The cusp forms of weight 3 on I'5(2,4, 8)
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1 Introduction

1.1  In this paper we study the cusp forms of weight 3 on the congruence
subgroup I';(2,4,8) of Iy := Spy,(Z) in case g = 2.
Recall that I'y(n) consists of the matrices which are = [ mod n, that

I',4,8) = { ( é ZB; > eT',(4): diag(B) = diag(C') = 0 mod 8 }
and in [5] the following (normal) subgroup of I', was defined:

I',(2,4,8) = {( I+O4A [fiLD’ ) € T'y(4,8) : trace(A’) =0 mod 2 }

In particular:
I'®) —1I(2,4,8) —I'(4,8) — I'(4).

The Siegel upper half plane H, is the analytic variety consisting of g X g
complex symmetric matrices with positive definite imaginary part. For a function
f:H—C, Meclyand k € N one defines:

fle < é g > (1) = det(CT + D) " f((Ar + B)(CT + D)™).

Let I be a congruence subgroup of I'y, that is I'j(n) C I" for some n. A
modular form of weight & for I" is a holomorphic function f on H, satisfying
flxM = f for all M € I". The C-vector space of such functions is denoted by
M (T7).

One defines the Siegel operator ¥, mapping f € My(I”) to a function on
H, 1, by:

U(fF)(r) = limioo F((53)), 7€ Hyn.

The subspace Si(I") of M (I"), called the space of cusp forms, is defined by:
Sk(T) ={f € Mg(T') = U(f|xM)(r)=0 Vre H,1, VYMeTl,}

1.2 In case the group I acts without fixed points on H, (for example, if IV C
I'y(n) and n > 3), the space My,1(I) corresponds to the space of holomorphic
£9(g-+1)-forms on the quasi-projective variety X° = H,/T". This correspondence
is given by w +— f when

7 Hy — X°, T'w = f(AdTi;).



The subspace of those forms which extend to (any) smooth compactification X
of XY is exactly Sy41(I"). In particular:

Syn(l’) = H(X, Q).

A remarkable aspect of this result is that the ‘cusp form condition’ need only be
checked at points in the boundary of the Satake compactification which are in
quotients of H,_;, rather then at all points (which are in quotients of Hj with
0 < k < g—1 (this can be generalized to other symmetric domains, see [9], Ch.
IV). We will happily exploit this fact.

1.3 In the case g = 2 (where we will omit the subscript ¢g) and I" = I'(2, 4, 8),
the variety X° can be described explictly as a Zariski open subset of a projective
variety X C P!3. The embedding of X° into P is given by certain theta
constants. The variety X is the complete intersection of 10 quadrics, which can
easily be written down expicitly. Using this, and combinatorics of theta constants,
we can determine the space HO(X,Q%), and thus also the space Ss3(I'(2,4, 8)).
(We use the computer program ‘Macaulay’ for the manipulations with ideals of
polynomials.)

On the space S3(I'(2, 4, 8)) the finite group I'/I'(2, 4, 8) acts, and we determine
the decompostion into irreducible subrepresentations.

In the last sections we study the action of the Hecke algebra on S5(I'(2, 4, 8)).
The action this algebra is induced by correspondences. In this case these are
codimension 3 cycles on X" x X? and by ‘pullback-push forward’ they give linear
maps on S3(I'(2,4,8)). The definition of these cycles is in terms of isogenies
of abelian varieties. Similar to the elliptic modular case, one has a congruence
relation which relates the action of the Hecke operators on S3(I'(2,4,8)) to the
action of the Galois group Gal(Q/Q) on H*(X,Q,). It is therefore of some interest
to determine the eigenspaces and eigenvalues of these operators. We determined
the Hecke polynomials, which describe the Hecke action, for several cusp forms
and for some small primes p.

Most of the forms we consider appear to be obtained via liftings from modular
forms on subgroups of SLy(Z). In one case the Hecke polynomials suggest that
the modular form is related to a Hecke character of the field of eight roots of
unity (the form g;). There is one case in which the Hecke polynomials of the
cusp form do not allow one of these interprations (the form g,). In this paper we
do not actually try to prove that most of the forms are indeed liftings.

1.4 We are indebted to J.Top and R.Weissauer for helpful comments and to
H.J.Imbens for assistence with computer programs.

2 Combinatorics of theta characteristics

2.1 The modular forms we consider are linear combinations of products of theta
1

constants. For m = (m/,m") € R* x R* with m/, m/ € {0,1} we define the
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theta constant 6, : Hy — C with (half -integral) (theta) characteristic m by:
O () := Liege exp (2mil3(k + )7 (k + 5) + (k+ 5)1(%)]).

The theta constant is not identically zero iff the theta characteristic m is even i.
e. m'"'m” € 2Z. There are 10 even theta characteristics. If m = £(a,b,c,d) we

will also write:
O (1) = 0125](7).

Under the action of I' on Hy these 10 theta null’s are permuted (upto a root
of unity times a commen factor, cf. 5.2). Therefore I" acts on the set C; of the
10 even characteristics. The action of M € I' is given by (cf. [7] V.6):

1
M:C), — Cy, M xm :=n, n=mM '+ 5( (C'D)o, (A'B)g) mod 1.

Here M € I' is the matrix with blocks:
A B
v={e5)
where (C'D)g, (A'D)y are the diagonals of the matrices C*D and A'B respec-
tively, viewed as row vectors.

This action of I" factors over I'/T'(2) = Sg, the group of permutations of the
set S ={1,2,...,6}. The 10 even theta characteristics then correspond to the
%(g) = 10 partitions of S into two subsets with 3 elements each (cf. [8]); such
a partition is called a triadic syntheme. The action of Sg on (' is then easy to
follow.

2.2 Associated to each m € C there is a quadratic form @, in the variables
Xo, X1, X5, X3 and a quadric V,, = V(Q,,) in P* = P(Xy, X1, X2, X3). The Q,,’s
are defined by the relation (cf. [7], IV.1):

(2.3) 07 (7) = Qu(0[50)(27). 8l60] (27), 050] (27). Olgo) (27))-



m | triad Qm
1 |[60] [156 234 | X§ + X7 + X7 + X3
2 |[09] 1134 256 | XZ — X7 + X2 — X2
3 1199] 1146 235 | X2 + X7 — X2 — X2
4 1[99 1135246 | X2 — X2 — X2+ X2
5 1[08] 1124 356 | 2(XoX; + X, X3)
6 |[09] 1145236 | 2(XoXs + X1 X3)
7 1 [88) 1126 345 | 2(Xo X3 + X1 X))
8 | [98] 1125 346 | 2(XoX; — X2X3)
9 |97 1136 245 | 2(Xo X, — X;X3)
10 [[11] [123 456 | 2(Xo X3 — X1 X))

The 10 quadrics determine an interesting configuration of 30 lines (15 pairs
of skew lines) and 60 points (vertices of 15 tetrahedrons). By a tetrahedron we
mean the algebraic variety consisting of the union of 6 lines, the edges, meeting
in 4 points, the vertices, as in the figyre.

