր 4

C−
3 (60) 4 ց ր 2 C−

7 (60)

4 ց ր 1

C−
4 (15)

1→ C−
5 (90)

6→ C−
6 (15)

where A
n→ B means: each S ∈ B contains exactly n S ′ ∈ A. There is also a dual

interpretation: A
n→ B means: an element S ∈ B can be extended in n ways to

get an element S ′ ∈ A.

3 The space X ⊂ P 13 and its singular locus Σ.

3.1 In [5], the map

Θ : A2(2, 4, 8) := H2/Γ2(2, 4, 8) −→ P 13, τ 7→ (. . . : θ[ab
00](2τ) : . . . : . . . : θm(τ) : . . .),
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where m runs over the 10 even charateristics and a, b run over {0, 1}, is shown to
be an embedding. We denote the image by X0 and the closure of X0 in P 13 will
be denoted by X.

We define two morphisms:

p : X −→ P 3, q : X −→ P 9

obtained by projection on the first 4 and the last 10 coordinates.
The map p corresponds to the natural map A(2, 4, 8) → A(2, 4), in fact P 3 can

be identified with the Satake compactification As(2, 4) of A(2, 4). The bound-
ary components of As(2, 4) correspond to the 30 lines in the P 3. The map q
corresponds to the natural map A(2, 4, 8) → A(4, 8).

The equations of X are very simple. To describe these, we choose for each
m ∈ C1, a variable Zm and consider

Fm := Z2
m −Qm ∈ C[X,Z].

3.2 Lemma. The projective variety X has the following properties.

1. X is the complete intersection of the 10 quadrics Fm, m ∈ C1.

2. The singular locus Σ of X is exactly the inverse image of the union of the
30 lines in P 3 under the map p. The locus Σ consists of 30 · 23 = 240
irreducible components, each one isomorphic to a degree 8, genus 5 curve.

3. X is (projectively) normal, and is in fact isomorphic to the Satake com-
pactification of A2(2, 4, 8):

X ∼= As
2(2, 4, 8).

Proof. Let X ′ = { (X,Z) ∈ P 13 : Fm(X,Z) = 0 ∀m ∈ C1 }. Then by
equation 2.3, we have that X ′ ⊂ X. Furthermore, the projection p : X ′ →
P 3, (X,Z) 7→ X represents X ′ as an iterated branched cover of P 3, branching
along the quadrics Vm, m ∈ C1. It follows that X ′ is purely 10-codimensional
and hence is a complete intersection.

An easy local computation shows that X ′ is singular exactly above the points
where at least two of the quadrics Vm intersect. When we restrict to the line
X2 = X3 = 0 the equations Fm reduce to:

(A)











Z2
1 = X2

0 +X2
1

Z2
2 = X2

0 −X2
1

Z2
5 = 2X0X1

(B)



















Z2
6 = Z2

7 = Z2
9 = Z2

10 = 0
Z2

1 = Z2
3

Z2
2 = Z2

4

Z2
5 = Z2

8

The ideal generated by (A) defines a degree 8, genus 5 curve in (Z1 : Z2 : Z5 :
X0 : X1)-space (in fact, this is the elliptic-modular curve X(8)). The equations
B show that the solution set consits of 23 = 8 copies of this curve.
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As dim Σ =1 and X ′ is a complete intersection, it follows thatX ′ is irreducible
and thus X ′ = X.

Furthermore, as a complete intersection is arithmetically Cohen-Macaulay,
it follows from Serre’s criterion for normality that X is (projectively) normal.
Since the map Θ is given by modular forms, there exists a morphism ψ : X →
As(2, 4, 8). Since Θ : H2/Γ(2, 4, 8) → X0 is an isomorphism ([5], Thm 2.2), the
map ψ is a birational isomorphism. Comparing the description of the Satake
compactification in [10], with X, we see that ψ is a bijection. By Zariski’s main
theorem it follows that X ∼= As(2, 4, 8). 2

Now let

IX = (Fm : m ∈ C1) ⊂ C[X,Z], RX := C[X,Z]/IX

(the affine coordinate ring of the cone over X). Furthermore, we let IΣ be the
ideal of (affine cone over) the singular locus Σ with its reduced structure (i.e.: IΣ
is radical).

3.3 Lemma. IΣ = ∩S∈C−

4

(Zm, m ∈ S; IX).

Proof . Clearly we have
IΣ = ∩S∈C−

4

I(lS)

where I(lS) is the ideal in C[X,Z] of p−1(lS), the inverse image of the line pair
lS ⊂ P 3 in P 13, with reduced structure. The ideal of a line pair lS is:

J(lS) = (Qm, m ∈ S) ⊂ C[X],

since every pair of skew lines in P 3 is cut out by 4 quadrics, and the 4 Qm, m ∈ S,
vanish on lS.

The ideal theoretic inverse image of J(lS) is given by the ideal:

J̃(lS) = (Qm, m ∈ S, IX) ⊂ C[X,Z]

= (Qm, Z
2
m −Qm, m ∈ S, Fm, m 6∈ S)

= (Z2
m, m ∈ S, IX).

So (Zm, m ∈ S, IX) ⊂
√

J̃(lS) = I(lS).
But the ideal on the left is in fact radical: by transitivity of S6 on C−

4 we may
assume S = {6, 7, 9, 10} and then:

(Zm, m ∈ S, IX)

= (Fm, m 6∈ S, Zm, m ∈ S, X0X2, X1X3, X0X3, X1X2)

= (Fm, m 6∈ S, Zm, m ∈ S, X0, X1) ∩ (Fm, m 6∈ S, Zm, m ∈ S, X2, X3),

and both of the ideals are radical (see the proof of lemma 3.2). Thus the inclusion
is actually an equality and the lemma is proved. 2

8



4 The cusp forms

4.1 Proposition. The space of cusp forms of weight three for Γ(2, 4, 8) is canon-
ically isomorphic to the degree 6 part of IΣ,X := IΣ/IX ⊂ RX = C[X,Z]/IX :

S3(Γ(2, 4, 8)) ∼= IΣ,X,6.

Proof. There are in fact two ‘natural isomorphisms’. We describe them both.

1. The map Θ : H2 −→ P 13 induces by pull-back an isomorphism:

Θ∗ : H0(X0,OX0(6))
∼−→M3(Γ(2, 4, 8)).

