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AbstratWe expliitly identify in�nitely many urves whih are quotients ofFermat urves. We show that some of these have simple Jaobians withomplex multipliation by a non-ylotomi �eld. For a partiular ase wedetermine the loal zeta funtions with two independent methods. The�rst uses Jaobi sums and the seond applies the general theory of omplexmultipliation, we verify that both methods give the same result.Keywords: Fermat urves, omplex multipliation, Jaobi sums, Heke har-aters1 IntrodutionIn [5℄ and [10℄, we studied a method for onstruting CM-hyperellipti urvesof genus 3 and CM-Piard urves suitable for ryptography. The onstrutionin the ited artiles was done by omputing approximations of the invariantsof the urves (that are rational funtions of theta onstants) using a omputer.Although these methods give ryptographially interesting examples of urvesde�ned over Fp , we do not have a rigorous mathematial proof that they reallyhave omplex multipliation with the stated CM-�eld.In this paper we show that some of the examples given in [5℄ and [10℄ are ob-tained as quotients of Fermat urves, and that they indeed are Jaobians of thestated CM type.It seems that the algebrai urves whose Jaobian is a simple fator of Jaobiansof Fermat urves are not ompletely known. We give a sequene of suh urvesas yli d-gonal urves in Setion 2.In a speial ase, we �nd a Piard urve whose Jaobian has omplex multipli-2



ation with the CM-�eld Q(�3 ; �7 + ��17 ). We ompute the loal zeta funtionsfor this urve by two di�erent methods: with Jaobi sums based on a result in[4℄ (Setion 3) by Heke haraters (Setion 4). It is very well known that bothmethods give the same result and we verify this expliitly in setion 4.8.2 Fermat quotient urves2.1We onsider a yli d-gonal urveCd;n;k : yd = xk(xnd�2k + 1); n � 1; d > k � 0; nd� 2k > 0 (2.1)over C , whih is obtained as a quotient of the Fermat urveFd(nd�2k) : td(nd�2k) = sd(nd�2k) + 1by the quotient map (s; t) 7! (x; y) = (sd; tnd�2ksk).The urve Cd;n;k has automorphisms� : (x; y) 7�! (x; �dy); � : (x; y) 7�! (�dnd�2kx; �knd�2ky);� : (x; y) 7�! (1=x; y=xn);where �n = exp(2�=n). The involution � ommutes with �, and it ats on thequotient urve Xd;n;k = Cd;n;k= h�i. Namely, the following diagram is ommu-tative. Cd;n;k "����! Xd;n;k�??y �0??yP1 ����! P1 (2.2)where �, �0 and " are quotient maps by ations of � and � , and  is de�ned byx 7! x + x�1. Moreover we have �� = ��1� , so � + ��1 ommutes with � onthe Jaobian J(Cd;n;k). Therefore we see that3



Lemma 2.1. We have an automorphism � on Xd;n;k and an endomorphism� + ��1 on J(Xd;n;k).Let us write down an equation of Xd;n;k. Let Bd;n;k be the set of roots ofxnd�2k+1 = 0. Beause the restrition of " over P1�f�1g gives an �etale doubleover ��1(P1 � f�1g)! (�0)�1(P1 � f�2g), Xd;n;k has an aÆne model of theform model Y d = (X � 2)a(X + 2)bY(X � �i); d > a; b � 0; (2.3)where �i 2 (Bd;n;k) and �i 6= �2. Note that eah element in the �ber ��1(1)is �xed by � . So (�0)�1(2) onsists of d distint points, and we have b = 0.Lemma 2.2. The exponent a in (2.3) is 0 if n is even. In the ase that n isodd, we have a = d=2 if d is even, and a = (d+ 1)=2 if d is odd.Proof. If n is even, eah element in the �ber ��1(�1) is �xed by � . So we havea = 0 in this ase. Now let n be an odd number. If d is odd, �1 is a branh pointof � and (Bd;n;k) onsists of �2 and other (nd � 2k � 1)=2 points. Beausethe branh divisor of �0 has the multipliity k at 1, the degree of the branhdivisor is a+ (nd� 2k � 1)=2 + k;and this must be divided by d. So a mod d is uniquely determined, and we seethat a = (d + 1)=2 satis�es this ondition and d > a � 0. The same argumentworks for the ase that d is even.Next let us onsider the polynomial Q(X � �i). This is de�ned over Z sinethis is a produt of minimal polynomials for algebrai integers in the real sub�eldof ylotomi �eld. 4



To ompute this polynomial, let us onsider the rational funtions un(x) =xn + x�n. These are determined indutively by un+1(x) = X � un(x)� un�1(x)where X = x + x�1. Therefore we an regard un(x) as a polynomial in X andwe denote this by Un(X). Namely, Un(X) 2 Z[X ℄ is the moni polynomial ofdegree n determined by the relationUn+1(X) = X � Un(X)� Un�1(X); U1(X) = X; U2(X) = X2 � 2: (2.4)Lemma 2.3. The polynomial Q(X � �i) in (2.3) is given by U(nd�2k)=2(X) ifnd� 2k is even, and by V(nd�2k�1)=2(X) if nd� 2k is odd where Vm(X) 2 Z[X℄is the moni polynomial of degree m de�ned by U2m+1(X)+2 = (X+2)Vm(X)2.Proof. In the ase of nd� 2k = 2m, the assertion follows from thatUm(x + x�1) = 0 , um(x) = xm + x�m = 0 , x2m + 1 = 0:Next let us onsider the ase of nd� 2k = 2m+ 1. We haveU2m+1(x+ x�1) + 2 = 0 , x2m+1 + x�2m�1 + 2 = 0, x4m+2 + 2x2m+1 + 1 = 0 , (x2m+1 + 1)2 = 0:On the other hand, we have x2m+1+x�2m�1+2 = (px2m+1+px�2m�1)2 andpx2m+1 +px�2m�1 = (px+px�1) 2mXj=0(�1)j(px)j(px�1)2m�j= (px+px�1) 2mXj=0(�1)jxj�m;so U2m+1(x+ x�1) = (x+ x�1 + 2)vm(x)2 with a rational funtion vm(x) in x.Therefore U2m+1(X) must be of the form (X +2)Vm(X)2. Now the assertion isobvious.Summarizing, we proved that 5