We let C; be set of subsets of cardinality ¢ of C; and we put C' = U;C;. We
describe the orbit structure of Sz on C' and that part of the geometry of the
quadrics which is relevant for our purposes.

2.4 Proposition. The orbits of the Sg = I'/I'(2) action on the sets C,, are as
follows:

1. The group Sg acts transitively on C;;  #C; = 10.

2. The group Sg acts transitively on Cy;  #Cy = 45.

Two quadrics V,,, and V,, intersect in a 4-gon of lines, thus determining a
tetrahedron.

3. There are 2 orbits on C3, denoted by C5 and Cj .

Cy=CiuUCy, 405 =() =120, #C§ =#C;5 = 60.



A triple {my, mg, m3} isin C5 iff my+my+ms is an even theta characteristic
(such triples are called syzygeous).

A triple {my, mo, ms} isin C5 iff m;+msy+ms is an odd theta characteristic
(such triples are called asyzygeous).

The quadrics of a syzygeous triple intersect in 8 points, vertices of two
tetrahedrons.

The quadrics of an asyzygeous triple intersect in a pair of skew lines.

. There are 3 orbits on Cy, denoted by C;, C; and Cj.

C,=CfuC;uCy, 10, =) =210, tC =tC; =15, 4C; = 180.

A 4-tuple {my, mg, m3, my} is in Cf iff any sub-triple is in C5. (One can
also characterize 4-tuples in C by my + mg + ms +my = 0.) We call such
4-tuples syzygeous.

A 4-tuple is in C} iff any sub-triple is in C5. We call such 4-tuples asyzy-
geous.

A 4-tuple is in Cf iff the sum of two sub-triples is even and the sum of the
other two sub-triples is odd.

The sets C and O are in natural 1-1 correspondence with the set of the
15 tetrahedra and the set of 15 line pairs respectively as follows:

For S € CJ, the complementary set S € Cj consists of 6 characteristics
whose corresponding quadrics pass through the vertices of a unique tetra-
hedron Ts. The union of the four quadrics V,,, m € S, contains 24 of the
30 lines, but none of the 6 lines of the tetrahedron Ty.

For S € (), the quadrics V,,, m € S, all pass through a line pair Ig.
Conversely, any of the 15 line pairs is cut out by 4 quadrics, thus setting
up a 1-1 correspondence. The union of the four quadrics contains all the
15 line pairs.

. There are 3 orbits on C5, we denote them by C5", C5 and C%.

Cs=CHuC; UC:, #Cs=(¥) =252, #CF =4Cy =90, #Ci =72

A 5-tuple is in C5 iff it contains a (unique) syzygeous 4-tuple.
A 5-tuple is in C5 iff it contains a (unique) asyzygeous 4-tuple.
A 5-tuple is in C7 iff the sum of the 5 characteristics is odd.

For any S € C%, the union U,,c5V}, also contains all the 15 line pairs.



6. For n > 6 the orbit structure of (), can be obtained by taking complements
from the above. We use the notation Cfy , :={S: S € C;}, O, :=1{S:
S e}

Proof. This follows easily from [7], V.6, especially prop. 2. The transitivity
of Sg on (5 is in fact the corollary of prop. 2. Note also that the sum of an
even number of theta characteristics transforms linearly, so orbits may be dis-
tinguished by such a sum being 0 or not, whereas the sum of an odd number of
theta characteristics transforms like a theta characteristic, so such orbits may be
distinguished by the sum being even or odd. a

2.5  The complete incidence structure between points, lines and quadrics is
easily obtained, and is left to the reader as amusing time passing. We only note:
A line pair lg, S € C}, lies on a quadric V,,, m € Cy, iff m € S.
Furthermore, on each line there are 6 points, thus on each line pair there are
12 points, and these 12 points make up 3 tetrahedra. Conversely, through each
point there are 3 lines and each tetrahedron is formed out of a triple of line pairs,
etc. ete. ..

2.6 Lemma. The Sg-orbit structure on the C;, + = 2,...8 is given by:

cr(15) 5 cro0) S Ccf(15)

e N1
C5 (60) S/ N\ CF(60
>/ 2\ e
C,(45) Cr(180) > Cx(72) 2 C:(180)
3 \ 2 / \ 6
Cy (60) 4\ /o C7 (60)
4\ /1

Cr(15) 5 Cr(90) S Cy(15)

where A =% B means: each S € B contains exactly n S’ € A. There is also a dual
interpretation: A - B means: an element S € B can be extended in n ways to
get an element S’ € A.

3 The space X C P? and its singular locus X.

3.1 In [5], the map

O : Ay(2,4,8) := Hy/T5(2,4,8) — P, T (O 27) 0 (T) s



where m runs over the 10 even charateristics and a, b run over {0, 1}, is shown to
be an embedding. We denote the image by X° and the closure of X° in P will

be denoted by X.
We define two morphisms:

p: X — P g: X — P°

obtained by projection on the first 4 and the last 10 coordinates.

The map p corresponds to the natural map A(2,4,8) — A(2,4), in fact P* can
be identified with the Satake compactification A%(2,4) of A(2,4). The bound-
ary components of A°(2,4) correspond to the 30 lines in the P?. The map q
corresponds to the natural map A(2,4,8) — A(4,8).

The equations of X are very simple. To describe these, we choose for each
m € (1, a variable Z,, and consider

Fo =22 —Qmn € 01X, Z).
3.2 Lemma. The projective variety X has the following properties.

1. X is the complete intersection of the 10 quadrics F,,, m € C}.

2. The singular locus ¥ of X is exactly the inverse image of the union of the
30 lines in P? under the map p. The locus ¥ consists of 30 - 23 = 240
irreducible components, each one isomorphic to a degree 8, genus 5 curve.

3. X is (projectively) normal, and is in fact isomorphic to the Satake com-
pactification of A5(2,4,8):

X = A35(2,4,8).

Proof. Let X' = {(X,Z) € P¥ : F.(X,Z) =0 ¥Ym € C;}. Then by
equation 2.3, we have that X’ € X. Furthermore, the projection p : X' —
P3, (X, Z) — X represents X' as an iterated branched cover of P37 branching
along the quadrics V,,, m € C,. It follows that X’ is purely 10-codimensional
and hence is a complete intersection.

An easy local computation shows that X’ is singular exactly above the points
where at least two of the quadrics V,, intersect. When we restrict to the line
X5 = X3 = 0 the equations F,, reduce to:

2~ X2y xe Z3=72=273=27% =0

2 2 2 Z]? = Z:?