As X is normal, we have H0(X0,OX0(6)) ∼= H0(X,OX(6)) and because X
is projectively normal:

H0(X,OX(6)) ∼= RX,6.

A polynomial P ∈ C[X,Z]6 pulls back to a cusp form iff it vanishes on Σ
(the boundary components of X).

2. To any polynomial P of degree 6 we can associate a (meromorphic) differ-
ential form on X as follows. There is an isomorphism:

Res : OX(6) −→ ωX , P 7→ ωP := Res
(

PΩ

F1 . . . F10

)

where Ω :=
∑13

i=0(−1)iYidY0 ∧ . . . ∧ ˆdYi ∧ . . . ∧ dY13 and where the Yi are
the coordinates on P 13.

The differential forms which extend holomorphically on a desingularization
π : X̃ → X correspond, via Res, to an ideal IA ⊂ OX , which is independent of
the desingularization (see [11]). We will study the ‘adjunction ideal’ IA ⊂ C[X,Z]
corresponding to IA.

Now a simple local calculation shows that transverse to general point of Σ the
variety X has a singularity which is isomorphic to the cone over an elliptic curve
(of degree 4). This singularity ‘imposes precisely one adjunction condition (pg =
1)’. This means that P has to vanish on Σ if ωP is to extend holomorphically.
Therefore IA ⊂ IΣ.

That in fact IA = IΣ, follows from the principle that forms which extend to
the general point of the inverse image of Σ in X̃ extend to all of X̃ (see [3], Satz
3 , [4], ‘Anmerkung’ to Satz III, 2.6, p.156). That is, the 60 special points do
not impose further adjunction conditions (!). This can also be checked directly
by pulling back the differential forms to an explicit resolution of singularities of
X above the 24 · 60 special points. 2
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4.2 We now come to the crucial part of this paragraph: the explicit generators
of the ideal IΣ,X ⊂ RX or IΣ ⊂ C[X,Z]. To describe these we need a little more
notation. The tetrahedron TS, determined by an S ∈ C+

4 , gives rise to an ideal

JTS
⊂ C[X,Z]

of the functions vanishing on the 6 lines of TS.

4.3 Lemma. The ideal JTS
is generated by 4 elements of degree 3.

Proof. For each tetrahedron, the 4 products of three of the four linear forms
defining the faces of the tetrahedron, vanish on the tetrahedral lines and in fact
generate the ideal. 2

The following theorem allows us to find all the cusp forms of weight 3 on
Γ(2, 4, 8). We describe them in theorem 6.4, where we also determine the Γ-
action on the space S3(Γ(2, 4, 8)).

4.4 Theorem. The ideal IΣ is (minimally) generated by the following elements:

• Fm ♯ = 10

• ZS, S ∈ C−
4 ♯ = 15

• ZS, S ∈ C∗
5 ♯ = 72

• ZS′F, F ∈ JTS ,3, S ∈ C+
4 , S ′ ∈ C+

3 , S ′ ⊂ S ♯ = 240 .

Here we use the notation: ZS :=
∏

m∈S Zm for any S ∈ C.

Proof. We first show that the stated elements are in the ideal IΣ.
Because the union of the quadrics Vm, m ∈ S contains all 30 lines in case

S ∈ C−
4 and S ∈ C∗

5 it follows that in these cases ZS vanishes on Σ, and so
ZS ∈ IΣ.

The union of the quadrics Vm, m ∈ S, S ∈ C+
4 only contains 24 lines, which

are precisely the lines not in the tetrahedron TS determined by S. Furthermore,
the union of any three of the four quadrics Vm, m ∈ S, S ∈ C+

4 already contains
the same 24 lines. Consequently, multiplying any ZS′ , S ′ ∈ C+

3 , S
′ ⊂ S with any

element of JTS
will give a function, vanishing on the whole of Σ.

The difficult part of the theorem is to show that there is nothing more in
IΣ. So far, this depends on an explicit computation of the intersection of the 15
ideals I(lS), S ∈ C−

4 . For this we used the computer program ‘Macaulay’. The
computer output consisted of 337 elements, generating this ideal, which were
readily recognized as the elements above.

To give a computer independent proof, it seems necessary to understand the
combinatorics much better. 2

10



4.5 Corollary. We have:

1. dim(IΣ,X,4) = 15,

2. dim(IΣ,X,5) = 282,

3. dim(IΣ,X,6) = 2283.

Proof. It is convenient to use the following isomorphism:

RX =
⊕

S∈C

C[X]ZS,

stating that, modulo the Fm, every polynomial can be reduced in a unique way
to a sum of square free monomials ZS, with coefficients in C[X]. (A Cohen-
Macaulay ring is a free module over a parameter system).

From thm 4.4 we have:

IΣ,X,4 =
⊕

S∈C−

4

CZS, so dim(IΣ,X,4) = 15.

In degree 5 we thus find, apart from the 72 new generators ZS, S ∈ C∗
5 , the

elements of IΣ,X,4 multiplied by a linear factor. The following cases occur:

1. ZmZS, m 6∈ S,

2. ZmZS, m ∈ S,

3. XiZS, i = 0, 1, 2, 3.

From diagram 2.6 we see that
in case (1) ZmZS = ZS′ , S ′ ∈ C−

5 ♯ = 90
in case(2) ZmZS = QmZS′ , S ′ ∈ C−

3 , {m,S ′} ∈ C−
4 ♯ = 60

in case (3) XiZS ♯ = 4 · 15 = 60.

Alltogether, in degree 5 we find we find 72 + 90 + 60 + 60 = 282 monomials.
To get elements of degree 6 we proceed in the same way: apart from the

240 generators FZS′ , F ∈ JTS
, S ′ ⊂ S ∈ C+

4 we get all the other factors by
multiplying something of degree 5 with a linear factor. Starting from the 90
elements ZS, S ∈ C−

5 we get:

1. ZmZS m 6∈ S,

2. ZmZS m ∈ S,

3. XiZS i = 0, 1, 2, 3.
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In case (1) we have ZmZS = ZS′ , S ′ ∈ C−
6 , ♯ = 15. In case (2) there are two

subcases: (2a) S ′ := S − {m} ∈ C−
4 , ZmZS = QmZS′ , ♯ = 360 and (2b)

S ′ ∈ C∗
4 , ♯ = 360. In case (3) we find 4 · 90 = 360 elements.