Theorem 2.1. The urve Xd;n;k = Cd;n;k= h�i is de�ned byY d = U(nd�2k)=2(X) (n even)Y d = (X + 2)d=2U(nd�2k)=2(X) (n odd; d even)Y d = (X + 2)(d+1)=2V(nd�2k�1)=2(X) (n odd; d odd)for n � 1, d > k � 0 and nd � 2k > 0. The Jaobian J(Xd;n;k) has anendomorphism � indued from � + ��1 2 End(J(Cd;n;k)).Beause we an identify the � -invariant subspaeH0(Cd;n;k;
1)� withH0(Xd;n;k;
1),we an ompute the type of endomorphism � expliitly.Example 2.1. Let p > 3 be an odd prime number. Then the hyperelliptiurve C2;p+1;1 : y2 = x(x2p + 1)has the following base(1� xp�1)dx=y; (x� xp�2)dx=y; � � � ; (x(p�3)=2 � x(p�1)=2)dx=yof H0(C2;p+1;1;
1)� . Let � be the automorphism (x; y) 7! (�2px; �py). Above1-forms orrespond to eigenvetors of � = � + ��1 with eigenvalues�p + ��1p ; �2p + ��2p ; � � � ; �(p�3)=2p + �(p�1)=2phanging orders if neessary.Also the automorphism � : (x; y) 7! (�x; �4y) indues an ation on X2;p+1;1,and we see that � and � give a simple CM-type, that isEnd(J(X2;p+1;1))
 Q = Q(�4 ; �p + ��1p ):In the ase of p = 7, the urve X2;8;1Y 2 = U7(X) = X(X6 � 7X4 + 14X2 � 7)6



is found in [10℄.Example 2.2. Next we onsider the hyperellipti urve C2;n;0 : y2 = x2n + 1for an odd number n = 2m + 1. Let Cn be the hyperellipti urve de�ned byy2 = xn + 1. Then we have a morphismp : C2;n;0 �! Cn; (x; y) 7�! (x2; y);and a deomposition H0(C2;n;0;
1) = p�H0(Cn;
1)� V�. Let us take a base'i = x2i+1dx=y; (i = 0; � � � ;m� 1)of p�H0(Cn;
1), and a base i = x2idx=y; (i = 0; � � � ;m� 1)of V�. Then f'i� 2m�igi=0;���m�1 gives a base of H0(Cn;
1)� . Thus we haveJ(C2;n;0) � J(Cn)2 and J(Cn) � J(X2;n;0) (isogenous).Example 2.3. Let us onsider the urveC3;3;1 : y3 = x(x7 + 1): (2.5)The trigonal urve X3;3;1Y 3 = (X + 2)2V3(X) = (X + 2)2(X3 �X2 � 2X + 1)gives an example of a Piard urve (see [3℄) of CM-type. The Jaobian has theendomorphism ring End(J(X3;3;1))
 Q = Q(�3 ; �7 + ��17 ). PuttingX = (7� 2x)=x; Y = �7y=x2;we obtain a smooth modely3 = x(x3 � 14x2 + 49x� 49): (2.6)7



Note that the Jaobian J(C3;3;1) is isogenous to the produt J(X3;3;1)2�E witha CM-ellipti urve E. To see this, note that we have a non-trivial morphismC3;3;1 �! E; (x; y) 7�! (t; s) = (x7; y7=(x7 + 1)2)to a CM ellipti urve E : s3 = t(t+1). A base of H0(C2;p+1;1;
1)� is given by(1� x)dx=y; (1� x4)dx=y2; (x� x3)dx=y2and they are eigenvetors for the ation of �7 + ��17 . The �1-eigenspae ofH0(C2;p+1;1;
1) for the ation of � is given by(1 + x)dx=y; (1 + x4)dx=y2; (x+ x3)dx=y2and x2dx=y2 (this 1-form is pulled bak from E). Considering the CM-type, wean onlude the desired isogeny.3 Computation of the zeta funtion of C3;3;13.1We would like to ompute the loal zeta-funtionZC;p(t) = exp 1Xr=1 #C(Fpr )r tr!for the urves C3;3;1 given by equation (2.5) and X3;3;1 given by equation (2.6)at primes p 6= 3; 7. It is well-known that we an writeZC3;3;1(t) = LC3;3;1(t)(1� t)(1� pt) and ZX3;3;1(t) = LX3;3;1 (t)(1� t)(1� pt) :where LC3;3;1(t) resp. LX3;3;1(t) is the L-polynomial of C3;3;1 resp. X3;3;1. Thereiproal of the L-polynomial of a urve is the harateristi polynomial of theFrobenius endomorphism on its Jaobian.8



It is well-known that the L-polynomial of a urve C is of degree 2g and has aspeial form, i.e it satis�es L(t) = a0 + a1t + : : : + a2gt2g 2 Z[t℄ with a2g�1 =pg�iai for 0 � i � g and a0 = a2g = 1. It is therefore determined by theg oeÆients a1; : : : ; ag whih an be determined from the number of points#C(Fpr ) for r = 1; : : : ; 7.Let Sr = #C(Fpr )� (pr +1) and ai be the undetermined oeÆients. We havea1 = S1; ai = 1=i0�Si + Xj+k=i;1�j;k�i�1 akSj1A :In this setion we ompute LC3;3;1 and LX3;3;1 using Jaobi sums.For � 2 Fq , we set e(�) = exp�2�iTrFq=Fp�p � :Let � be a harater on a �nite �eld Fq . The Gauss sum (resp. Jaobi sum) isde�ned by�(�) = �1(�) = �X�2Fq �(�)e(�) resp. J(�s; �t) = �X� �s(�)�t(1� �):We have the relation J(�s; �t) = �(�s)�(�t)�(�s+t) :Some Jaobi sums are easy to ompute.Lemma 3.1 ([1℄,Theorem 11.6.1). Let � be harater of order m in Fp2twith p > 2 and suppose that pt � �1 mod m for some positive integer t. Thenp�t�(�) = 8>><>>: �1 if p = 2;�(�1) pt+1m if p > 2.
9



