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Abstract

We explicitly identify infinitely many curves which are quotients of
Fermat curves. We show that some of these have simple Jacobians with
complex multiplication by a non-cyclotomic field. For a particular case we
determine the local zeta functions with two independent methods. The
first uses Jacobi sums and the second applies the general theory of complex

multiplication, we verify that both methods give the same result.

Keywords: Fermat curves, complex multiplication, Jacobi sums, Hecke char-

acters

1 Introduction

In [5] and [10], we studied a method for constructing CM-hyperelliptic curves
of genus 3 and CM-Picard curves suitable for cryptography. The construction
in the cited articles was done by computing approximations of the invariants
of the curves (that are rational functions of theta constants) using a computer.
Although these methods give cryptographically interesting examples of curves
defined over F,,, we do not have a rigorous mathematical proof that they really
have complex multiplication with the stated CM-field.

In this paper we show that some of the examples given in [5] and [10] are ob-
tained as quotients of Fermat curves, and that they indeed are Jacobians of the
stated CM type.

It seems that the algebraic curves whose Jacobian is a simple factor of Jacobians
of Fermat curves are not completely known. We give a sequence of such curves
as cyclic d-gonal curves in Section 2.

In a special case, we find a Picard curve whose Jacobian has complex multipli-



cation with the CM-field Q(Cz, (7 + (7). We compute the local zeta functions
for this curve by two different methods: with Jacobi sums based on a result in
[4] (Section 3) by Hecke characters (Section 4). It is very well known that both

methods give the same result and we verify this explicitly in section 4.8.

2 Fermat quotient curves

2.1
We consider a cyclic d-gonal curve
Camp : Yyt =22k +1), n>1,d>k>0, nd—2k>0 (2.1)

over C, which is obtained as a quotient of the Fermat curve

Fyina—2n) : pd(nd—2k) _ cd(nd—2k) 4 1

by the quotient map (s,t) = (z,y) = (s¢,t"?=2ksk),

The curve Cy 5, has automorphisms

p: (x,y) — (:L‘,Cdy), o: (l',y) — (Cg,d72kx7<r]id72ky)a
T (z,y) — (L/z,y/2"),

where (,, = exp(27/n). The involution 7 commutes with p, and it acts on the
quotient curve Xg px = Cyn,k/ (7). Namely, the following diagram is commu-

tative.
Camt —— Xamk
. /| (2.2)
pt — P
where 7, 7 and e are quotient maps by actions of p and 7, and + is defined by

1

z — x +x~'. Moreover we have 70 = 0~ '7, s0 ¢ + 0~ commutes with 7 on

the Jacobian J(C4g.n k). Therefore we see that



Lemma 2.1. We have an automorphism p on X4, and an endomorphism

o+ o~ on J(Xd,n,k)-

Let us write down an equation of Xy, 1. Let By, be the set of roots of
2z"?2k 11 = 0. Because the restriction of £ over P! — {£1} gives an étale double
cover m (P! — {£1}) — (7)1 (P* — {£2}), X4, has an affine model of the

form model
Vi=(X-2"(X +2'[[(X - &), d>a,b>0, (2.3)

where & € y(Bank) and & # —2. Note that each element in the fiber 77" (1)

is fixed by 7. So (7')7!(2) consists of d distinct points, and we have b= 0.

Lemma 2.2. The exponent a in (2.3) is 0 if n is even. In the case that n is

odd, we have a = d/2 if d is even, and a = (d +1)/2 if d is odd.

Proof. If n is even, each element in the fiber 771(—1) is fixed by 7. So we have
a = 0 in this case. Now let n be an odd number. If d is odd, —1 is a branch point
of m and y(Bgn,k) consists of —2 and other (nd — 2k — 1)/2 points. Because
the branch divisor of 7' has the multiplicity k at oo, the degree of the branch
divisor is
a+ (nd—2k—-1)/2+k,

and this must be divided by d. So @ mod d is uniquely determined, and we see
that a = (d + 1)/2 satisfies this condition and d > a > 0. The same argument

works for the case that d is even. O

Next let us consider the polynomial [J(X — &;). This is defined over Z since
this is a product of minimal polynomials for algebraic integers in the real subfield

of cyclotomic field.