Proceeding in this way with the other elements of degree 5 in the ideal we get
the following table (the last column relates them to the representation studied in
section 6):

elements dim representation

ZS S ∈ C−
6 15 R−

6

QmZS S ∈ C−
4 , {m,S} ∈ C−

5 90 R−
4 (0; 2)

QmZS S ∈ C∗
4 , {m,S} ∈ C−

5 360 R−
4 (1; 1)

XiZS S ∈ C−
5 360 R−

4 (0; 1)

QmQm′ZS S ∈ C2, {m,m′, S} ∈ C−
4 90 R−

4 (1, 1; 0)

XiQmZS S ∈ C−
3 , {m,S} ∈ C−

4 240 R−
4 (1; 0)

XiXjZS S ∈ C−
4 150 R−

4 (0; 2) ⊕R−
4 (2; 0)

ZS S ∈ C∗
6 180 R∗

6

QmZS S ∈ C∗
4 , {m,S} ∈ C∗

5 360 R∗
5(1; 0)

XiZS S ∈ C∗
5 288 R∗

5

FZS F ∈ JTS′ ,3 , S ⊂ S ′ ∈ C+
4 240 R(3, 3)

In particular, we find dim IΣ,X,6 = dimS3(Γ(2, 4, 8)) = 2283.

5 The Theta transformation formula

5.1 Let Γ′ be a normal subgroup of Γ and let M3(Γ
′) be the space of modular

forms of weight 3 on Γ′. The group Γ (in fact Γ/Γ′) acts on M3(Γ
′) by:

f 7→ f |M, with (f |M)(τ) = det(Cτ +D)−3f(M · τ).

To decompose the spaces of cusp forms with respect to this representation we
introduce the following symplectic matrices:

e1(n) =











1
2n 1

1 −2n
1











, e3(n) =











1 2n
1 2n

1
1











,
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e2(n) = te1, e4(n) = te3,

e5(n) =

(

A
tA−1

)

, e6(n) =











a b
1

c d
1











,

e7(n) =











1 2n
1

1
1











, e8(n) =











1
1 2n

1
1











,

e9(n) = te7(n), e10(n) = te8(n).

HereA =

(

a b
c d

)

is some matrix in SL2(Z) which is congruent to

(

1 + 2n 0
0 1 + 2n

)

modulo 4n.
To find the action of Γ on the modular forms, we use the transformation

formula for theta functions ([7], V §1 Corollary, p.176 and V, §2 Theorem 3, p.
182):

5.2 Lemma. Igusa’s Transformation Formula. ForM =
(

AB
CD

)

∈ Sp2g(Z)

and m ∈ R2g a theta characteristic, we define

M ·m := mM−1 +
1

2
((CtD)0 (AtB)0),

with (CtD)0 the diagonal of CtD. Define

φm(M) = −1

2

(

m′tDBtm′ − 2m′tBCtm′′ +m′′tCAtm′′ − (m′tD −m′′tC)t(AtB)0

)

.

Then:

θM ·m((Aτ +B)(Cτ +D)−1) = κ(M) exp(2πiφm(M))
√

det(Cτ +D)θm(τ),

in which κ(M) is a complex number of absolute value 1 which depends only on
M and the choice of the square root. In particular, it does not depend on the
characteristic m. Thus κ(M)2 is well defined; for M ∈ Γg(2) one has:

κ(M)2 = (−1)trace(D−1)/2

5.3 In the remainder of this paragraph we derive two lemmas from this for-
mula. The first lemma gives an explicit form of the transformation formula for
certain matrices. The second lemma studies the transformation behaviour of the
functions θ[ab

00](2τ) which are an ingredient of some of the cusp forms.
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5.4 Lemma. For every half-integral characteristic

m = (1/2)(a, b, c, d) with a, b, c, d ∈ {0, 1}

and every M (∈ Γ(2)) as below we have:

θm(M · τ) = χm(M)θm(τ),

for all τ ∈ H and with χm(M) as in the table.

M e1(1) e2(1) e3(1) e5(1) e6(1) e7(1) e8(1)

χm(M) (−1)bc (−1)ad (−1)ab 1 (−1)ac ia ib

Proof. We will write m1 := (a, b), m2 := (c, d). Let M =
(

AB
CD

)

∈ Γ(2) with

A = D = I, B = 2B′, C = 0, note that B′ is then a symmetric matrix with
integral coefficients. We find:

θm(M · τ) = θm(τ +B) =

=
∑

k exp(2πi[(1/2)(k + m1

2
)(τ +B)t(k + m1

2
) + (k + m1

2
)t(m2

2
)])

=
∑

k exp(2πi[(1/2)(k + m1

2
)τ t(k + m1

2
) + kB′tk + kB′m1 + m1

2
B′ m1

2
+ (k + m1

2
)t(m2

2
)])

= exp(2πi
4
m1B

′m1) · θm(τ).

From this χm(M) for M = e3, e7, e8 is easily computed.

Let now M =
(

A0
0D

)

, this implies that D = tA−1. Then:

θm(M · τ) = θm(Aτ tA)

=
∑

k exp(2πi[(1/2)(k + m1

2
)Aτ tAt(k + m1

2
) + (k + m1

2
)AA−1(m2

2
)])

=
∑

k exp(2πi[(1/2)((k + m1

2
)A)τ t((k + m1

2
)A) + ((k + m1

2
)A)t((m2

2
)tA−1)])

= θn(τ),

the characteristic n is given by:

n = (n1, n2), n1 = m1A, n2 = n2
tA−1.

In case A = (10
21), so M = e1(1), one obtains:

n = (a, b, c, d) + (2b, 0, 0,−2c), thus θn(τ) = (−1)bcθm(τ),

where we use (θ.2) from [7], p.49. The formula for χm(M), withM = e2(1), e5(1), e6(1),
is derived analogously, note one may take A = −I in e5 and e6.

Note that by comparing this result with lemma 5.2, we find κ(M)
√

det(Cτ +D) =
1 for these matrices. 2

14



5.5 Lemma. Let M ∈ Γg(2) with

M =

(

A B
C D

)

=

(

I + 2A′ 2B′

2C ′ I + 2D′

)

,

let m = (m1, . . . ,mg) with mi ∈ {0, 1} and let τ ∈ Hg.
Then we have:

θ[m0 ](2M · τ) = λ(M, τ) · (−1)(m+y)·txθ[m+y
0 ](2τ),

with λ(M, τ) independent of the characteristic m and:

λ(M, τ)2 = det(Cτ +D), x := diag(B′), y := diag(C ′),

where we view the diagonals as row-vectors.
In case C = 0, we have λ(M, τ) = 1.