(A> Z2 = Xo - Xl (B) 72 _ 72
22 == 2XOX1 2 1

: z: =z

The ideal generated by (A) defines a degree 8, genus 5 curve in (Z; : Zy : Zs :
Xo : X1)-space (in fact, this is the elliptic-modular curve X (8)). The equations
B show that the solution set consits of 2% = 8 copies of this curve.
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As dim ¥ =1 and X' is a complete intersection, it follows that X" is irreducible
and thus X’ = X.

Furthermore, as a complete intersection is arithmetically Cohen-Macaulay,
it follows from Serre’s criterion for normality that X is (projectively) normal.
Since the map © is given by modular forms, there exists a morphism ¢ : X —
A%(2,4,8). Since © : Hy/T'(2,4,8) — X is an isomorphism ([5], Thm 2.2), the
map 1 is a birational isomorphism. Comparing the description of the Satake
compactification in [10], with X, we see that ¢ is a bijection. By Zariski’s main
theorem it follows that X = A%(2,4,8). O

Now let
Ix=(F,: meC) CC[X,Z], Rx:=C[X, Z]/Ix

(the affine coordinate ring of the cone over X). Furthermore, we let Iy, be the
ideal of (affine cone over) the singular locus ¥ with its reduced structure (i.e.: Iy
is radical).

3.3 Lemma. Iy, = Nsecr (Zm, m € S; Ix).

Proof. Clearly we have
Iy, = Nsecy I(ls)

where I(lg) is the ideal in C'[X, Z] of p~'(lg), the inverse image of the line pair
lg € P in P, with reduced structure. The ideal of a line pair lg is:

J(ls) = (Qm, me S) C C[X],

since every pair of skew lines in P? is cut out by 4 quadrics, and the 4 Q,,, m € S,
vanish on [g.
The ideal theoretic inverse image of J(lg) is given by the ideal:

J(ls) = (Qm, me S, Ix) C C1X, Z]
= (Qm? Z’?n_Qm’mES7 Fm,m€5)
(ng m € S, ]X)

S0 (Zm, m € S, Ix) C JJ(ls) = I(ls).
But the ideal on the left is in fact radical: by transitivity of Sg on C); we may
assume S = {6,7,9,10} and then:

(Zm, m € S, ]X)
= (Fnm, m¢&S, Zn, me S, XoXo, X1 X3, XoX3, X1X>)
= (Fm7 m Q S, Zm, m & S, Xo, Xl) N (Fm> m Q S, Zm7 m & S, XQ, Xg),

and both of the ideals are radical (see the proof of lemma 3.2). Thus the inclusion
is actually an equality and the lemma is proved. O
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4 The cusp forms

4.1 Proposition. The space of cusp forms of weight three for I'(2, 4, 8) is canon-
ically isomorphic to the degree 6 part of I x := In/Ix C Rx = C[X, Z]/Ix:

S5(I(2,4,8)) = Iy .
Proof. There are in fact two ‘natural isomorphisms’. We describe them both.

1. The map © : Hy — P'? induces by pull-back an isomorphism:
0" : H' (X% Ox0(6)) = M3(T'(2,4,8)).

As X is normal, we have H*(X%, Ox0(6)) = H°(X,Ox(6)) and because X
is projectively normal:

HO(X, 0x(6)) = R

A polynomial P € C[X, Z]¢ pulls back to a cusp form iff it vanishes on X
(the boundary components of X).

2. To any polynomial P of degree 6 we can associate a (meromorphic) differ-
ential form on X as follows. There is an isomorphism:

PO
Res: Ox(6) — wx, P wp = Res( )

Fl--'Flo

where == 13, (=1)Y;dYg A ... A dY; A ... A dYis and where the Y; are
the coordinates on P'3.

The differential forms which extend holomorphically on a desingularization
7 : X — X correspond, via Res, to an ideal Z, C Oy, which is independent of
the desingularization (see [11]). We will study the ‘adjunction ideal’ I, C C[X, Z]
corresponding to Z 4.

Now a simple local calculation shows that transverse to general point of X the
variety X has a singularity which is isomorphic to the cone over an elliptic curve
(of degree 4). This singularity ‘imposes precisely one adjunction condition (p, =
1)’. This means that P has to vanish on ¥ if wp is to extend holomorphically.
Therefore I, C Is..

That in fact 14 = Iy, follows from the principle that forms which extend to
the general point of the inverse image of ¥ in X extend to all of X (see [3], Satz
3, [4], ‘Anmerkung’ to Satz III, 2.6, p.156). That is, the 60 special points do
not impose further adjunction conditions (!). This can also be checked directly
by pulling back the differential forms to an explicit resolution of singularities of
X above the 2* - 60 special points. O



4.2  We now come to the crucial part of this paragraph: the explicit generators
of the ideal Iy, x C Rx or Iy, C C[X, Z]. To describe these we need a little more
notation. The tetrahedron T, determined by an S € C, gives rise to an ideal

JTS C C[X7 Z]
of the functions vanishing on the 6 lines of T.
4.3 Lemma. The ideal J7, is generated by 4 elements of degree 3.

Proof. For each tetrahedron, the 4 products of three of the four linear forms
defining the faces of the tetrahedron, vanish on the tetrahedral lines and in fact
generate the ideal. O

The following theorem allows us to find all the cusp forms of weight 3 on
I'(2,4,8). We describe them in theorem 6.4, where we also determine the I'-
action on the space S3(I'(2,4, 8)).

4.4 Theorem. The ideal Iy is (minimally) generated by the following elements:

o« I, t = 10
o Zs, Secy = 15
o g, SecC: f =72
o ZgF, FelJrs SeCf, SelCy, ScS = 240

Here we use the notation:  Zg :=[],,c5 Zm for any S € C.

Proof. We first show that the stated elements are in the ideal I.

Because the union of the quadrics V,,, m € S contains all 30 lines in case
S € Cy and S € Cf it follows that in these cases Zg vanishes on ¥, and so
Zs € Iy.

The union of the quadrics V,,, m € S, S € CJ only contains 24 lines, which
are precisely the lines not in the tetrahedron Ts determined by S. Furthermore,
the union of any three of the four quadrics V,,,, m € S, S € Cf already contains
the same 24 lines. Consequently, multiplying any Zg, S’ € C57, S’ C S with any
element of Jp, will give a function, vanishing on the whole of ¥.

The difficult part of the theorem is to show that there is nothing more in
Is,. So far, this depends on an explicit computation of the intersection of the 15
ideals I(lg), S € Cy. For this we used the computer program ‘Macaulay’. The
computer output consisted of 337 elements, generating this ideal, which were
readily recognized as the elements above.