To compute this polynomial, let us consider the rational functions u,(z) =
™ + 7", These are determined inductively by u,1(x) = X - up(2) — up—1(x)
where X = z 4+ z~!. Therefore we can regard u,(z) as a polynomial in X and
we denote this by U,(X). Namely, U,(X) € Z[X] is the monic polynomial of

degree n determined by the relation
Upi1(X) = X - Up(X) = Up_i1 (X)), U(X)=X, Us(X)=X%2-2. (24)

Lemma 2.3. The polynomial [[(X —&;) in (2.8) is given by Uing—op)/2(X) if
nd — 2k is even, and by Vipq_o—1)/2(X) if nd — 2k is odd where V,,,(X) € Z[X]

is the monic polynomial of degree m defined by Uapy1(X)+2 = (X +2)V (X)?.

Proof. In the case of nd — 2k = 2m, the assertion follows from that
Un(z+27)=0 & up(@z) =2+ ™ =0 < 2°™ +1=0.

Next let us consider the case of nd — 2k = 2m + 1. We have

Usmii(z+27H)+2=0 & 22T 47271 20

& P L2l 4 1=0 & (@™ + 1) =0.

On the other hand, we have z>™+! 4 z=2m=1 4 2 = (/z°" ™ 4+ /22" )2 and

2m

Ve T = (Ve Ve ) Y () (Ve (Ve )
= (Vo +va )Y (-1,
=0
$0 Usmi1(z +271) = (z + 71 + 2)vy,(2)? with a rational function vy, () in .
Therefore Usp,+1(X) must be of the form (X +2)V,,(X)?. Now the assertion is

obvious. O

Summarizing, we proved that



Theorem 2.1. The curve Xqpn i = Can,i/ () is defined by

vt = Utnd—2k)/2(X) (n even)
Y= (X +2)?Uqug_any 2(X) (n odd, d even)
V4= (X + 2)(d+1)/2v(nd—2k_1)/2(X) (n odd, d odd)

forn > 1,d >k >0 and nd — 2k > 0. The Jacobian J(Xgnx) has an

endomorphism p induced from o + o0~ € End(J(Cani))-

Because we can identify the r-invariant subspace H%(Cyy .k, Q')7 with H®( Xy .k, '),

we can compute the type of endomorphism p explicitly.

Example 2.1. Let p > 3 be an odd prime number. Then the hyperelliptic

curve
Copr1a : y° =x(z’ +1)
has the following base
(L—a? Vdfy, (z—a" 2)dafy, -, @7 D7 20 D/2)da)y

of H%(Csp11,1,Q2")7. Let o be the automorphism (z,y) — ({32, (y). Above

1-forms correspond to eigenvectors of u = o + o~ ! with eigenvalues
GG GG e I

changing orders if necessary.
Also the automorphism p : (z,y) — (—2, (4y) induces an action on Xz 41,1,

and we see that p and p give a simple CM-type, that is

End(J(X2,p111)) ® Q= Q(C1, G + ¢, ).
In the case of p =7, the curve X»51

V2 =Us(X) = X(X® —7X* +14X%2 - 7)



is found in [10].