Proof. This is actually a special case of Igusa’s transformation formula 5.2.
Indeed,

θ[m0 ](2(M · τ)) := θ[m0 ](2(Aτ +B)(Cτ +D)−1)

= θ[m0 ]((A(2τ) + 2B)(C ′(2τ) +D)−1)

= θ[m0 ](M ′ · (2τ)) .

One easily verifies that the matrix M ′ is also a symplectic matrix with integral
coefficients, thus M ′−1 is easy to compute:

M ′ :=

(

A 2B
C ′ D

)

, M ′−1 :=

(

tD −2 tB
−tC ′ tA

)

.

The action of M ′ on the characteristic (m
2
, 0) is then given by:

M ′ · (m
2
, 0) := (m

2
, 0)M ′−1 + 1

2
( (C ′tD)0, 2(AtB)0 )

= (m
2
, 0)







tD −2 tB

−tC ′ tA





+ 1
2
( (C ′tD)0, 2(AtB)0 )

= (m
2

tD, −mtB) + 1
2
( (C ′tD)0, 2(AtB)0 )

= (m+y
2
, 0) + (mtD′ + y′, 2(−mtB′ + (AtB′)0)

= k + l.

Using (θ.2) from [7], p.49, we find θk+l = θk. It is then easy to verify that

θ[m0 ](2M · τ) = θM ′·k(M
′ · (2τ)).
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Applying 5.2 to the righthandside we find:

θ[m0 ](2M · τ) = λ(M, τ)exp(2πiφk(M
′))θk(2τ).

Since k = (m+y
2
, 0), the only non-zero terms in φk(M

′) are:

φk(M
′) = −1

4
(m+ y)(tDB)t(m+ y) + 1

2
(m+ y)tD(AtB)0

∈ 1
2
(m+ y)tx+ Z,

where we use that B = 2B′, D = I + 2D′ and x := diag(B′).
In case C = 0 it follows from (the proof of) lemma 5.4 that λ(M, τ) = 1.
This completes the proof of lemma 5.5. 2

6 The representation of Γ/Γ(2, 4, 8) on S3(Γ(2, 4, 8))

6.1 Recall that subgroup Γ(2) fixes the characteristics. For f =
∏2k

i=1 θmi
, a

modular form of weight k on Γ(4, 8), we can then define the homomorfism:

χf : Γ(2)/Γ(2, 4, 8) −→ C∗, by f |M = χf (M)f.

As lemma 5.5 shows, Γ(2) doesn’t fix the θ[ab
00](2τ)’s. We define a subgroup

Γ′(2) by:

Γ′(2) :=

{(

A B
2C ′ D

)

∈ Γ(2) : diag(C ′) ≡ 0 mod 2

}

.

For g = θ[e1e2

0 0 ](2τ)
∏2k−1

i=1 θmi
(τ), a modular form of weight k on Γ(2, 4, 8), we

define a character:

χg : Γ′(2)/Γ(2, 4, 8) −→ C∗, by g|M = χg(M)g.

The following proposition lists some character values.

6.2 Proposition. Letmi be a half-integral characteristic withmi := (1/2)(ai, bi, ci, di).

1. Let
f(τ) = θm1

(τ)θm2
(τ) . . . θm2k

(τ).

Then f is a modular form of weight k on Γ(4, 8) and values of χf are listed
below. One also has: χf (e5(1)) = 1.

M e1(1) e2(1) e3(1) e4(1) e6(1) e7(1) e8(1) e9(1) e10(1)

χf (M) (−1)Σbjcj (−1)Σajdj (−1)Σajbj (−1)Σcjdj (−1)1+Σajcj iΣaj iΣbj iΣcj iΣdj
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(b) Let e1, e2 ∈ {0, 1} and let

g(τ) = θ[e1e2

0 0 ](2τ)θm1
(τ)θm2

(τ) . . . θm2k−1
(τ).

Then g is a modular form of weight k on Γ(2, 4, 8), and some values of χg are
listed below. One also has: χg(e5(1)) = 1.

e1(1) e2(1) e3(1) e4(1) e6(1) e7(1) e8(1) e9(2) e10(2)

(−1)Σbjcj (−1)Σajdj (−1)Σajbj (−1)Σcjdj (−1)1+Σajcj i2e1+Σaj i2e2+Σbj (−1)Σcj (−1)Σdj

Proof. That f ∈ M3(Γ(4, 8)) follows from the corollary in [7], V.7. Note that
for the matrix A in e5 and e6 we can take A = −I. Then e5(1) = −I, which acts
trivially on H2. The lemma then follows easily from 5.2. Note that all matrices
M except e6(1) have trace(D − I) = 0, so κ(M)2 = 1 by [7], V.3, thm 3, and
that κ(e6(1))2 = −1.

For the second part, we oberve that lemma 5.5 and 5.2 imply that Γ(2, 4) acts
by a character on the modular form g. In [5] it is shown that this character is
trivial on Γ(2, 4, 8) (but it is not trivial on Γ(4, 8)). Therefore g is a modular
form on Γ(2, 4, 8).

The matrices e1, e2, e3, e5, e7, e8 have ‘C = 0’, so χg can be computed directly
from 5.2 and the lemmas 5.4 and 5.5. For the matrix A in e5 and e6 we can take
A = −I. Therefore also e6 has ‘C = 0’.

The remaining matrices e4, e9, e10 are of the form M =
(

I 0
2C′ I

)

, so D = I,

and κ(M)2 = 1. In the formula for f |M there appears however the constant

κ(M ′)κ(M)2k−1, with M ′ =
(

I 0
C′ I

)

, cf. the proof of lemma 5.5.

To find κ(M ′)κ(M) we compute θ0(2Mτ)θ0(Mτ). Note that:

M =

(

I 0
C I

)

=

(

0 I
−I 0

)(

I −C
0 I

)(

0 −I
I 0

)

.

First of all we find:

θ0(−2τ−1)θ0(−τ−1) = 1
2
det(τ)θ0(τ/2)θ0(τ).