3.2We are now going to ompute the number of points on C3;3;1(Fq ) over �nite�elds Fq . We redue our problem to ounting the number of points of urvesof the form a1xn11 + a2xn22 = a3. These urves have already been onsidered byDavenport and Hasse [2℄.Lemma 3.2. Let q be a prime power.1. Suppose q � 2 mod 3, then #C3;3;1(Fq ) = #X3;3;1(Fq ) = q + 1:2. Let q = pr, q � 1 mod 3 but q 6� 1 mod 7. We distinguish two ases:(a) p � 1 mod 3. Then#C3;3;1(Fq ) = q + 1� �r � �rwhere �� = p and � = a+ b�3 � 1 mod 3 in Z[�3℄, �23 + �3 + 1 = 0.(b) p � 2 mod 3. Then#C3;3;1(Fq ) = 8>><>>: pr + 1 if r oddpr + 1� 2(�p) r2 if r even.Proof. 1. Obvious, sine every element in Fq is a third power of a uniqueelement in Fq .2. Let � be a generator of F�q . By Lemma 1 in [4℄, the number of aÆnesolutions in Fq of the equation y3 = x8 + x is equal toN = 13 �jA11j+ jA��2 j+ jA�2�j� ;where A�1�2 = f(t; u) 2 k � kj �71t21 + 1 = �2u3g:10



Sine q 6� 1 mod 7, the map t! t7 is an isomorphism and we are lookingfor the points on the aÆne part of the ellipti urves E�1�2 given by �71t3+1 = �2u3 resp. �71t3 + �2u3 = 1.For an ellipti urve de�ned over a prime �eld Fp , the number of pointsover Fpr is already determined by #E(Fp ).If p 6� 1 mod 3, all three ellipti urves obtained from A11, A��2 and A�2�are supersingular. Hene, #C3;3;1(Fq ) is equal to the number of points ofa supersingular ellipti urve.Now assume that p � 1 mod 3. We apply the tehnique explained in [7℄,Setion 10.3.Embed Fp into Z[�3℄=(�) where � 2 Z[�3℄ is an element above p satisfying� � 1 mod 3. Let � be the harater of order 3 given by the ubi residuesymbol � :� �3. We getjA11j = Xa+b=1 2Xj=0 �j(a) 2Xk=0�k(b) = 2Xj=0 2Xk=0 Xa+b=1�j(a)�k(b)= 2Xj=0 2Xk=0 Xa2Fp �j(a)�k(1� a) = � 2Xj=0 2Xk=0 J(�j ; �k)= q � 2Xj=1 2Xk=1 J(�j ; �k) = q � 2� J(�; �)� J(�2; �2):Now J(�; �) = � ([7℄, Proposition 7.5).Similar omputations show that jA��2 j = jA�2�j = q + 1 � J(�; �) �J(�2; �2). Hene, the assertion follows.Note that we an do the same omputation for q with p 6� 1 mod 3. Thisshows that J(�; �) + J(�2; �2) = 2(�p)r (3.1)for q = p2r with p 6� 1 mod 3. We will use this observation later.11



Theorem 3.1. Finally let q � 1 mod 21. Let  be a harater of order 21 onFq and set � = J( 7;  ). We have#C3;3;1(Fq ) = q + 1� TrQ(�21)=Q(�)� J( 7;  7)� J( 14;  14):Proof. We follow very losely the proof of Proposition 3 in [4℄.Let � be generator of F�q . Again we form the setsA�1�2 for (�1; �2) = f(1; 1); (�; �2); (�2; �)g.By the theorem of Davenport-Hasse [2℄ the number of solutions of the equationa1u3 + a2t21 = a3 in Fq is given byN(a1; a2; a3) = q � �(�a1a2 )� �2(�a1a2 )� X1���2 X1���20 �a1( 7�)�a2( �)�a3( 7�+�)where �x( ) = �P�2Fq  (�)ex(�).We deduejA11j = N(�1; 1;�1) = q � 2� 20X�=1;�6=14 ��1( 7)�1( �)��1( 7+�) � 20X�=1;�6=7 ��1( 14)�1( �)��1( 14+�) ;jA��2 j = N(��2; �7;�1) = q + 1� 20X�=1;�6=14 ���2( 7)��7( �)��1( 7+�) � 20X�=1;�6=7 ���2( 14)��7( �)��1( 14+�) andjA�2�j = N(��; �14;�1) = q + 1� 20X�=1;�6=14 ���( 7)��14 ( �)��1( 7+�) � 20X�=1;�6=7 ���2( 14)��14( �)��1( 14+�) :Hene,jA11j+ jA��2 j+ jA�2�j = 3q� 20X�=1;�6=14���1( 7)�1( v) + ��2( 7)��7( �) + ���( 7)��14( �)��1( 7+v) �� 20X�=1;�6=7���1( 14)�1( v) + ���2( 14)��7( �) + ���(�14)��14 ( �)��1( 14+v) � :Sine  (�1) = 1, we get ��1( s) = �1( s) and using �d( ) =  �1(d)�( ) we12