Example 2.2. Next we consider the hyperelliptic curve Cs o : y? = 22" + 1
for an odd number n = 2m + 1. Let C),, be the hyperelliptic curve defined by

y?> = 2" + 1. Then we have a morphism
p:Cono — Cny  (2,9) — (2%,y),
and a decomposition H%(C3,,0,") = p*H°(C,,, Q") & V_. Let us take a base
i = ¥ dxfy, (i=0,---,m—1)
of p*HY(C,,Q'), and a base
V¥ = x¥dxfy, (i=0,---,m—1)

of V_. Then {®; — ¥2m—i}i=0,...m—1 gives a base of H°(C,,, Q')™. Thus we have

J(Co,n0) ~ J(Cp)? and J(Cp) ~ J(X2,n0) (isogenous).
Example 2.3. Let us consider the curve
C331:y° =x(z" +1). (2.5)
The trigonal curve X331
V3= (X +2)13(X) = (X +2)*(X° - X2 —2X +1)

gives an example of a Picard curve (see [3]) of CM-type. The Jacobian has the

endomorphism ring End(J(X33.1)) ® Q = Q(C3,¢r + ¢; ). Putting
X =(7-2x)/z, Y =-Ty/z>
we obtain a smooth model

y® = z(2® — 1427 + 492 — 49). (2.6)



Note that the Jacobian J(C3 3,1) is isogenous to the product J(X3 3,1)% X E with

a CM-elliptic curve E. To see this, note that we have a non-trivial morphism
Ci1 — B, (z,y) — (t,5) = (27,y"/(z" +1)%)
to a CM elliptic curve E : s3> = t(t+1). A base of H°(Cs p11.1,Q")7 is given by
(1 —x)dz/y, (1 —zYYdz/y?, (x—2*)dx/y?

and they are eigenvectors for the action of (v + ¢ ! The —I-eigenspace of

HO(Cy pi1.1,0") for the action of T is given by
(1 +2)defy, (1+a")dz/y?, (z+2%)de/y?

and z2dx/y? (this 1-form is pulled back from E). Considering the CM-type, we

can conclude the desired isogeny.

3 Computation of the zeta function of Cs3;

3.1

We would like to compute the local zeta-function

Zep(t) = exp (Z w tr)

for the curves C5 3,1 given by equation (2.5) and X331 given by equation (2.6)

at primes p # 3,7. It is well-known that we can write

L03.3,1 (t)
(1=t)(1—pt)

LX3.3,1 (t)

Z03,3,1(t) = m

and Zx,,,(t) =

where L¢, , , (t) resp. Lx, ,,(t) is the L-polynomial of C'3 3,1 resp. X3 3. The
reciprocal of the L-polynomial of a curve is the characteristic polynomial of the

Frobenius endomorphism on its Jacobian.



It is well-known that the L-polynomial of a curve C' is of degree 2g and has a
special form, i.e it satisfies L(t) = ag + a1t + ... + a29t29 € Z[t] with azg—1 =
p?~a; for 0 < i < g and ap = as, = 1. It is therefore determined by the
g coeflicients ay,...,a, which can be determined from the number of points
#C(Fpr) forr=1,...,7.
Let S, = #C(Fpr) — (p" + 1) and a; be the undetermined coefficients. We have

a; = Sy, a; =1/i | S; + Z axS;

JHk=i,1<j,k<i—1

In this section we compute L¢, ,, and Lx, ,, using Jacobi sums.
For a € Fy, we set

Tr
e(a) = exp <2wiw> .
p

Let x be a character on a finite field F,. The Gauss sum (resp. Jacobi sum) is

defined by

) =m0 =- Y x(@e(@) resp. J(x*,x")=-> x"(@)x'(1-a).

a€l,

We have the relation

Some Jacobi sums are easy to compute.

Lemma 3.1 ([1],Theorem 11.6.1). Let x be character of order m in F:

with p > 2 and suppose that p* = —1 mod m for some positive integer t. Then

-1 if p=2,

—(-)5"  ifp>2.