To give a computer independent proof, it seems necessary to understand the
combinatorics much better. O
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4.5 Corollary. We have:
1. dim(Ig,XA) = 15,
2. dim([E7X75) = 282,

3. dim(]a)(,ﬁ) = 2283.
Proof. It is convenient to use the following isomorphism:

Ry = @ C[X]Zs,
seC

stating that, modulo the F,,, every polynomial can be reduced in a unique way
to a sum of square free monomials Zg, with coefficients in C[X]. (A Cohen-
Macaulay ring is a free module over a parameter system).

From thm 4.4 we have:

IE,XA = @ CZS7 SO dim(]Z7X’4) = 15.
SeCy

In degree 5 we thus find, apart from the 72 new generators Zg, S € Cf, the
elements of Iy, x 4 multiplied by a linear factor. The following cases occur:

1. ZmZS, m Q S,
2. Ly s, meS,
3. XiZs, i=0,1,2,3.

From diagram 2.6 we see that

in case (1) Z,Zs = Zg, S e Cy £ =190
in case(2) ZnZs=QuZs, S €C;,{m,5}eCy =60
in case (3) X,;Zg ft=4-15=060.

Alltogether, in degree 5 we find we find 72 + 90 + 60 4+ 60 = 282 monomials.

To get elements of degree 6 we proceed in the same way: apart from the
240 generators FZg, F € Jrg, S’ C S € Cf we get all the other factors by
multiplying something of degree 5 with a linear factor. Starting from the 90
elements Zg, S € C5 we get:

1. ZmZS m%S,
2. ZnZs meS,

3. XiZg i=0,1,2,3.
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In case (1) we have Z,,Zs = Zg, S’ € Cy,

subcases: (2a) S := S —{m} € C,,
t = 360. In case (3) we find 4 - 90 = 360 elements.

S'e Oy,

ZmZS = QmZS’7

f = 15. In case (2) there are two

f = 360 and (2b)

Proceeding in this way with the other elements of degree 5 in the ideal we get
the following table (the last column relates them to the representation studied in

section 6):
elements dim representation
Zs Sely 15 Ry
QmZs SecC;, {m,S}eCy 90 R;(0;2)
QmZs SecC;, {m,S}teCy 360 R, (1;1)
XiZs Sedly 360 R;(0;1)
QmQm Zs SeCy {m,m' S}t eCy 90 R, (1,1;0)
XiQmZs SeCy, {m,S}eCy 240 R, (1;0)
XiX;Zs SeC; 150 R;(0;2) ® Ry (2;0)
Zs S ey 180 R
QmZs SecCy, {m,S} eC} 360 R:(1;0)
XiZs SecCt 288 R
FZg Felpys, ScSeCf 240 R(3,3)

In particular, we find dim Iy, x ¢ = dim S5(I'(2, 4, 8)) = 2283.

5 The Theta transformation formula

5.1 Let I be a normal subgroup of I and let M3(I"") be the space of modular
forms of weight 3 on I''. The group I' (in fact I'/I") acts on M3(I") by:

[ fIM,

with  (f|M)(7) = det(Ct + D)3 f(M - 7).

To decompose the spaces of cusp forms with respect to this representation we
introduce the following symplectic matrices:

ei(n) =

1
1 —2n

12

) 63(71)

1

2n




es(n) = tey, eq(n) = tes,

a b
A 1
=4y ) O
1
1 2n 1
1 1 2
er(n) = E es(n) = C L
1 1
eg(n) = ter(n), ero(n) = teg(n).

14+ 2n 0
0 14 2n

Here A = ( CCL Z ) is some matrix in SLy(Z) which is congruent to (

modulo 4n.

To find the action of I' on the modular forms, we use the transformation
formula for theta functions ([7], V §1 Corollary, p.176 and V, §2 Theorem 3, p.
182):

5.2 Lemma. Igusa’s Transformation Formula. For M = (‘é}g) € Spay(2)
and m € R* a theta characteristic, we define

1
M -m:=mM "+ 5((CH))O (A'B)y),
with (C*D), the diagonal of C*D. Define
1
¢m<M) _ _5 (m/tDBtm/ — o BCYm + m" C Alm" — (m/tD . m//tc)t<AtB)O> '
Then:

Orrm((AT + B)(CT + D)) = k(M) exp(27i, (M))/det(CT + D)0, (1),

in which x(M) is a complex number of absolute value 1 which depends only on
M and the choice of the square root. In particular, it does not depend on the
characteristic m. Thus x(M)? is well defined; for M € I";(2) one has:

H(M)z — (_1)trace(D71)/2

5.3 In the remainder of this paragraph we derive two lemmas from this for-
mula. The first lemma gives an explicit form of the transformation formula for
certain matrices. The second lemma studies the transformation behaviour of the
functions 0[8%](27) which are an ingredient of some of the cusp forms.
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5.4 Lemma. For every half-integral characteristic
= (1/2)(a,b,c,d) with a,b,c,d € {0,1}
and every M (€ I'(2)) as below we have:
O (M - 7) = Xon(M)0r (7),

for all 7 € H and with x,,(M) as in the table.

M 61(1) 62(1) 63(1) 65(1) 66(1) 67(1) 68(1)
Xm(M> (_1)bc (_1>ad (_1)ab 1 (_1)ac 79 Z'b

Proof. We will write my := (a,b), mg := (¢,d). Let M = (éﬁ) € I'(2) with
A=D =1, B =2B' C =0, note that B’ is then a symmetric matrix with
integral coefficients. We find:

Opn(M -7) =0,(T+ B) =
= S eap(2ril(1/2)(h + 5 + B+ %) + (o 250 (5)])
= Y exp(2mi(1/2)(k + 1) ! (k + 54) + kB"k + kB'my + "L B + (k + 51) ("))
= exp(3imi B'my) - 0, (7).
From this x,,(M) for M = e3, ez, eg is easily computed.
Let now M = ( ) this implies that D =*A~!. Then:
Op(M-7) = 0,(AT"A)
= Yy eap(2mil(1/2)(k + %51 AT Ak + 75) + (k + 51 AATH(%2)])
= Sy exp(2mil(1/2)((k + 5 AT ((k + 55 A) + ((k + 5 A ((F) A7)
= On(7),
the characteristic n is given by:
n = (ny, ng), ny =miA, ng=mnytA"
In case A = (12), so M = ¢;(1), one obtains:
n = (a,b,c,d) + (2b,0,0, —2¢), thus  0,(7) = (=1)"0,,.(7),
where we use (0.2) from [7], p.49. The formula for x,,, (M), with M = ey(1), e5(1), eg(1),

is derived analogously, note one may take A = —1I in e5 and eg.
Note that by comparing this result with lemma 5.2, we find (M ),/det(CT + D) =
1 for these matrices. a

14



5.5 Lemma. Let M € I'j(2) with
M- A B\ [(I+24A 2B
~\C D) 2¢" I+2D" )

let m = (myq,...,my) with m; € {0,1} and let 7 € H,,.
Then we have:

05 (2M - 7) = MM, 7) - (=1)0™+ 4[] (27),
with \(M, ) independent of the characteristic m and:
MM, 7)* =det(Ct + D), x:=diag(B"), vy :=diag(C"),

where we view the diagonals as row-vectors.
In case C'= 0, we have A(M, 1) = 1.