�nd ��1( 7)�1( �) + ��2( 7)��7 ( �) + ���( 7)��14 ( �)= �( 7)�( �)�1 + w�v�2 + w�2(v�2)� and��1( 14)�1( �) + ���2( 14)��7 ( �) + ���( 14)��14 ( �)= �( 14)�( �)�1 + w�v�1 + w�2(v�1)�where w =  7(�) is a third root of unity.Therefore13 �jA11j+ jA��2 j+ jA�2� j� =q � J( 7;  7)� J( 14;  14)� 6Xi=0 J( 7;  3i+1)� 6Xi=0 J( 14;  3i+2): (3.2)The Galois group of the �eld extension Q(�21 ) is generated by two elements A,B of order six resp. two, say �A21 := �521 and �B21 := �821. We easily see that the 12elements J( 7i;  k) with 7 - k in (3.2) are onjugate over Q(�21 ) and the resultfollows.Corollary 3.1. For p � 5; 17 mod 21 we getLC3;3;1(t) = 1 + pt2 + 2p3t6 + 2p4t8 + p6t12 + p7t14= (p2t4 � pt2 + 1)2(pt2 + 1)3:Proof. Using Lemma 3.2 we get S1 = S3 = S5 = S7 = 0, S2 = 2p and S4 =�2p2. From Lemma 3.1, the observation (3.1) and the fat that p3 + 1 � 0mod 42 we dedue S6 = 14p3.3.3Let us onsider the Jaobi sum J( 7;  ) more losely.13



Theorem 3.2. Let q = pr � 1 mod 21 and let  be a harater of order 21 inFq . Suppose that n is the smallest integer suh that pn � 1 mod 21.1. The absolute value of every Jaobi sum is pq.2. There exists a prime ideal p above p in Z[�21℄ suh that we have the fol-lowing prime ideal deompositionJ( 7;  )Z[�21℄ = �ppA4pA5pABpA2BpA3B� rnwhere A and B have been de�ned in the proof of Theorem 3.1.Moreover, NormQ(�21)=Q(�3;p�7)(J( 7;  )) = qJ( 7;  7).3. Let p7 be a prime ideal in Q(�21 ) lying above 7. We getJ( 7;  ) � 1 mod (1� �721) and J( 7;  ) � J( 7;  7) mod p7:The properties 1), 2), 3) determine J( 7;  ) (up to onjugation in Q(�21 ))uniquely.Proof. 1. Well known fat on Jaobi sums ([2℄, equation (4.2)).2. By Stikelberger's theorem (see e.g. [1℄, Chapter 11.2), the deompositionof the Jaobi sum is given byJ( 7;  )Z[�21℄ =  YJ pd(�7j;�j)j ! rnwhere J runs through all automorphisms of Q(�21 ) (where � : � 7! �k isidenti�ed with k 2 (Z=21Z)�), j = J�1 mod 21 and d is given byd(�7j;�j) = r(�7j) + r(�j)� r(�8j)21 :where r(x) is the smallest non-negative residue of x mod 21. Both asser-tions follow from straight forward alulations.14



3. By Theorem 2.1.7 in [1℄ we have J( 7;  ) = q mod (1� �721). The primeideal (7) is the sixth power of a produt of two prime ideals in Q(�21 ). Letp7 be a prime ideal lying above 7. Using the Frobenius in Z[�21℄=p7 ' F7we get J( 7;  ) = �Xa2Fq  7(a) (1� a)� �Xa2Fq  7(a) 7(1� a) mod p7� J( 7;  7) mod p7:Property 2) �xes J( 7;  ) up to units, Property 1) �xes it up to roots ofunity and Property 3) �xes the root of unity, sine 1 is the only root ofunity in Q(�21 ) ongruent to 1 mod (1� �721)p7.Corollary 3.2. Let p be a prime.1. If p � 2; 11 mod 21, we haveLC3;3;1(t) = 1 + pt2 + 2p3t6 + 2p4t8 + p6t12 + p7t14:= (p2t4 � pt2 + 1)2(pt2 + 1)3:2. If p � 8; 20 mod 21, we haveLC3;3;1(t) = p7t14 + 7p6t12 + 21p5t10 + 35p4t8+ 35p3t6 + 21p2t4 + 7pt2 + 1 = (1 + pt2)7:Proof. 1. We have S1 = S3 = S5 = S7 = 0 and S2 = 2p, S4 = �2p2. ByTheorem 3.2, A3B �xes the ideal generated by � = J( 7;  ). Moreover,every prime ideal above p is �xed by A4B (� 2 mod 21) resp. A2B (� 1115



mod 21). Hene (�)Z[�21℄ = (p3)Z[�21℄ and using part 3 of Theorem 3.2we get S6 = 14p3.2. This an be shown analogously to part 1 and is left to the reader.Corollary 3.3. Let p be a prime suh that p � 1 mod 3 and let � be an elementin Z[�3℄ suh that �� = p and � � 1 mod 3.1. Suppose p � 4; 16 mod 21. Let �k3 be a third root of unity suh that7jNQ(�3)=Q ��k3 �p� �3� :ThenLC3;3;1(t) = (pt2 � (� + �)t+ 1) � (p3t6 � p(�k3� + �k3�)t3 + 1)2:2. Suppose p � 10; 19 mod 21. Let �k3 be a third root of unity suh that7jNQ(�3)=Q(�k3�2p2 � �6):Then LC3;3;1(t) = (t2p� (� + �)t+ 1)(p3t6 � (�2k3 � + �2k3 �)pt3 + 1)(p3t6 + (�2k3 � + �2k3 �)pt3 + 1):Proof. 1. Let  be a harater of order 21 in Fp3 suh that  7 = � ÆNFp3=Fpwhere � is the harater given by the ubi residue symbol � �� �3. We haveSi = ��i � �i for i = 1; 2; 4; 5; 7 and Sj = ��j � �j � TrQ(�21)=Q�j=3 forj = 3; 6 and � = J( 7;  ). By Theorem 3.2 we get (�)Z[�21℄ = (�p)Z[�21℄.Using Corollary 4.33 and Proposition 7.5. in [7℄ we �nd J( 7;  7) = �3.Hene, J( ;  7) � �3 mod p7 by Theorem 3.2. Hene we an hoose �16