3.2

We are now going to compute the number of points on Cs 31 (F,) over finite
fields ;. We reduce our problem to counting the number of points of curves
of the form a, 27" + ax23* = az. These curves have already been considered by

Davenport and Hasse [2].
Lemma 3.2. Let g be a prime power.
1. Suppose ¢ =2 mod 3, then #C531(F;) = #X331(F;) =g+ 1.
2. Letq=p",g=1 mod 3 but ¢ Z1 mod 7. We distinguish two cases:
(a) p=1 mod 3. Then
#C331(Fy) =q+1—7a" —7"

where 7T =p and m =a+b(z =1 mod 3 in Z[(3], 3+ (G +1=0.

(b) p=2 mod 3. Then

pr+1 if v odd
#0331 (Fy) =
pT+1—-2(=p)% ifr even.
Proof. 1. Obvious, since every element in F, is a third power of a unique

element in F,.

2. Let ¢ be a generator of F,. By Lemma 1 in [4], the number of affine
solutions in F, of the equation y®> = 2® + z is equal to
1
N=3 (I | + [Agez| + [Aeze])
where
A

mnz — {(tau) €k x k| n’lrtm +1= 772u3}-

10



Since ¢ # 1 mod 7, the map ¢t — ¢7 is an isomorphism and we are looking
for the points on the affine part of the elliptic curves E, ,,, given by nit> +

1 = nou® resp. nit3 +nau® = 1.

For an elliptic curve defined over a prime field F,, the number of points
over F,- is already determined by #E(F,).

If pZ 1 mod 3, all three elliptic curves obtained from A1, A¢e> and Ag2g
are supersingular. Hence, #C5 3.1 (F, ) is equal to the number of points of
a supersingular elliptic curve.

Now assume that p =1 mod 3. We apply the technique explained in [7],
Section 10.3.

Embed F, into Z[(3]/(7) where m € Z[(3] is an element above p satisfying
m =1 mod 3. Let x be the character of order 3 given by the cubic residue

symbol (z),. We get

2

Anl= D" Y K@) oy => > X (a)x* ()
k=0

a+b=1 j=0 7=0 k=0 a+b=1
2 2 2
=Z > K(a)x*(1-a) = T, x*)
=0 k=0 acF, =0 k=0

||
Mw

ZJ X)) =a=2-T06x) = T3, XP).

j=1k=1
Now J(x,x) = = ([7], Proposition 7.5).
Similar computations show that |Age2| = [Ag2e] = ¢+ 1 — J(x,Xx) —
J(x2,x?). Hence, the assertion follows.
Note that we can do the same computation for ¢ with p Z1 mod 3. This

shows that

T x) + T x%) = 2(=p)" (3.1)
for ¢ = p?>" with p Z1 mod 3. We will use this observation later.

11



O

Theorem 3.1. Finally let ¢ =1 mod 21. Let ¢ be a character of order 21 on

F, and set n = J(¢",1). We have

#C331(Fg) = q+1—Tro(ey0m) — J@7,97) — J(@', ).

Proof. We follow very closely the proof of Proposition 3 in [4].
Let & be generator of . Again we form the sets A, ,, for (n1,12) = {(1,1), (£, €?), (€%,6)}.
By the theorem of Davenport-Hasse [2] the number of solutions of the equation

a1u® + ast® = a3 in F, is given by

N(ar,az,a5) = ¢ — x(—2) = *(—2) - S Y Tay (U770, (%)

7u+u
az 1<r<21<p<20 ¢ )

where 7, (¢) = — Zaqu Y(a)e* (a).

We deduce
An| = N(-1,1,-1) =g —2— i ICALICON i 1 ()7 (94)
11 = 1y =q e T_1 (YT i T_1 (TR

20 7 m 20 14 W

Aoval = N(—f2 €7 1) gt 1— T2 (Y)Ter (¥4) T_e2 (') Ter (PH) d

| 133 | ( f 75 ) ) q+ ”:ggém T—1(¢7+‘u) ”:;“#7 T_1(¢14+M) an
20 7 M 20 14 w

A 5 — N _ 14 —1) = 1— T*&(d’ )T§14 (d’ ) _ 7'—52(¢ )T§14(w )

| £5| (=&,¢°%-1)=q+ ”:%:#4 T_1 (YTHR) M:%;;H T_1 (p14FH)