Upto a 4-th root of unity this follows directly from 5.2. By specializing τ = (τkl)
to a matrix with τkl = 0 if k 6= l, we get θ[e1e2

f1f2
](τ) = θ[e1

f1
](τ11)θ[

e2

f2
](τ22). The

formula then follows from the identity:

θ[00](−τ−1
1 ) =

√
−iτ1 · θ[00](τ1), with Re(

√
−iτ1) > 0, τ1 ∈ H1.

Next we apply
(

I −C
0 I

)

=
(

I −2C′

0 I

)

:

1
2
det(τ − C)θ0(

τ
2
− C ′)θ0(τ − 2C ′) = 1

2
det(τ − C)θ0(

τ
2
)θ0(τ),
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where we use lemma 5.5. Applying
(

0 −I
I 0

)

we obtain:

1
2
det(−τ−1 − C)θ0(−(2τ)−1)θ0(−τ−1) = det(Cτ + I)θ0(2τ)θ0(τ),

Comparison with 5.2 shows that κ(M ′)κ(M) = 1. The values of χg(M) then
follow from 5.2. (Note that in [5] it is proved that κ(M ′)κ(M) = −1 with
M = e6(2), the generator of Γ(4, 8)/Γ(2, 4, 8), thus some care is needed.) 2

6.3 We will now determine the splitting of S3(Γ(2, 4, 8)) into irreducibel Γ
representations and we show that the characters χf , χg determine the cusp forms
(within the space of cusp forms). This will be important when we study the Hecke
action in the next chapter.

6.4 Theorem. The space S3(Γ(2, 4, 8)) is the direct sum of 11 irreducibel Γ
representations. The repesentation on S3(Γ(4)) is irreducible, and S3(Γ(4, 8)) is
the direct sum of 7=1+6 irreducible representations.

Below we label the representations, their dimensions and a cusp form in each
representation space.

space label dim cuspform

S3(Γ(4)) R−
6 15 f1 = θ[1000][

01
00][

11
00][

10
01][

01
10][

11
11]

R−
4 (0; 2) 90 f2 = θ[0000][

00
00][

10
00][

01
00][

00
10][

00
01]

R−
4 (1, 1; 0) 90 f3 = θ[1000][

01
00][

00
10][

00
10][

00
01][

00
01]

R−
4 (1; 1) 360 f4 = θ[0000][

10
00][

00
10][

00
01][

00
01][

10
01]

R∗
6 180 f5 = θ[0000][

00
10][

00
01][

00
11][

01
10][

11
11]

R−
4 (2; 0) 60 f6 = θ[0000][

00
00][

00
00][

10
00][

00
11][

01
10]

S3(Γ(4, 8)) R∗
5(1; 0) 360 f7 = θ[0000][

00
00][

10
00][

01
00][

00
01][

00
11]

R−
4 (1; 0) 240 g1 = θ[0000](2τ)θ[

10
00][

01
00][

00
10][

00
10][

00
01](τ)

R−
4 (0; 1) 360 g2 = θ[0000](2τ)θ[

00
00][

10
00][

01
00][

00
10][

00
01](τ)

R∗
5 288 g3 = θ[0000](2τ)θ[

00
00][

10
00][

01
00][

00
01][

00
11](τ)

S3(Γ(2, 4, 8)) R(3, 3) 240 g4 = θ[0000][
10
00][

01
00](2τ)θ[

00
10][

00
01][

00
11](τ)

So the first representation is equal to S3(Γ(4)) and the sum of the first seven
representations is S3(Γ(4, 8)).

The space S3(Γ(4, 8)) is a direct sum of one dimensional spaces Cf , where f
is a monomial, i.e. a product of 6 theta constants, and for monomials f, f ′ ∈
S3(Γ(4, 8)) we have:

χf = χf ′ ⇐⇒ f = f ′.
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The space S3(Γ(2, 4, 8)) = S3(Γ(4, 8) ⊕W ′, where W ′ is spanned by linear com-
binations of monomials, which are products of one θ[ab

00](2τ) and five θm(τ)′s.
Under the action of Γ′(2), the space W ′ is a direct sum of mutually distinct one
dimensional subrepresentations:

W ′ = ⊕g Cg, and χg = χg′ ⇐⇒ g = g′.

Proof. The meaning of the names of the representation spaces is as follows:
R−

4 (1, 1; 0) is the space obtained by taking (linear combinations of) all products of
one of the 15 monomials θS, S ∈ C−

4 and squaring two different terms occuring.
Thus we get 15 · (4

2) = 90 different monomials. Note that theorem 4.4 implies
that θS is a cusp form. Similarly, R−

4 (1; 1) is spanned by multiplying a monomial
θS, S ∈ C−

4 by a θm with m ∈ S and a θn with n 6∈ S. The dimension of this
space is then 15 · 4 · 6 = 360. The meaning of the other terms is similar.

It follows from theorem 4.4 that the 11 spaces are contained in S3(Γ(2, 4, 8)),
and that S3(Γ(2, 4, 8)) is in fact a direct sum of these spaces.

Using proposition 2.4 (and also [7], V.6 if the 6 characteristics are not distinct),
it is not hard to verify that the first 7 spaces are stable under the Γ-action and that
Γ permutes the monomials in each space transitively. Since only the monomials
without a θ[ab

00] are on Γ(4, 8), we see that S3(Γ(4, 8) is spanned by the monomials
in the orbits of f1, . . . , f7. In particular, dim S3(Γ(4, 8)) = 1155.

To show the irreducibility of the 7 sub-representations in S3(Γ(4, 8)), we actu-
ally need that χf : Γ(2) → C∗ determines f in S3(Γ(4, 8)). To prove it, we use the
Γ action, so we may assume that f = fi, with fi one of the 7 forms listed. Then
one determines all six tuples of characteristics which give the same character and
one observes, for each i, that there is only one set of characteristics which gives
a cusp form, (to wit, the set of characteristics of fi itself).

Suppose now that a lineair combination of monomials from S3(4, 8) lies in a
subrepresentation. Then, using the action of Γ(2) and taking linear combina-
tions, each monomial in the combination lies in that subrepresentation. As each
monomial in S3(4, 8) lies in the Γ-span of one of the 7 cusp forms listed, the sub-
representation is a direct sum of some of the seven listed. Therefore S3(Γ(4, 8) is
a direct sum of 7 irreducibel Γ representations.