suh that � � �3 mod p7 where p7 is any prime ideal lying above 7 inQ(�21 ). We get Sj = ��j � �j � 6pj=3((�k3 �)j=3 + (�k3�)j=3) for j = 3; 6and � given as above.2. Similar to (1) and left to the reader.Corollary 3.4. Let K = Q(�3 ; �7 + ��17 ) and let p � 1 mod 21 (resp. p � 13mod 21) and let � be an integer in K suh that �� = p (resp. �� = p2). Let� 2 Z[�3℄, � � 1 mod 3, be suh that p� generates the ideal NormK=Q(�3)(�)(resp. p2�2 generates the ideal NormK=Q(�3)(�2)). After multiplying � by asuitable root of unity we may assume that � � 1 mod (1 � �3) and � � �mod p7 (resp. �2 � 1 mod (1 � �3) and �2 � �2 mod p7)) where p7 is anyprime lying above 7 in K. Let f�ig be the set of Galois onjugates of �.1. If p � 1 mod 21, thenLC3;3;1(t) = (1� �t)(1� �t) 6Yi=1(1� �it)2:2. If p � 13 mod 21, thenLC3;3;1(t) = (1� �t)(1� �t)g1(t)g1(�t):where g1(t) =Q6i=1(1� �it).Proof. 1. The reiproals of the zeros of the L-polynomial are the numbers�j of absolute value pp suh thatNr = qr � 1� Sr = qr + 1� 14Xj=1 �rj :We have Si = ��i � �i � 12Xj=1(��j )i:17



The �rst equation follows. The Jaobian over Q has a fator of dimension6 (see example 2.3). Sine this fator has CM by K = Q(�3 ; �7 + ��17 ), �lies in K.The onditions on � follow from Theorem 3.2.2. We have Si = ��i��i for i = 1; 3; 5; 7 and Si = ��i��i�Ti for i = 2; 4; 6for some integers Ti and � with �� = p. Plugging this into the formulafor the omputation of LC3;3;1(t) we �ndLC3;3;1(t) = (1� �t)(1� �t)feven(t)where feven(t) is an even polynomial.Set �2 = J(�7; �) as in Theorem 3.1. We have feven(t) = g(t2) whereg(�2) = 0. Sine the Jaobian over Q has a fator of dimension 6 withCM by K, every root of feven(t) lies in K.The onditions on � follow from Theorem 3.2.We now onsider the L-polynomial of the urve X3;3;1.Theorem 3.3. Let K be as above and let p 6= 3; 7 be a rational prime. Wedistinguish the following four ases:1. Suppose p is inert inK=Q (i.e. p � 2; 5; 11; 17 mod 21). Then LX3;3;1(t) =p3t6 + 1. The urve X3;3;1 is a supersingular urve, i.e. its Jaobian isisogenous to a produt of supersingular ellipti urves.2. Suppose p splits into three prime ideals (i.e. p � 8; 20 mod 21). ThenX3;3;1=Fp is supersingular and LX3;3;1(t) = (pt2 + 1)3.18



3. Suppose p splits into two prime ideals. Let p � 4; 16 mod 21 (resp. 10; 19mod 21) and let � � 1 mod 3 be an integer in Z[�3℄ suh that �� = p.Let �k3 be a third root of unity suh that 7jNQ(�3)=Q ��k3�p� �3�(resp. 7jNQ(�3)=Q(�2k3 �2p2 � �6).) ThenLX3;3;1(t) = p3t6 � p(�k3 � + �k3 �)t3 + 1:4. Suppose p splits ompletely. Let � be an integer in K suh that �� = pand � � 1 mod (1 � �3) (resp. �2 � 1 mod (1 � �3)). Let � 2 Z[�3℄,� � 1 mod 3, be suh that p� generates the ideal NormK=Q(�3)(�) (resp.p2�2 generates the ideal NormK=Q(�3)(�2)). Assume moreover that � � �mod p7 (resp. �2 � �2 mod p7) where p7 is any prime lying above 7 inK. Then LX3;3;1(t) =Q6i=1(1��it), where the �i are the Galois onjugatesof �.Proof. This follows easily from the loal L-series of C3;3;1. For 3), p � 10; 19mod 21 and 4), p � 13 mod 21 we use the fat that the loal L-series evaluatedat 1 gives the order of group of Fp -rational points on the Jaobian whih mustbe divisible by 27 (see also Remark 4.6). This tells us whih fator of LC3;3;1(t)we have to take.4 The Heke harater of X3;3;14.1It is well known that the L-funtion of an abelian variety with CM is the L-funtion of a Heke harater (f. [6℄). In partiular, if the abelian variety is theJaobian of a urve, one �nds the number of points on that urve over �nite19



�elds with very little e�ort. We will determine the Heke harater assoiatedto A = Ja(X3;3;1) expliitly and use it to determine the zeta funtion of X3;3;1.The values of the Heke harater are essentially Jaobi sums, and we alreadyonsidered that point of view in the previous setion.4.2A basis of H0(X3;3;1;
1) �= H0(C2;p+1;1;
1)� is given by(1� x)dx=y; (1� x4)dx=y2; (x� x3)dx=y2:The automorphism of order three (x; y) 7! (x; �3y) ats as diag(�23 ; �3; �3). Theendomorphism � = �+��1 of A = Ja(X3;3;1) is indued by the automorphism� of C3;3;1 given by (x; y) 7! (�37x; �7y), thus � ats as diag(�27 + ��27 ; �7 +��17 ; �37 + ��37 ). These endomorphisms of A generate a ring isomorphi to thering of integers OK = Z[�3; �7 + ��17 ℄ whereK = Q(�3 ; �); � = �7 + ��17 ;thus K is CM �eld of degree 6 over Q with totally real sub�eld K0 = Q(�).The minimum polynomial of � is X3 +X2 � 2X � 1.Let Sq = f1; 4; 2g � (Z=7Z)� be the subgroup of squares, then the Galoisgroup GK = Gal(K=Q) �= (Z=3Z)�� Sq ats as:�(a;b) : K �! K; �3 7�! �a3 ; � = �7 + ��17 7�! �b7 + ��b7 :Embedding K ,! C by �7 7! e2�i=7, the set of omplex embeddings of K isidenti�ed with GK by K �! K ,! C . The CM type of A is then the subset� = f�1 = (1; 1); �2 = (2; 2); �3 = (1; 4)g (� GK = (Z=3Z)�� Sq)It is easy to verify that this CM type is simple.20