Hence,

|[Au| + [Agez| + [Ag2e| = 3q

20
_ T ()T () + e (PT)Ter (PF) + T (V)0 (¥4)
> )

u=1,u714 T (97)
i <T— L)1) + 72 () Ter (PF) + T (€)1 (¢“)>
i 1 (1Y)

Since (—1) = 1, we get 7_1(¢%) = 71 (¥°) and using 74(¢)) = = (d)7(¢p) we

12



find
T @) (W") + T2 (Y7 Ter (VH) + T (W) Tera ()
= 7@ r@") (1+w "2 +w2?) and
T ()T (F) + T () Ter () + Toe (M) Tera (0H)
— (") T (b") (1 +wt 4 w—2<v—1>)

where w = 97 (£) is a third root of unity.

Therefore

1
3 (IAu1] + [Agez] + [Agze ) =
6 6
_ J(¢7’,¢}7) ,¢}14 ¢14 ZJ ,¢}7,¢3i+1 ZJ ¢14 ¢37,+2 (32)
i=0 i=0
The Galois group of the field extension Q((21) is generated by two elements A,
B of order six resp. two, say (5} := (3, and (& := (§,. We easily see that the 12

elements J(1)7% %) with 71 k in (3.2) are conjugate over Q((a1) and the result

follows. O
Corollary 3.1. For p=5,17 mod 21 we get

Loy, () =1 + pt2 + 2030 + 2p M5 4 pSit2 4 pTeld

= (Pt —pt> + 1)*(pt* + 1)*.

Proof. Using Lemma 3.2 we get S; = S3 = S5 = S7 =0, So = 2p and Sy =
—2p?. From Lemma 3.1, the observation (3.1) and the fact that p*> +1 = 0

mod 42 we deduce Sg = 14p°. O

3.3
Let us consider the Jacobi sum J(17, 1) more closely.

13



Theorem 3.2. Let g = p" =1 mod 21 and let ¥ be a character of order 21 in

F,. Suppose that n is the smallest integer such that p™ =1 mod 21.
1. The absolute value of every Jacobi sum is \/q.

2. There exists a prime ideal p above p in Z[(21] such that we have the fol-

lowing prime ideal decomposition

T, 0)ZGr] = (pp A pA Pt Bp B )
where A and B have been defined in the proof of Theorem 3.1.
Moreover, Noer(CZI)/@(<37\/_—7)(J(¢7,¢)) =qJ(7, 7).

3. Let pr be a prime ideal in Q(C21) lying above 7. We get

J@,9) =1 mod (1-¢3) and J(7,9) = J(47,¢") mod pr.

The properties 1), 2), 38) determine J(7,v) (up to conjugation in Q((s1))

uniquely.
Proof. 1. Well known fact on Jacobi sums ([2], equation (4.2)).

2. By Stickelberger’s theorem (see e.g. [1], Chapter 11.2), the decomposition

of the Jacobi sum is given by

T, ) ZlG] = (H pj”ﬂ’”) n
J

where .J runs through all automorphisms of Q((»1) (where o : ¢ + (¥ is
identified with k € (Z/21Z)"), j = J~! mod 21 and d is given by

ARG ELC EC )

where r(z) is the smallest non-negative residue of z mod 21. Both asser-

tions follow from straight forward calculations.

14



3. By Theorem 2.1.7 in [1] we have J(¥",9) = ¢ mod (1 — ¢F,). The prime
ideal (7) is the sixth power of a product of two prime ideals in Q((21). Let
p7 be a prime ideal lying above 7. Using the Frobenius in Z[(»]/p7 ~ F;

we get

JWLe) = = > ¢(a)(l—a)
aequ
= - ¢ (a)¢"(1—a) mod pr
a€lF,

= J@",¥") mod pr.