Since f1 is invariant under Γ(4), we have f1 ∈ S3(Γ(4)). Since the orbit
defining the 6-tuple of f1 is C−

6 , which has 15 elements, and dim S3(Γ(4)) = 15
([12]), it follows that S3(Γ(4)) is spannend by f1.

We now consider all of S3(Γ(2, 4, 8)). Let W be the subspace of M3(Γ(2, 4, 8))
spanned by products of one θ[ab

00](2τ) and 5 θm(τ)’s. Using θ2
m(τ) = Qm(θ[ab

00](2τ)),
we also have that the cusp form g4 is in W , in fact:

θ[1000][
01
00](2τ) = (1/4)(θ2[1100](τ) − θ2[1111](τ)).

Similarly, all of R(3, 3) is contained in W . Therefore:

S3(Γ(2, 4, 8)) = S3(Γ(4, 8)) ⊕W ′, with W ′ := W ∩ S3(Γ(2, 4, 8)).
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(Indeed, a product of one θm(2τ) and 5 θn(τ)’s is never in S3(Γ(4, 8)).)
Under the action of Γ, the four θ[ab

00](2τ) are mapped to linear combinations of
these four theta nulls (cf [7], II.5, thm 6), whereas the θm(τ)’s are permuted. The
space W is thus stable under the action of Γ. Since the 5-tuples of characteristics
in the cusp forms g1, . . . , g4 are in different orbits for the Γ-action, we already
find 4 distinct subrepresentations in W ′ = S3(Γ(2, 4, 8)) ∩W , each spanned by
the Γ-transforms of a gi.

To see that these 4 subrepresentations span W ′, let f ∈ W ′ be the product
of one θ[ab

00](2τ) and 5 θm’s. Then there is a transformation in Γ which maps
the 5 θm’s to the 5 θm’s of one of the first three cusp forms. Therefore in the
subrepresentation generated by f there is a linear combination of the θ[ab

00](2τ)’s
multiplied by the product of the 5 θm from such a cusp form. Using the action
of e7(1) and e8(1) we find that, for some a, b, θ[ab

00](2τ) times the product of the
same 5 θm lies in the subrepresentation generated by f (cf. lemma 5.5). Applying
e7(1)ae10(1)b, which is in Γ(2) and thus fixes the 5 characteristics but acts on the
other (see lemma 5.5), we get θ[0000](2τ) times the same product of the 5 θm, i.e.
one of the gi (i = 1, 2, 3). The monomials from R(3, 3) are in fact permuted
transitively (upto a scalar multiple), as can be seen from the geometry of the
tetrahedron or by a similar artgument of above.

To prove the irreducibility of these 4 representations, we need that χg deter-
mines the the cusp form g ∈W ′. This is done as in the S3(Γ(4, 8) case by explicit
verification. In fact, for a monomial g obtained from a gi, i = 1, 2, 3, the restric-
tion of χg to Γ(2, 4) determines the 5 θm among the possible 5-tuples obtained
in this way. Since Γ has 3 orbits (coresponding to the i) on these 5-tuples and
Γ(2, 4) is a normal subgroup, one need only verify that the 5-tuples of the gi are
uniquely determined by their character. The action of e7 and e8 allows one to
recover the θ[ab

00](2τ) from χg. Similarly, using the action of Γ on the Γ-orbit of
g4, one need only check that g4 is determined by its character.

The irreducibility of the 4 representations is then proven as in the S3(Γ(4, 8))
case. 2

7 Hecke eigenforms

7.1 The Hecke algebra, generated by the Hecke operators Tp and Tp2 for primes
p > 2, acts on the space S3(Γ(2, 4, 8)). We want to determine a basis of eigen-
vectors. For an eigenform f and a prime p > 2 such that:

Tpf = λpf, Tp2f = λp2f

one defines the Hecke polynomial:

Hp(X) := X4−apX
3 +ap2X2−app

3X+p6, with

{

ap = λp

ap2 = λ2
p − λp2 − p2.
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7.2 For modular forms on Γ(8) there appears a character χ2 : (Z/8Z)∗ →
{±1} in the Hecke polynomial. This character is defined by: f |Mp = χ2(p)f
with Mp ∈ Γ a matrix with Mp ≡ diag(p−1, p−1, p, p) mod 8. We will show that
χ2 is trivial for modular forms on Γ(2, 4, 8).

If p ≡ −1 mod 8 then one may take Mp = −I, and thus χ2(p) = +1 since
−I acts trivially on f . If p ≡ 5 mod 8 then put A = (5 8

8 13) ∈ SL2(Z) and take

Mp :=
(

A 0
0 tA−1

)

. Since Mp ∈ Γ(2, 4, 8), it also acts trivially on f . Therefore the

character χ2 is trivial (for any modular form on Γ(2, 4, 8)).
7.3 The action of the Hecke operators is given by the formula’s in [1]. In fact if

f(τ) =
∑

N

aNexp
(

2πi
8
trace(Nτ)

)

, then (Tpif)(τ) =
∑

N

bNexp
(

2πi
8
trace(Nτ)

)

,

are the Fourier-Jacobi series of f and Tpif , then explicit formula’s expressing bN
in terms of aN and pi are given in [1]. We will write

aN = a(n, r,m), with N =

(

n r/2
r/2 m

)

a positive definite half-integral matrix.
In case the quadratic form nx2 + rxy +my2 has no non-trivial zero’s mod p,

then one simply has b(n, r,m) = a(pin, pir, pim). We used this fact often in our
computations.

To find the eigenspaces for the Hecke action we will use the following propo-
sition.

7.4 Proposition. Let Γ be a subgroup of Sp2g(Z), with Γg(q) ⊂ Γ ⊂ Sp2g(Z).
Define

Γ := π(Γ), with π : Sp2g(Z) −→ Sp2g(Z/qZ)

the reduction map. Assume that for every n ∈ (Z/qZ)∗ and every M =
(

AB
CD

)

∈ Γ

one has that:
(

A n−1B
nC D

)

∈ Γ.
Then the Hecke operator Tn maps the space

Mk(Γ, χ) := {f ∈Mk(Γg(q)) : f |M = χ(M)f, ∀M ∈ Γ}

to the space Mk(Γ, χ
′) where χ′ : Γ → C∗ is given by

χ′(M) := χ(M ′), with M ′ ∈ Γ, M ′ ≡
(

A n−1B
nC D

)

mod q.