Proof. This is actually a special case of Igusa’s transformation formula 5.2.
Indeed,

O[712(M - 7)) = 6[F'1(2(AT + B)(CT+ D))
= O[7)((A(27) +2B)(C"(27) + D))
= O["I(M" - (27))

One easily verifies that the matrix M’ is also a symplectic matrix with integral
coefficients, thus M’'~! is easy to compute:

, [ A 2B 1 [ 'D —2'B
M_<C/ D)’ M '_<_t0/ tA)

The action of M’ on the characteristic (%, 0) is then given by:

M- (%,0) = (% 0M! +%((C’tD)0, 2(A'B)g)
‘D —2'B
= (%, 0) ( ) + %((C’tD)o, 2(A'B)o)
_toy tA

= (2'D, —m!'B)+ 3((C"'D)y, 2(A'B),)
= (¥, 0)+(m'D' +y, 2(—m'B' + (A'B'),)
= k+1.
Using (0.2) from [7], p.49, we find 65,; = 0. It is then easy to verify that

0151 (2M - 7) = Opprp (M- (27)).
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Applying 5.2 to the righthandside we find:
0151 (2M - 7) = MM, 7)exp(2migy(M'))0k(27).

Since k = (™3%, 0), the only non-zero terms in ¢y (M’) are:

or(M') = —3(m+y)('DB) (m+y)+ 5(m+y)'D(A'B),
€ 3(m+y)z+Z,

where we use that B =2B', D =1+ 2D’ and z := diag(B’).
In case C' = 0 it follows from (the proof of) lemma 5.4 that A(M, 1) = 1.
This completes the proof of lemma 5.5. a

6 The representation of I'/I'(2,4,8) on S5(I'(2,4,38))

6.1 Recall that subgroup I'(2) fixes the characteristics. For f = [, 0,.,, a
modular form of weight k& on I'(4, 8), we can then define the homomorfism:

Xr:T@)/T(2,4,8) — €%, by fIM =x;(M)f.
As lemma 5.5 shows, I'(2) doesn’t fix the 0[%](27)’s. We define a subgroup
['(2) by:
') := {( 221,, g > eT'(2): diag(C") =0 mod 2 }
For g = 0[95](27) [12%7" 0,0, (7), a modular form of weight k& on I'(2,4,8), we
define a character:
Xg  I'(2)/T(2,4,8) — C", by g|M = x,(M)g.
The following proposition lists some character values.
6.2 Proposition. Let m; be a half-integral characteristic with m; := (1/2)(a, b;, ¢;, d;).

1. Let
f(T) = eml (T)0m2 (T) .- "ngk (T)

Then f is a modular form of weight k& on I'(4, 8) and values of x are listed
below. One also has: xf(es(1)) = 1.

M 61(1) 62(1) 63(1) 64(1) 66(1) 67(1) 68(1) 69(1) 610(1)

Xf(M) (_1)Ebj0j (_1>Eajdj (_1)Eajbj (_1)Edej (_1)1+Eaj0j Z’Eaj Z’Ebj ’LECj Z’Edj
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(b) Let ey, es € {0,1} and let
9(7) = 0[5 1(27)0m, (7)0m, (T) - - Oy, (7).

Then g is a modular form of weight k£ on I'(2,4,8), and some values of x, are
listed below. One also has: y,(es(1)) = 1.

61(1) 62(1) 63(1) 64(1) 66(1) 67(1) 68(1) 69(2)

(_1)Ebj0j (_1)Eajdj (_1)Eajbj (_1)Ecjdj (_1)1+2aj0j i261+2a]~ 2’262+Ebj (_1)Ecj

Proof. That f € M;3(I'(4,8)) follows from the corollary in [7], V.7. Note that
for the matrix A in e; and eg we can take A = —I. Then e5(1) = —I, which acts
trivially on Hy. The lemma then follows easily from 5.2. Note that all matrices
M except eg(1) have trace(D — I) = 0, so k(M)* = 1 by [7], V.3, thm 3, and
that x(eg(1))? = —1.

For the second part, we oberve that lemma 5.5 and 5.2 imply that T'(2,4) acts
by a character on the modular form ¢. In [5] it is shown that this character is
trivial on I'(2,4,8) (but it is not trivial on I'(4,8)). Therefore g is a modular
form on I'(2, 4, 8).

The matrices €1, ez, €3, €5, e7, eg have ‘C' = 07, so x, can be computed directly
from 5.2 and the lemmas 5.4 and 5.5. For the matrix A in e5 and eg we can take
A = —1I. Therefore also eg has ‘C = 0.

The remaining matrices ey, eg, €19 are of the form M = (QIC,?), so D=1,
and k(M)? = 1. In the formula for f|M there appears however the constant
k(M) k(M)?*=1 with M’ = (é,?), cf. the proof of lemma 5.5.

To find xK(M")k(M) we compute 0y(2M7)0y(MT). Note that:

M= I 0\ 0 7 I -C 0 —1
\Cc 1) \-I0 0 I I 0/
First of all we find:

0o (=270 (—771) = Ldet(7)00(7/2)00(T).

— 2

Upto a 4-th root of unity this follows directly from 5.2. By specializing 7 = (74;)
to a matrix with 7y = 0 if & # [, we get 0[3%2](7) = 0[5 ](m11)0[%](722). The
formula then follows from the identity:

9[8](—7{1) =/ —in -9[8](71), with  Re(v/—im) >0, 7 € H;.
Next we apply (é }C> = (é 7120’):
%det(T —C)0o(5 — Cbo(T —2C") = Ldet(r — C)0o(5)00(7),

— 2
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where we use lemma 5.5. Applying (9 _OI ) we obtain:

sdet(—7 1 = OV (—(27) 1 )0o(—771) = det(CT + I)6o(27)00(7),

Comparison with 5.2 shows that x(M')k(M) = 1. The values of x,(M) then
follow from 5.2. (Note that in [5] it is proved that x(M')k(M) = —1 with
M = e6(2), the generator of I'(4,8)/T°(2, 4, 8), thus some care is needed.) O

6.3 We will now determine the splitting of S3(I'(2,4,8)) into irreducibel T
representations and we show that the characters x ¢, x, determine the cusp forms
(within the space of cusp forms). This will be important when we study the Hecke
action in the next chapter.