Property 2) fixes .J(1)7,4) up to units, Property 1) fixes it up to roots of
unity and Property 3) fixes the root of unity, since 1 is the only root of

unity in Q(¢»1) congruent to 1 mod (1 — (3, )pr.

Corollary 3.2. Let p be a prime.
1. If p=2,11 mod 21, we have
Loy o, (1) = 14 pt? 4+ 2p°t5 + 2p*t® 4+ pS¢'2 4 p7¢t4.
= (p*t* — pt*> + 1)%(pt* + 1)3.
2. If p=8,20 mod 21, we have

Ley,, () = p't"™* + 7012 + 21p°t*0 + 35p*¢®

+ 35p%t5 + 21p°t* + Tpt? + 1 = (1 4 pt?)".

Proof. 1. Wehave S; = S5 =S5 = S; =0 and S, = 2p, S, = —2p>. By
Theorem 3.2, A3B fixes the ideal generated by n = J(¢7,%). Moreover,

every prime ideal above p is fixed by A*B (=2 mod 21) resp. A’B (= 11

15



mod 21). Hence (1)Z[(21] = (p*)Z[(21] and using part 3 of Theorem 3.2

we get Sg = 14p°.

2. This can be shown analogously to part 1 and is left to the reader.

O

Corollary 3.3. Let p be a prime such thatp =1 mod 3 and let m be an element

in Z[(3] such that 7@ =p and # =1 mod 3.

1. Suppose p=4,16 mod 21. Let (¥ be a third root of unity such that

T|Noes) 0 (Gmp — 7°) .

Then

Loy, (8) = (08 — (m + D)t +1) - (p1° —p(Gm + Gm)t* + 1)
2. Suppose p = 10,19 mod 21. Let (¥ be a third root of unity such that

7|Ng(ca)/(G m°p” — 7°).
Then

Leg,,(t) = (Pp— (m + Tt + 1)

(PPt — (GFm + Grm)pt® + 1) (3% + (GFr + Grm)pt® + 1).

Proof. 1. Let 1 be a character of order 21 in F,s such that YT =xo N]Fp3 /Fp
where x is the character given by the cubic residue symbol (<),. We have
S;=—mt =7 for i =1,2,4,5,7and S; = -1 — 7 — Troc,,)/on’/? for
j =3,6 and n = J(¢",¢). By Theorem 3.2 we get (7)Z[(o1] = (7p)Z [(21].
Using Corollary 4.33 and Proposition 7.5. in [7] we find J(4)7,¢7) = 7°.

Hence, J(¢,%") = 7* mod p; by Theorem 3.2. Hence we can choose 7

16



such that n = 7 mod p; where p; is any prime ideal lying above 7 in
QGa1). We get S; = —mi — 7 — 6pi/3((¢hm)1/? + (¢hm) ) ) for j = 3,6

and ( given as above.

2. Similar to (1) and left to the reader.

O

Corollary 3.4. Let K = Q((3, (7 + {7_1) and let p =1 mod 21 (resp. p =13

mod 21) and let n be an integer in K such that ni] = p (resp. ny = p?). Let

7 € Z[(3], m = 1 mod 3, be such that pw generates the ideal Normg g(c,)(n)

(resp. p>n® generates the ideal Normy g, (n?)). After multiplying n by a

suitable root of unity we may assume that n = 1 mod (1 — (3) and n = =«
2

mod p7 (resp. n®> = 1 mod (1 — (3) and n* = 7> mod py)) where p; is any

prime lying above 7 in K. Let {n;} be the set of Galois conjugates of 1.

1. If p=1 mod 21, then
6
L03.3,1(t) = (1 - 7Tt 1 — ﬂ't H 1 — 771
i=1
2. If p=13 mod 21, then
LC3,3,1(t) = (1 - ﬂ-t)(]- - ft)gl(t)gl(_t)'

where g1 (t) = H?:l(l —n;t).