The urve X3;3;1 has good redution away from 3 and 7 and in OK we have(3) = }23; (7) = }37;1}37;2with prime ideals }3 = (1� �3), }7;1 = (2� �3; 2� �), }7;2 = (4� �3; 2� �).4.3We briey reall how to �nd the Frobenius endomorphism Fr} of A} at a primeof good redution } of A. Here A} is the abelian variety over the �nite �eldO=} whih is the redution of A at }. Sine OK is a prinipal ideal domain, wean hoose a generator �} for eah prime ideal } in OK . Let !i, i = 1; 2; 3, be abasis of the regular 1-forms of A} on whih x 2 OK ats as x�!i = �i(x)!i, suha basis an be obtained by redution mod } of a basis of 1-forms of A. Notethat x�!i = 0 if �i(x) 2 }. Thus the elementQj ��1j (�}) 2 OK ats trivially onthe 1-forms. This implies that it is an inseparable endomorphism. The degreeof this endomorphism is NK=Q(�})3, whih is also the degree of Fr}. ThereforeFr} = uQj ��1j (�}) where u is some automorphism of A}. The theory ofomplex multipliation (whih uses results from lass �eld theory) allows one todetermine Fr} preisely.4.4The Heke harater � of K whih desribes the ation of Gal(Q=K) on the�rst �etale ohomology group of A is a homomorphism� : A �K �! K�; �(: : : ; x}; : : :) =Y} �}(x})where A �K are the ideles ofK (the restrited produt of the K�}) and the produtis taken over all plaes ofK. A Heke harater is trivial onK� ,! A �K (diagonal21



embedding).The main result of omplex multipliation is that for a prime } where Ahas good redution A} the Frobenius endomorphism Fr} 2 OK � End(A}) isgiven by: Fr} = �(1; : : : ; 1; �}; 1; : : :)where the idele (1; : : : ; 1; �}; 1; : : :) has all omponents equal to one exept at theplae } where �} is a(ny) generator of the maximal ideal of the loal ring O}.The Heke harater is unrami�ed outside the plaes of bad redution, whihare the primes dividing 21, hene if } does not divide 21 then �} is trivial onthe units of the loal ring O} of the loal �eld K�}.As before, we hoose a generator �} 2 OK for eah prime ideal }. Then forany idele � = (�}) there is an element x� 2 K, unique up to a unit of OK , suhthat x��} is in O�} for all �nite plaes. Hene � is determined by the in�nityand the rami�ed omponents:�(�) = �(�x�) = 0�Y�j1��(�}x�)1A0�Y}j21�}(�}x�)1AThus � is determined by the in�nity omponents and the restritions of the �}to O�} for }j21.From the disussion in setion 4.3 it follows that the in�nity omponent �� isnon-trivial only if ��1 2 �, the CM type of A, and then ���1(x�) = ��1(x�1� ).In our ase it is easy to see that Q��1i (x) = Q�i(x) for all x 2 K, hene wewill omit the inverse on the �i from now on. The Frobenius elements are then
22



given by: Fr} = �(1; : : : ; 1; �}; 1; : : :)= �(��1} ; : : : ; ��1} ; 1; ��1} ; : : :)= �}3(��1} )�}7;1(��1} )�}7;2 (��1} )Q�2� �(�})(so we took x� = ��1} ). The fat that x� is unique up to a unit of OK impliesthat �}3(u�1)�}7;1(u�1)�}7;2 (u�1)Y�2��(u) = 1 8u 2 O�K :Note that for u 2 O�K0 we have Q�2� �(u) = NK0=Q(u) = �1, hene it is notso surprising that Heke haraters atually exist. The ontinuity of � impliesthat the �} take values in the subgroup of roots of unity of K� whih is thegroup of order six generated by ! := ��3.At this point it is natural to de�ne a homomorphism : K� �! K�; x 7�! �}3(x�1)�}7;1 (x�1)�}7;2(x�1) Y�2� �(x):Then we have: Fr} =  (�});  (u) = 1for all units u 2 O�K . We will determine  expliitly using these onditions.4.5To determine the �} we note that any homomorphism (OK=}k3)� ! Z=6Z istrivial on the subgroup of elements � 1 mod 3 (onsider the }3-adi valuation of(1+3x)3), hene it fators over (OK=}23)�. This group has 36�1 elements, it hasa subgroup of 33 � 1 = 26 elements whih is (OK0=(3))�. This subgroup mapsisomorphially onto (OK=}3)� under the homomorphism below. The subgroup(OK=}23)�1 := ker �(OK=}23)� �! (OK=}3)��23