6.4 Theorem. The space S3(I'(2,4,8)) is the direct sum of 11 irreducibel T
representations. The repesentation on S3(I'(4)) is irreducible, and S5(I'(4,8)) is
the direct sum of 7=146 irreducible representations.

Below we label the representations, their dimensions and a cusp form in each
representation space.

space label dim cuspform
Ss(U(4)) | Rs 15 f1 = Blooloo oo lov] frol 1]
Ry (0;2) 90 f2 = 610 [0 60 loo] [vo] 1]
Ry(1,1;0)] 90 f5 = 6100l loo)[26] [10] [o1] 1]
Ry (1;1) 360 fa = 6150 loo) (36 03] 7] o1]
R 180 J5 = 6150l (6] [ov] 115 ol 1]
Ry (2;0) 60 fs = 610l oo oo loo] [17] Yol
53(I'(4,8)) | R5(1;0) 360 J = 053] [50] o] [0l 691155
Ry (1;0) 240 g1 = 050 (27)6 oo [oo] [59] [50] 671 (7)
Ry (0;1) 360 g2 = 0[50 (27)6 o] [oo] 0] [50] 671 (7)
R 288 gs = 0[] (27)01501 o] 6] 631 (471 ()
S3(I'(2,4,8)) | R(3,3) 240 g4 = 0ol ool [60) (27)6 5] 1] (171 (7)

So the first representation is equal to S3(I'(4)) and the sum of the first seven
representations is S3(I'(4, 8)).

The space S3(I'(4, 8)) is a direct sum of one dimensional spaces C'f, where f
is a monomial, i.e. a product of 6 theta constants, and for monomials f, f' €
S3(I'(4,8)) we have:

Xr=xp <= f=f.
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The space S3(I'(2,4,8)) = S5(I'(4,8) & W', where W' is spanned by linear com-
binations of monomials, which are products of one 9[3](27) and five 6,,(7)’s.
Under the action of I''(2), the space W’ is a direct sum of mutually distinct one
dimensional subrepresentations:

W' =a,Cy, and x,=xy <<= g=4¢.

Proof. The meaning of the names of the representation spaces is as follows:
R; (1,1;0) is the space obtained by taking (linear combinations of) all products of
one of the 15 monomials fg, S € C; and squaring two different terms occuring.
Thus we get 15 - (3) = 90 different monomials. Note that theorem 4.4 implies
that g is a cusp form. Similarly, R, (1;1) is spanned by multiplying a monomial
fs, S € Cy by ab, withm € S and a 6, with n ¢ S. The dimension of this
space is then 15 -4 -6 = 360. The meaning of the other terms is similar.

It follows from theorem 4.4 that the 11 spaces are contained in S5(I'(2, 4, 8)),
and that S5(I'(2,4,8)) is in fact a direct sum of these spaces.

Using proposition 2.4 (and also [7], V.6 if the 6 characteristics are not distinct),
it is not hard to verify that the first 7 spaces are stable under the I'-action and that
I' permutes the monomials in each space transitively. Since only the monomials
without a 0[33] are on I'(4, 8), we see that S3(I'(4, 8) is spanned by the monomials
in the orbits of f1,..., fz. In particular, dim S3(I'(4,8)) = 1155.

To show the irreducibility of the 7 sub-representations in S5(I'(4, 8)), we actu-
ally need that x; : I'(2) — C” determines f in S5(I'(4, 8)). To prove it, we use the
I' action, so we may assume that f = f;, with f; one of the 7 forms listed. Then
one determines all six tuples of characteristics which give the same character and
one observes, for each i, that there is only one set of characteristics which gives
a cusp form, (to wit, the set of characteristics of f; itself).

Suppose now that a lineair combination of monomials from Ss(4, 8) lies in a
subrepresentation. Then, using the action of I'(2) and taking linear combina-
tions, each monomial in the combination lies in that subrepresentation. As each
monomial in S3(4, 8) lies in the I'-span of one of the 7 cusp forms listed, the sub-
representation is a direct sum of some of the seven listed. Therefore S3(I'(4,8) is
a direct sum of 7 irreducibel I' representations.

Since f; is invariant under I'(4), we have f; € S3(I'(4)). Since the orbit
defining the 6-tuple of f; is Cy, which has 15 elements, and dim S3(I'(4)) = 15
([12]), it follows that S5(I'(4)) is spannend by fi.

We now consider all of S3(I'(2,4,8)). Let W be the subspace of M3(I'(2,4,8))
spanned by products of one 0[3%](27) and 5 ,,,(7)’s. Using 02, (7) = Q..(0[35](27)),
we also have that the cusp form g4 is in W, in fact:

Oloolloo) (27) = (1/4)(6 [0 (7) — 6*[11](7))-
Similarly, all of R(3,3) is contained in W. Therefore:
S5(1(2,4,8)) = S3(I'(4,8)) @ W', with W' :=W N S3(I'(2,4,8)).
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(Indeed, a product of one 6,,(27) and 5 6,,(7)’s is never in S5(I'(4,8)).)

Under the action of T, the four 8[2](27) are mapped to linear combinations of
these four theta nulls (cf [7], II.5, thm 6), whereas the 6,,(7)’s are permuted. The
space W is thus stable under the action of I'. Since the 5-tuples of characteristics
in the cusp forms ¢y,..., g4 are in different orbits for the I'-action, we already
find 4 distinct subrepresentations in W’ = S3(I'(2,4,8)) N W, each spanned by
the I'-transforms of a g;.

To see that these 4 subrepresentations span W', let f € W’ be the product
of one 0[8%](27) and 5 6,,’s. Then there is a transformation in I' which maps
the 5 6,,’s to the 5 0,,’s of one of the first three cusp forms. Therefore in the
subrepresentation generated by f there is a linear combination of the 6[35](27)’s
multiplied by the product of the 5 6, from such a cusp form. Using the action
of e7(1) and eg(1) we find that, for some a, b, 0]%](27) times the product of the
same 5 6, lies in the subrepresentation generated by f (cf. lemma 5.5). Applying
er(1)%;10(1)?, which is in T'(2) and thus fixes the 5 characteristics but acts on the
other (see lemma 5.5), we get 0[50](27) times the same product of the 5 6,,, i.e.
one of the g; (i = 1, 2, 3). The monomials from R(3,3) are in fact permuted
transitively (upto a scalar multiple), as can be seen from the geometry of the
tetrahedron or by a similar artgument of above.

To prove the irreducibility of these 4 representations, we need that x, deter-
mines the the cusp form g € W’. This is done as in the S3(I'(4, 8) case by explicit
verification. In fact, for a monomial g obtained from a g;, i = 1, 2, 3, the restric-
tion of x, to I'(2,4) determines the 5 6, among the possible 5-tuples obtained
in this way. Since I' has 3 orbits (coresponding to the i) on these 5-tuples and
['(2,4) is a normal subgroup, one need only verify that the 5-tuples of the g; are
uniquely determined by their character. The action of e; and eg allows one to
recover the 0[3%](27) from x,. Similarly, using the action of I' on the I'-orbit of
g4, one need only check that g4 is determined by its character.