Proof. 1. The reciprocals of the zeros of the L-polynomial are the numbers

a; of absolute value ,/p such that
14
erq’”—l—Srzq’"—}—l—Za;.
j=1

We have
12

Si _ _ﬂ,i _ ﬁi _ Z(naj)i_

=1

17



The first equation follows. The Jacobian over QQ has a factor of dimension
6 (see example 2.3). Since this factor has CM by K = Q(Gz,¢r + ¢ 1), 0
lies in K.

The conditions on 1 follow from Theorem 3.2.

2. Wehave S; = —n'—7' fori =1,3,5,7and S; = —n'—7' T for i = 2,4,6
for some integers T; and 7 with 77 = p. Plugging this into the formula

for the computation of L¢, , , (t) we find

L03,3,1(t) = (1 - 7I-t)(l - ﬁt)feven(t)

where feven(t) is an even polynomial.

Set n? = J(£7,€) as in Theorem 3.1. We have foven(t) = g(t?) where
g(n?) = 0. Since the Jacobian over Q has a factor of dimension 6 with
CM by K, every root of feyen(t) lies in K.

The conditions on 1 follow from Theorem 3.2.

We now consider the L-polynomial of the curve X33 ;.

Theorem 3.3. Let K be as above and let p # 3,7 be a rational prime. We

distinguish the following four cases:

1. Suppose p is inert in K/Q (i.e. p=2,5,11,17 mod 21). Then Lx, , ,(t) =
p*t® + 1. The curve X331 is a supersingular curve, i.e. its Jacobian is

isogenous to a product of supersingular elliptic curves.

2. Suppose p splits into three prime ideals (i.e. p = 8,20 mod 21). Then

X331/, is supersingular and Lx, , ,(t) = (pt* + 1)3.

18



3. Suppose p splits into two prime ideals. Let p = 4,16 mod 21 (resp. 10,19
mod 21) and let 7 =1 mod 3 be an integer in Z[(3] such that 7T = p.
Let (¥ be a third root of unity such that 7|No(cs) /0 (Q’fﬂ'p — 7r3)

(resp. T|Ng(cs)/0(G¥n?p? — x%).) Then
LX3,3,1 (t) = pgtﬁ - p(CI?Tr + C?If—ﬂ-)tg + 1.

4. Suppose p splits completely. Let n be an integer in K such that nj = p
and n = 1 mod (1 —(3) (resp. n> =1 mod (1 — (3)). Let # € Z[(3],
m =1 mod 3, be such that pr generates the ideal Normg /q(c,)(n) (resp.
p°w” generates the ideal Normg q(c,)(n®)). Assume moreover that n ==

2 mod py) where py is any prime lying above 7 in

mod p; (resp. n”* =7
K. Then Lx, ,,(t) = H?Zl(l—mt), where the n; are the Galois conjugates
of n.
Proof. This follows easily from the local L-series of C534. For 3), p = 10,19
mod 21 and 4), p = 13 mod 21 we use the fact that the local L-series evaluated
at 1 gives the order of group of F,-rational points on the Jacobian which must

be divisible by 27 (see also Remark 4.6). This tells us which factor of L¢, , , (t)

we have to take. O

4 The Hecke character of X33,

4.1

It is well known that the L-function of an abelian variety with CM is the L-
function of a Hecke character (cf. [6]). In particular, if the abelian variety is the

Jacobian of a curve, one finds the number of points on that curve over finite
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fields with very little effort. We will determine the Hecke character associated
to A = Jac(X3,3,1) explicitly and use it to determine the zeta function of X3 5 ;.
The values of the Hecke character are essentially Jacobi sums, and we already

considered that point of view in the previous section.