has order 33 and every element is 3-torsion, hene this subgroup is isomorphito (Z=3Z)3. To be expliit, any element in (OK=}23)�1 an be written uniquelyas xa;b; = 1 + (a+ b�+ �2)(1� �3) with a; b;  2 Z=3Z and any x 2 (O=}23)�as x1xa;b; with x1 2 (OK0=(3))�. Then�}3(x) = �(x)�ka+lb+m3 ; x = x1(1 + (a+ b�+ �2)(1� �3));where � is either trivial or is onto f�1g and �(x) = �(x1).Similarly, but easier, any homomorphism (OK=}k7;i)� ! Z=6Z fators overthe yli group (OK=}7;i)� �= Z=6Z. We will �x an isomorphism (OK=}7;i)� =(Z=7Z)� �= Z=6Z using the generator 3 of (Z=7Z)�. Then the haraters aredetermined by elements ni 2 Z=6Z as follows(�}7;1�}7;2)(x) = !d1n1+d2n2 x � (!d1 ; !d2) 2 (OK=}7;1)� � (OK=}7;2)�;when the image of x in (OK=}7;i)� is 3di .Lemma 4.1. With the notation above, the haraters �}3 , �}7;1 and �}7;2 aredetermined by: k = 0; l = m = 2; n1 = 4; n2 = 2;and the harater � is non-trivial.Proof. To determine � and k; l;m; n1; n2 from 4.5 we �rst onsider a prime p �8; 20 mod 21, suh a prime splits as(p) = }1}2}3 p � 8; 20 mod 21:Sine (p) already splits in OK0 , also a prinipal ideal domain, we an hoosea generator � 2 OK0 for the the ideal }1 � OK . Then �}3(�) = �(�). Sine�� 2 O�K0 maps to �2, a generator (Z=7Z)�, we may assume (after multiplying24



� by a power of the unit ��) that �}7;i(�) = 1 for i = 1; 2. (One may takep = 29, � = �2(2� 2�+ �2) for example). Then we get (�) = �(�)NK=K0(�) = �(��)NK=K0(��) = ��(��)NK=K0(�);the seond equality holds beause the harater  is trivial on units, so  (�1) =1. Hene � must be the non-trivial harater on (OK=}3)�.Next we exploit that  must be trivial on units of OK . Sine �(�1) = �1,�(�) = 1 (sine � � (� � �2)2 mod }3) and NK0=Q(�) = 1 we �nd:1 = �(�1) = (�1)�03!3n1+3n2(�1); 1 = �(�) = �03!4n1+4n2hene n1 � �n2 mod 2 and n1 � �n2 mod 3, hene n1 � �n2 mod 6, so wemay take n2 = �n1 from now on. Next we onsider:1 = �(�3) = �k3 (��3)4n1+2n2�3 ��3�3 = �k+n1+2n2+13 ;hene k � n1 + 1 � 0 mod 3.We an also use the ation of the Galois group to get restritions on  .For example if a prime p splits ompletely, and if } is prime dividing p, then�a;b( (�})) must be a Galois onjugate of  (�}) (both are roots of the harater-isti polynomial of the Frobenius x 7! xp), hene, onsidering the in�nity type,�a;b( (�})) =  (�a;b(�})). If �a;b is trivial on Q(�3 ) (so a = 1), then it atstrivially on the values of �}3 and �}7;i , and it ats trivially on O=}7;i. However,it ats non-trivially on (O=}23)1. As �1;2(a+b�+�2) = a+b+2�+(b+2)�2mod 3, we get ka+ bl+ m = k(a+ b) + 2l+m(b+ 2), this must hold for alla; b; , hene k � 0 and l � m mod 3.Finally we an use expliit omputations to determine  . We onsideredsome primes p � 1; 13 mod 21 whih split ompletely in OK . Let } be prime25



dividing suh a p, then we have:Np := ℄X3;3;1(Fp ) = 1� trK=Q(Fr}) + p:Taking p = 43, we ounted points and found N43 = 62. We also found that1� �� �3 has norm 43 hene generates a prime ideal } dividing 43. Thereforewe must have: trK=Q( (1� �� �3)) = �18:On the other hand, omputing the harater gives: (1��� �3) = (�1)��k�l�m3 (��3)2n1+4n2(�4��+3�2+(�9� 2�+3�2)�3):Here we must have that the trae of  (1� � � �3) is �18. Using the previousresults, this is the ase i��l+n13 = 1; hene l + n1 � 0 mod 3;using also n1 � 1 mod 3 we get l � 2 mod 3 and n1 = 1 or n1 = 4 mod 6. Usingthe prime } = (�+ �3) over 13 and N13 = 8 we found that n1 = 4 and n2 = 2,whih ompletes the determination of  .4.6 Remark.The }3-torsion points A[}3℄ of A form a subgroup of A(K) isomorphi toO=}3(�= F33 ). The divisor lass a = P � Q, where P = (0; 0), Q = (x0; 0) 2X3;3;1(K), with x0 6= 0, is a non-trivial element in this group. Using the OK -ation on A we see that all points of A[}3℄ are indeed rational over K. Thisimplies that Fr} � 1 mod }3 for any prime of } of good redution.
26



4.7To determine the loal zeta funtion of X3;3;1 at the prime p, it suÆes to givethe eigenvalue polynomial Pp 2 Z[T ℄ of the Frobenius Fp : x 7! xp, in fat:LX3;3;1(t) = p3t6Pp(t�1):Let NK=Q(}) = pn, then Fnp = Fr} =  (�}) and we have:Pp(T ) =Y}jp (Tn �  (�})) :In ase p � 1; 13 mod 21, the ideal (p) splits ompletely in OK , henePp(T ) =Y}jp(T �  (�})); (p � 1; 13 mod 21);hene LX3;3;1(t) = Q}jp(1 �  (�})t). We also have  (�}) = Fr} � 1 mod }3(and }3 = (1� �3)) for all } dividing p.The ase p � 8; 20 mod 21 was disussed earlier. We have (p) = }1}2}3 inOK , we an hoose generators �} 2 OK0 and  (�}) = NK=K0(�}) = �p. By theprevious remark (or by using the expliit form of  ) one �nds that  (}) = �p,hene Pp(T ) = (T 2 + p)3; (p � 8; 20 mod 21);so LX3;3;1(t) = (pt2 + 1)3.In ase p � 4; 10; 16; 19 mod 21, we have (p) = }1}2 and we an hoosegenerators �} 2 Z[�3℄, in fat, the ondition �} � 1 mod 3 determines thegenerator uniquely. Then  (�}) = !a�}�}�} = !ap�} for some a 2 Z=6Zwhih an be determined expliitly. Then we �nd:Pp(T ) = T 6 � ( (�}) +  (�}))T 3 + p3; (p � 4; 10; 16; 19 mod 21);hene LX3;3;1(t) = p3t6 � ( (�}) +  (�}))t3 + 1.27