Proof. The Hecke operator Tn is defined as a sum:

Tnf :=
∑

k

f |Hk, Hk ≡ Dn :=
(

I 0
0 nI

)

mod q
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and where Γ(q)DnΓ(q) =
∐

k∈J Γ(q)Hk, a disjoint union. By [2], Lemma 1.1 (2),
one then also has:

ΓDnΓ =
∐

k∈J

ΓHk.

For any M ∈ Γ, the matrices HkM , k ∈ J are then also a set of coset represen-
tatives. Therefore there is a permutation σ = σM : J → J and there are Mk ∈ Γ
such that:

HkM = MkHσ(k), and thus Mk ≡ DnMD−1
n mod q.

Given M , the matrices Mk are thus all congruent mod q to a matrix M ′. By the
assumption on Γ, we can choose M ′ ∈ Γ. Therefore for f ∈Mk(Γ, χ) we obtain:

(Tnf)|M =
∑

k f |(HkM)
=

∑

k f |MkHσ(k)

=
∑

k χ(M ′)f |Hσ(k)

= χ(M ′)Tnf.

The form Tnf thus has the character M 7→ χ(M ′). 2

7.5 Proposition. The following cusp forms are Hecke-eigenforms:

Fi := fi, i = 1, 5, 6, 7,

F2 := f2 − 4f ′
2 = θ[0000][

00
00][

10
00][

01
00][

00
10][

00
01] + 4θ[1000][

01
00][

00
10][

00
01][

11
11][

11
11]

F3 := f3 + 16f ′
3 = θ[1000][

01
00][

00
10][

00
10][

00
01][

00
01] + 16θ[1000][

01
00][

10
01][

10
01][

01
10][

01
10]

F4 := f4 + 4f ′
4 = θ[0000][

00
10][

00
10][

00
01][

10
01][

01
10] + 4θ[0000][

11
00][

11
00][

00
01][

10
01][

11
11]

gi, i = 1, 2, 3, 4.

Proof. Recall that the fi and the gi are determined by their character (cf.
theorem 6.4). Since both Γ(2) and Γ(2)′ satisfy the conditions of proposition
7.4, we have that Tnfi and Tngi are (upto a scalar multiple) determined by a
character.

An explicit computation shows that Tpif has the same character if pi ≡
1 mod 4 and it has character χf , the complex conjugate of χf , if pi ≡ 3 mod 4
where in fact f ∈ S3(Γ(2, 4, 8)) can be any cusp form determined with a character.

The space spanned by such a cusp form f and its translates by the Hecke
action is thus at most 2 dimensional. In particular, if there is no cusp form with
character χf or if χf is real-valued, then f is an eigenform. Using a computer
one then finds the eigenforms listed. 2

7.6 In the table below we list the coefficients ap, ap2 of the Hecke polynomials
corresponding to these eigenforms.
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coef. F1 F2 F3 F4 F5 F6 F7

a3 8 8 16 8 0 0 0

a32 6 6 102 54 54 54 6

a5 28 28 28 20 12 −12 4

a52 190 190 190 350 30 30 −130

a7 80 80 32 −16 0 0 0

a72 2030 2030 −658 686 686 686 238

a11 88 88 176 −40 0 0 0

a112 −3146 −3146 8470 2662 2662 2662 6

a13 204 204 204 −28 60 −60 84

a132 8398 8398 494 2290 4238

a17 356 356 356 4 −60 −60 36

a172 25126 25126 8806 6630 −3162

a19 424 424 336 40 0 0 0

a192 30438 30438 −3002 13718 13718 13718 10982

g1 g2 g3 g4

0 0 0 8

−18 6 30 6

0 0 16 −32

70 −10 230 310

0 0 0 −32

686 −18 −210 −658

0 0 0 88

1694 −330 462 −3146

0 0 −80 −160

3094 −442 3510 390

−180 −92 20 356

15878 9894 −6970 25126

0 0 0 424

−12274 −8474 9918 30438

8 The Andrianov L-functions

In the table below we list the Fourier coefficients of some elliptic modular new
forms which appear to be related to the Siegel cusp forms listed above.

form space a3 a5 a7 a11 a13 a17 a19

φ1 S2(Γ0(32)) 0 −2 0 0 6 2 0

ψ1 S3(Γ0(32,
(

−1
.

)

)) 4i 2 −8i −4i −14 18 12i

ρ1 S4(Γ0(8)) −4 −2 24 −44 22 50 44

ρ2 S4(Γ0(32)) 0 22 0 0 −18 −94 0

ρ3 S4(Γ0(32)) 8 −10 16 −40 −50 −30 40
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8.1 The cusp form F1 was studied in [5], where it is was proven that F1 is the
Saito-Kurokawa lift of the elliptic modular form ρ1 ∈ S4(Γ0(8)). Therefore:

L(F1, s) = ζQ(s− 1)ζQ(s− 2)L(ρ1, s).

(One easily checks that indeed Hp(X) = (X − p)(X − p2)(X2 − apX + p3) with
the ap from ρ1.)
8.2 The first Hecke polynomials of F2 suggest that its L-function is the same
as that of F1:

L(F2, s)
?
= ζQ(s− 1)ζQ(s− 2)L(ρ1, s),

8.3 The L-function of F3 also appears to be a twisted form of the L-function of
F1:

L(F3, s)
?
= ζQ(s− 1)ζQ(s− 2)L(ρ

(3)
1 , s),

where the (3) stands for twisting at the primes 3 mod 4 (the L-function L(ρ
(3)
1 , s)

is the L-function of a cusp form of weight 3 on Γ0(16)).
8.4 The L-function of F4 appears to be the product of two of two elliptic
modular L-functions:

L(F4, s)
?
= L(φ

(−2)
1 , s− 1)L(ρ

(−2)
3 , s),

where the (−2) stands for twisting at primes ≡ 5, 7 mod 8.
8.5 The modular form F5 was also studied in [5], in fact it defines the holomor-
phic 3-form on the threefold Y studied there. Its L-series seems to be:

L(F5, s)
?
= L(φ1, s− 1)L(ρ2, s).