The irreducibility of the 4 representations is then proven as in the S3(I'(4, 8))
case. O

7 Hecke eigenforms

7.1 The Hecke algebra, generated by the Hecke operators 7;, and T},» for primes
p > 2, acts on the space S3(I'(2,4,8)). We want to determine a basis of eigen-
vectors. For an eigenform f and a prime p > 2 such that:

T.f =Nf,  Tof =Apf

one defines the Hecke polynomial:

, a, =A
Hy(X) = X"~ a,X* + 0, X* — a,p* X +p°, with {apz :/\g_kz—pz.

P P
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7.2 For modular forms on I'(8) there appears a character x, : (Z/82)" —
{1} in the Hecke polynomial. This character is defined by: f|M, = xa(p)f
with M, € T' a matrix with M, = diag(p~*,p~*, p,p) mod 8. We will show that
X2 is trivial for modular forms on I'(2, 4, 8).

If p = —1 mod 8 then one may take M, = —I, and thus x2(p) = +1 since
—1I acts trivially on f. If p = 5 mod 8 then put A = (3%;) € SLy(Z) and take
M, = (OAtg,l). Since M, € I'(2,4,8), it also acts trivially on f. Therefore the
character x» is trivial (for any modular form on I'(2, 4, 8)).

7.3 The action of the Hecke operators is given by the formula’s in [1]. In fact if

f(r) = %: anNexp (%tmce(NT)) , then (T, f)(1) = %: byexp (%tmce(NT)) ,

are the Fourier-Jacobi series of f and T, f, then explicit formula’s expressing by
in terms of ay and p' are given in [1]. We will write

B . ([ n r/2
ay = a(n,r,m), with N_<7"/2 m>

a positive definite half-integral matrix.

In case the quadratic form nz? 4+ rzy + my? has no non-trivial zero’s mod p,
then one simply has b(n,r,m) = a(p'n, p'r, p'm). We used this fact often in our
computations.

To find the eigenspaces for the Hecke action we will use the following propo-
sition.

7.4 Proposition. Let I be a subgroup of Sp,,(Z), with I'y(¢) C I' C Spy,(Z).
Define
T:=n(l),  with 7 :Spy(Z) — Spy,(Z/q2)

the reduction map. Assume that for every n € (Z/qZ)* and every M = (ég) el

one has that: (fc’b—lB eTl.

Then the Hecke operator T,, maps the space
Mi(U, x) = A{f € Me(Ly(q)) = fIM =x(M)f, VM el}
to the space My(T',x’) where ¥’ : T — C* is given by

-1
Y(M):=x(M), with MeT, M= < n“é ”DB> mod g.

Proof. The Hecke operator T,, is defined as a sum:

T.f ::Zf\Hk, H.=D, = (égl) mod ¢
k
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and where T'(¢q) D, I'(¢) = ey '(q)Hg, a disjoint union. By [2], Lemma 1.1 (2),
one then also has:
I'D,I = [[ TH.
keJ
For any M € I, the matrices HyM, k € J are then also a set of coset represen-
tatives. Therefore there is a permutation o = o, : J — J and there are M € T’
such that:

HyM = MyH,,y, and thus M, = DHMD;1 mod gq.

Given M, the matrices M} are thus all congruent mod ¢ to a matrix M’. By the
assumption on I', we can choose M’ € T'. Therefore for f € My(T', x) we obtain:

(T ))IM = 32 fI(H M)
= i [IMyHy
= e X(M') f|Ho k)
= X(M/)Tnf-

The form T, f thus has the character M — y(M’). O

7.5 Proposition. The following cusp forms are Hecke-eigenforms:

F, = fi i =1,5,6,7,
Fy = fa—Af; = 0llloolloolloo] (0]lor] +  46[ao] o] [0l o111 053]
Fy = fs+16f5 = Oloollool ol [0loa][6s] +  1660[50][60] ot od] (ol [l
o= frdf; = oEISIBIBIEIN +  4oBBHBIRIBILY
9i 1 =1,2,3,4.

Proof. Recall that the f; and the g; are determined by their character (cf.
theorem 6.4). Since both I'(2) and I'(2)" satisfy the conditions of proposition
7.4, we have that T, f; and T,g; are (upto a scalar multiple) determined by a
character.

An explicit computation shows that T, f has the same character if p' =
1 mod 4 and it has character X7, the complex conjugate of xy, if p’ = 3 mod 4
where in fact f € S5(I'(2,4,8)) can be any cusp form determined with a character.

The space spanned by such a cusp form f and its translates by the Hecke
action is thus at most 2 dimensional. In particular, if there is no cusp form with
character X7 or if x; is real-valued, then f is an eigenform. Using a computer
one then finds the eigenforms listed. O

7.6 In the table below we list the coefficients a,, a,2 of the Hecke polynomials
corresponding to these eigenforms.
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coef. F F, F3 F, F; F Fr g 92 93 94
as 8 8 16 8 0 0 0 0 0 0 8
as2 6 6 102 54 54 54 6 —18 6 30 6
as 28 28 28 20 12 —12 4 0 0 16 —32
as2 190 190 190 350 30 30| —130 70 —10 230 310
ar 80 80 32| —16 0 0 0 0 0 0 —32
ap2 2030 | 2030 | —658 686 686 686 238 686 —18 | —210| —658
an 88 88 176 | —40 0 0 0 0 0 0 88

a1z |—3146 | —3146 | 8470 | 2662 | 2662 | 2662 6 1694 | —330 462 | —3146
a3 204 204 204 | —28 60 | —60 84 0 0 —80| —160

a132 8398 | 8398 494 2290 | 4238 3094 | —442 | 3510 390
aiy 356 356 356 41 —60| —60 36 —180 —-92 20 356

a2 | 25126 | 25126 8806 6630 | —3162 15878 | 9894 | —6970 | 25126
a9 424 424 336 40 0 0 0 0 0 0 424

a9z | 30438 | 30438 | —3002 | 13718 |13718 | 13718 | 10982 || —12274 | —8474 | 9918 | 30438

8 The Andrianov L-functions

In the table below we list the Fourier coefficients of some elliptic modular new

forms which appear to be related to the Siegel cusp forms listed above.

form space as| as| ar| ann| aiz| a7 |aig
o S5(T'(32)) 0/ =2| o/ o 6| 2| 0
Y [Ss(To(32,(=2))) | 40| 2|-8i| —4i|-14| 18 |12i
p1 Si(To(8))  |—4| —2| 24|—44| 22| 50| 44
pa S4(T'(32)) 0/ 22| 0| 0[-18[-94| 0
ps S4(T'(32)) 8|=10| 16 |—40|—50|—30 | 40
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8.1 The cusp form F; was studied in [5], where it is was proven that F} is the
Saito-Kurokawa lift of the elliptic modular form p; € Sy(I'g(8)). Therefore:

L(F1,s) = (q(s — 1)Cq(s — 2)L(p1, 5).