In the remaining ases, the ideal (p) is prime in OK and Frp =  (p) = �p3,hene Pp(T ) = T 6 + p3; (p � 2; 5; 11; 17 mod 21);hene LX3;3;1(t) = p3t6 + 1.4.8 Comparison.Comparing the theorem above with Theorem 3.3 it is lear that they give on-sistent results, exept maybe in the ase that p splits in two or six prime ideals.However it is easy to hek that also in these ases both methods give the sameresult.In fat, assume p = }1}2 and hoose a generator � 2 Z[�3℄ for }1, so �� = p.Multiplying � by a suitable power of ! = ��, we may assume that � � 1 mod3 and hene that �}3(��1) = 1. Let r; s 2 Z=6Z be suh that� 7�! (3r; 3s) 2 (Z=7Z)2 �= OK=}7;1 �OK=}7;2:Then (�}7;1�}7;2)(��1) = (��3)�4r�2s = �2r+s3 . Thus we get (�) = �2r+s3 p�:Now assume that p � 16 mod 21, hene p � 2 � 32 mod 7. Then p = �� 7!(3r; 3s)(3s; 3r) = (3r+s; 3r+s), hene r = 2 � s and  (�) = �1�s3 p�. Next weshow that, with k = 1 � s, �k3 p� � �3 has Norm divisible by 7, hene the Lfuntion from Theorem 3.3(3) oinides with the one omputed with the Hekeharater. We have (reall �3 7! (2; 4) = (32; 34) and r = 2� s):�1�s3 p� � �3 7�! (32(1�s)+2+r � 33r; 34(1�s)+2+s � 33s) � (0; 0)so indeed NQ(�3)=Q(�1�s3 �p � �3) � 0 mod 7. The ases p � 4; 10; 19 mod 21an be done similarly. 28



Finally we onsider the ase p � 1 mod 21 (the ase p � 13 mod 21 issimilar). Let } be a prime ideal in OK dividing p and let �} 2 OK be agenerator. Multiplying �} with �1 if neessary, we may assume that �} isongruent to a square mod (1� �3), in partiular �(��1} ) = 1 and �}3(��1} ) is aube root of unity. Then� :=  (�}) = (�}3�}7;1�}7;2)(��1} ) � �1;1(�})�2;2(�})�1;4(�});and it is easy to see that � � 1 mod (1� �3).Let � 2 Z[�3℄, � � 1 mod 3, be the unique element suh that �p generatesthe ideal (NK=Q(�3)(�)) in Z[�3℄. Thus�p = �k3 �1;1(�})�1;2(�})�1;4(�});where k is hosen suh that � � 1 mod 3 (as �} is a square mod (1� �3), also�1;1(�})�1;2(�})�1;4(�}) 2 Z[�3℄ is a square mod (1 � �3) and hene is 1 mod(1� �3)). Theorem 3.3(4) asserts that(�}3�}7;1�}7;2)(��1} )�2;2(�}) � �k3�1;2(�}) mod }7;ifor eah of the primes }7;i over 7.To ompute k and �}3(�}), we write �} = x1(1 + x2(1 � �3)) mod 3 withx2 = a+ b�+ �2. Then �1;1(�})�1;2(�})�1;4(�}) is ongruent to ��tr(x2)3 mod3, so k = tr(x2), withtr(x2) := trK=Q(�3)(a+ b�+ �2) � b+  mod 3:As �(�}) = 1, �}3(��1} ) = ��2(b+)3 = �tr(x2)3 , so it remains to prove that:(�}7;1�}7;2)(��1} )�2;2(�}) � �1;2(�}) mod }7;i:Sine Gal(K=Q(�3 )) ats trivially modulo eah of the }7;i's, we have �2;2(�}) ��} and �1;2(�}) � �} modulo }7;i. Let r; s be suh that �} 7! (3r; 3s) 229



(Z=7Z)2, so �} 7! (3s; 3r). The fat that p � 1 mod 7 implies that (�}�})3 7!(1; 1), so r+s � 0 mod 2. As above, (�}7;1�}7;2 )(��1} ) = �2r+s3 7! (34r+2s; 32r+4s).Therefore (�}7;1�}7;2)(��1} ) � �} 7�! (34r+3s; 33r+4s) � (3r; 3s);whih oinides with the image of �}. Hene we veri�ed the ongruene fromTheorem 3.3(4).Referenes[1℄ Berndt, B.C., Evans, R.J., Williams, K.S.,Gauss and Jaobi Sums, Wiley-Intersiene Publiation, 1997[2℄ Davenport, H., Hasse, H.,Die Nullstellen der Kongruenzzetafunktionen ingewissen zyklishen F�allen, J. Reine Angew. Math. 172, (1934), 151-182[3℄ R. P. Holzapfel, The Ball and Some Hilbert Problems, Birkh�auser (1995).[4℄ R. P. Holzapfel and F. Niolae, Arithmeti on a Family of Piard urves,Proeedings of the Sixth International Conferene on Finite Fields withAppliations 2001, Springer (2003) 187{208.[5℄ K. Koike and A. Weng, Constrution of CM-Piard urves with appliationto ryptography, preprint (2003).[6℄ S. Lang, Complex Multipliation, Springer (1983).[7℄ F. Lemmermeyer, Reiproity laws, Springer (2000).[8℄ P. van Wamelen, Examples of genus two CM urves de�ned over the ratio-nals, Math. Computation 68 (1999), no. 225 307{320.30
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