8.6 The L-function of F6 seems similar to the L-funtion of F5:

L(F6, s)
?
= L(φ

(5)
1 , s− 1)L(ρ

(5)
2 , s),

where the (5) stands for twisting at the primes 5 mod 8 (note that one can also
twist at the primes 3 mod 8 (or 7 mod 8) without changing the L-functions).
8.7 The L-function of F7 seems to be related to the L-function of a Galois
representation π of Gal(Q̄/Q) which is the tensor product of the Galois repre-
sentations corresponding to φ1 (a CM representation) and to ψ1. At least for all
primes ≤ 19 we have that the roots of the Hecke polynomial of F7 are of the
form αiβj with αi the roots of the Hecke polynomial of φ1 and βi the roots of the
Hecke polynomial ψ1.
8.8 The form g1 appears to be related to a Hecke character χ of the field
K = Q(ζ8).

We define a Hecke character:

χ : A∗
K −→ C∗, χ(. . . , x℘, . . .) =

∏

℘

χ℘(x℘),
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with A∗
K the ideles of K and the product is taken over all places of K. The

character will be unramified outside the prime over 2, which we will denote by ν.
Since the class number of K is one and χ is trivial on K∗ (embedded diagonally),
it suffices to define only the infinite components and the component χν at the
prime over 2. In fact it suffices to define only the restriction of χν to O∗

ν . We
give these data below.

As places at infinity we choose the complex embeddings σi : K →֒ C∗,

σ1 : ζ8 7→ e
πi
4 , and σ3 : ζ8 7→ e

3πi
4 .

The infinity components of χ we then define by:

χ∞,i : C∗ −→ C∗, χ∞,1(z) := z−3, χ∞,3(z) := z−1z̄−2.

As O∗
ν/(1 + π4

νO) = O∗
ν/(1 + 2O) ∼= (Z/4Z) × (Z/2Z), (where the first factor

is generated by the image of ζ8), the projection to the second factor will give a
character, which is the restriction to O∗

ν of the desired one:

χν : O∗
ν −→ {±1} ⊂ C∗.

(Taking πν = 1 − ζ8 as local parameter at ν, the subgroup generated by ζ8 mod
(1+2Oν) is just: 1, 1+πν , 1+π2

ν , 1+πν +π3
ν , so χν is trivial on these, and not

trivial on the other 4). Since any unit in OK can be written as u = ζ i(1 −
√

2)j,
one has that χ∞,1(u)χ∞,3(u)χν(u) = 1, and thus these data define indeed a Hecke
character.

The L-function of χ is given by:

L(χ, s) := (2π)−1−2sΓ(s)Γ(s− 1)
′
∏

℘

(

1 − χ℘(π℘)N℘−s
)−1

,

where the product is now over all primes except the ones at infinity and ν, which
is ramified. To facilate comparison with the Hecke polynomials we define:

Hχ,p(X) :=
∏

℘|p

(Xe℘ − χ℘(π℘)) ,

where e℘ := [O℘/(℘) : F p] is the degree of the residu field extension. Then the
equality L(g1, s) = L(χ, s) is equivalent to Hp(X) = Hχ,p(X) for all p.
8.9 To compute the Hχ,p we choose a generators π℘ in OK for each of the primes
℘ over p. Then:

χ℘(π℘) = χ(1, 1, . . . , 1, π℘, 1, . . .)

= χ(π−1
℘ , π−1

℘ , . . . , π−1
℘ , 1, π−1

℘ , . . .)

= χ∞,1(π
−1
℘ )χ∞,3(π

−1
℘ )χν(π

−1
℘ ),
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where the last step follows because χ is unramified outside ν.
In particular, if p ≡ 7 mod 8, then there are two primes over p, and the

generators π℘ and π′
℘ of these prime ideals can be chosen to lie in Z[

√
2]. Writing

π℘ = a + b
√

2 with a, b ∈ Z we have a2 − 2b2 = p, and thus a and b are odd.
Since

√
2 = π2

ν + π3
ν ∈ Oν/(2) we get π℘ = 1 + π2

ν + π3
ν ∈ O∗

ν/(1 + 2Oν), and
thus χν(π

−1
℘ ) = −1. For the infinite places one finds (with

√
2 = ζ8 + ζ−1

8 ), that

χ∞,1(π
−1
ν ) = (a+ b

√
2)3 and χ∞,3(π

−1
ν ) = (a− b

√
2)3. Therefore:

χ(π℘) = χ(π′
℘) = −p3, and Hχ,p = (X2 + p3)2.

If p ≡ 5 mod 8, then the generators for the two primes over p can be chosen to lie
in Z[i]. Choosing a generator π℘ = a+ bi with a odd and b even for such a prime,
one finds that χν(π

−1
℘ ) = +1, χ∞,1(π

−1
℘ ) = (a + bi)3 and χ∞,3(π

−1
℘ ) = p(a + bi).

Therefore:

χ(π℘) = p(a+ bi)4, and Hχ,p = (X2 − p(a+ bi)4)(X2 − p(a− bi)4).

If p ≡ 3 mod 8, then we choose the generators in Z[
√
−2], let π℘ = a+ b

√
−2 be

one of them. Since a2 + 2b2 = p we must have a and b odd. Then π℘ = 1 + π2
ν +

π3
ν + . . . in O∗

ν and thus χν(π
−1
℘ ) = −1. Furthermore χ∞,1(π

−1
℘ ) = (a + b

√
−2)3

and χ∞,3(π
−1
℘ ) = p(a− b

√
−2). Therefore:

χ(π℘) = −p2(a+b
√
−2)2 and Hχ,p = (X2+p2(a+b

√
−2)2)(X2+p2(a−b

√
−2)2).

For p ≡ 1 mod 8, there are 4 primes over p and the Hecke polynomial is not
so easy to describe. However, one can check that indeed Hχ,17 = H17.
8.10 We were not able to write the L-function of g2 as a (product of) ‘known’
L-functions.
8.11 The Hecke polynomials of g3 have similar properties to those of F7, with
ψ1 replaced by a form in S3(Γ0(2

?), (−2
.
)).

8.12 The modular form g4 also seems to be a (twisted) Saito-Kurokawa lift of
the form ρ1:

L(g4, s)
?
= L(χ(−2), s− 1)L(χ(−2), s− 2)L(ρ1, s),

with χ(−2) : (Z/8Z)∗ → {±1} the Dirichlet character with χ(−2)(5) = χ(−2)(7) =
−1.
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