(One easily checks that indeed H,(X) = (X — p)(X — p?)(X? — a,X + p*) with
the a, from p;.)

8.2 The first Hecke polynomials of F, suggest that its L-function is the same
as that of F}:

L(Fy,5) = Cals — Dals = 2)L(p1,s),

8.3 The L-function of F3 also appears to be a twisted form of the L-function of
F1 .

L(F3,s) = Cq(s — 1)¢als — 2)L(p", 5),
(3)
)

where the () stands for twisting at the primes 3 mod 4 (the L-function L(p;”, s
is the L-function of a cusp form of weight 3 on I'y(16)).

8.4  The L-function of F, appears to be the product of two of two elliptic
modular L-functions:

?

L(Fys) = L6, s = )L(ps 7, 9),

where the (72 stands for twisting at primes = 5, 7 mod 8.

8.5 The modular form Fj was also studied in [5], in fact it defines the holomor-
phic 3-form on the threefold Y studied there. Its L-series seems to be:

”

L(Fs,s) = L(¢1,8—1)L(pa, s).
8.6 The L-function of Fg seems similar to the L-funtion of Fx:
L(Fs,s) = L(6",s = DL(pY", ),

where the ©®) stands for twisting at the primes 5 mod 8 (note that one can also
twist at the primes 3 mod 8 (or 7 mod 8) without changing the L-functions).
8.7 The L-function of F; seems to be related to the L-function of a Galois
representation m of Gal(Q/Q) which is the tensor product of the Galois repre-
sentations corresponding to ¢; (a CM representation) and to ;. At least for all
primes < 19 we have that the roots of the Hecke polynomial of F% are of the
form o;3; with a; the roots of the Hecke polynomial of ¢; and (3; the roots of the
Hecke polynomial ;.

8.8 The form ¢; appears to be related to a Hecke character y of the field
K = Q(&):

We define a Hecke character:

x: A — CF, X(...,xp,...)znxp(mp),
o
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with Aj, the ideles of K and the product is taken over all places of K. The
character will be unramified outside the prime over 2, which we will denote by v.
Since the class number of K is one and x is trivial on K* (embedded diagonally),
it suffices to define only the infinite components and the component y, at the
prime over 2. In fact it suffices to define only the restriction of y, to Of. We
give these data below.

As places at infinity we choose the complex embeddings o; : K — C*,

3mi

O'ISC8P—>€%, and t(gro e,
The infinity components of xy we then define by:
Xooi : C"— C, Xoo1(2) 1= 272, Xoos(2) = 271272

As O3/(1 + 720) = O /(1 +20) = (Z/47Z) x (Z)2Z), (where the first factor
is generated by the image of (g), the projection to the second factor will give a
character, which is the restriction to O; of the desired one:

Xy O — {£1} C C".

(Taking 7, = 1 — (g as local parameter at v, the subgroup generated by (s mod
(1420,) is just: 1, 1+m,, 1+72 1+4m, +7>, so X, is trivial on these, and not
trivial on the other 4). Since any unit in Ok can be written as u = ¢*(1 — v/2)7,
one has that xe1(%)Xeo3(1)x,(u) = 1, and thus these data define indeed a Hecke
character.

The L-function of y is given by:

/
L(x, s) == (27) "% (s)[(s — 1) I_I(I—Xp o) N~ ) 1,
2

where the product is now over all primes except the ones at infinity and v, which
is ramified. To facilate comparison with the Hecke polynomials we define:

H, p(X) = H (X% — xp(mp)) 5

plp

where e, := [O,/(p) : Fp| is the degree of the residu field extension. Then the
equality L(g1,s) = L(x, s) is equivalent to H,(X) = H, ,(X) for all p.

8.9 To compute the H, , we choose a generators 7, in Ok for each of the primes
¢ over p. Then:

Xo(m) = x(1,1,...,1,7,,1,...)

_ -1 -1 . -1
= x(m, ot Lot )

= Xooa (g )Xeo s (5 )X (75 ),
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where the last step follows because y is unramified outside v.

In particular, if p = 7 mod 8, then there are two primes over p, and the
generators 7, and 7, of these prime ideals can be chosen to lie in Z [v/2]. Writing
T, = a+ by/2 with a,b € Z we have a®> — 2b? = p, and thus a and b are odd.
Since V2 = 72 + 7 € O,/(2) we get 1, = 1 + 72 + 7 € O5/(1+20,), and

v

thus y, (7 ') = —1. For the infinite places one finds (with V2 = (s + (), that
Yoo (1) = (a + bv/2)? and Yoo 3(7m, 1) = (a — by/2)3. Therefore:

x(m,) = X(wfp) = —p, and H,, = (X2 +pP)2.

If p = 5 mod 8, then the generators for the two primes over p can be chosen to lie
in Z[i]. Choosing a generator 7, = a+ bi with a odd and b even for such a prime,
one finds that x,(7,") = +1, Xeo1(7,') = (a + bi)? and xoos(m,") = pla + bi).
Therefore:

X(my) = pla + bi)?, and H,,= (X2 — pla+bi)")(X? — pla — bi)*).

If p = 3 mod 8, then we choose the generators in Z[/—2], let m, = a + b\/—2 be
one of them. Since a® 4+ 2b? = p we must have a and b odd. Then 7, =1+ 72 +
75+ ... in O) and thus x,(7;') = —1. Furthermore xo1(7,") = (a + by/=2)?
and Xoo3(m,") = p(a — by/=2). Therefore:

x(m,) = —p2(a+b\/—_2)2 and H,,= (X2—|—p2(a+b\/—_2)2)(X2+p2(a—b\/—_2)2).

For p = 1 mod 8, there are 4 primes over p and the Hecke polynomial is not
so easy to describe. However, one can check that indeed H, 7 = Hi7.
8.10 We were not able to write the L-function of ¢g» as a (product of) ‘known’
L-functions.
8.11 The Hecke polynomials of g3 have similar properties to those of F;, with
¥y replaced by a form in S5(To(2°), (=2)).
8.12 The modular form g, also seems to be a (twisted) Saito-Kurokawa lift of
the form py:

Ligs,s) = LO™5 = DL, 5 = 2)Lipr, 5),
with x(72) : (Z/8Z)* — {41} the Dirichlet character with x(=2(5) = x(=2)(7) =
—1.
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