4.2
A basis of H*(X33,.1,0Y) =2 HY(Cy pi1,1, Q)7 is given by
(1 —z)defy,  (L—aY)de/y®,  (¢—2®)de/y>.

The automorphism of order three (z,y) — (z,(3y) acts as diag((3,(3,(3). The
endomorphism p = 0 +0 ! of A = Jac(X3,3,1) is induced by the automorphism
o of G331 given by (z,y) = (Cz,(ry), thus u acts as diag(GZ + G 2, ¢ +
G N G 3). These endomorphisms of A generate a ring isomorphic to the

ring of integers Ox = Z[(3, (7 + ('] where

K=Q¢,0), a=G+G",

thus K is CM field of degree 6 over Q with totally real subfield Ko = Q(a).
The minimum polynomial of & is X + X2 —2X — 1.
Let Sq = {1,4,2} C (Z/7Z)* be the subgroup of squares, then the Galois

group G = Gal(K/Q) 22 (Z/37)* x Sq acts as:
oap) K — K,  G—, o=@+ — g+

Embedding K < C by ¢; — €2>7/7, the set of complex embeddings of K is

identified with Gx by K % K < C. The CM type of A is then the subset
Y={o1 =(1,1), 02 =(2,2), 05 =(1,4)} (C Gk =(Z/37Z)" x Sq)
It is easy to verify that this CM type is simple.
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The curve X3 31 has good reduction away from 3 and 7 and in Og we have
(3) = Pga (7) = P?,l@?g

with prime ideals p3 = (1 — (3), pr1 =(2— (5,2 — ), pro =4 — (5,2 —a).

4.3

We briefly recall how to find the Frobenius endomorphism Fr, of A, at a prime
of good reduction p of A. Here A, is the abelian variety over the finite field
O/ which is the reduction of A at p. Since Ok is a principal ideal domain, we
can choose a generator 7, for each prime ideal g in Og. Let w;, ¢ =1,2,3, be a
basis of the regular 1-forms of A, on which z € Ok acts as z*w; = 0;(x)w;, such
a basis can be obtained by reduction mod g of a basis of 1-forms of A. Note
that 2*w; = 0if 0;(2) € p. Thus the element [, 0]71 (ry,) € Ok acts trivially on
the 1-forms. This implies that it is an inseparable endomorphism. The degree
of this endomorphism is Ng /o(7,,)?, which is also the degree of F'r,. Therefore
Fro = ul]; U;l(ﬂ'p) where u is some automorphism of A,. The theory of
complex multiplication (which uses results from class field theory) allows one to

determine F'r, precisely.

4.4

The Hecke character xy of K which describes the action of Gal(Q/K) on the

first étale cohomology group of A is a homomorphism

X : Ay — K7, X(...,xp,...):H)(p(xp)
3

where A} are the ideles of K (the restricted product of the K7,) and the product

is taken over all places of K. A Hecke character is trivial on K* < A}, (diagonal
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embedding).

The main result of complex multiplication is that for a prime p where A
has good reduction A, the Frobenius endomorphism Fr, € Og C End(A,,) is
given by:

Fro=x(1,...,1,7m,,1,...)

where the idele (1,...,1,m,,1,...) has all components equal to one except at the
place p where 7, is a(ny) generator of the maximal ideal of the local ring O,,.
The Hecke character is unramified outside the places of bad reduction, which
are the primes dividing 21, hence if p does not divide 21 then x,, is trivial on
the units of the local ring Oy, of the local field K.

As before, we choose a generator 7, € Ok for each prime ideal p. Then for
any idele & = () there is an element x¢ € K, unique up to a unit of Ok, such
that ¢, is in OF for all finite places. Hence x is determined by the infinity
and the ramified components:

X(©) = x(&xe) = | ] xoCome) | | TT xo(oe)

o|oo p[21
Thus x is determined by the infinity components and the restrictions of the x,,
to O}, for p|21.
From the discussion in section 4.3 it follows that the infinity component x, is
non-trivial only if 0=! € ¥, the CM type of A4, and then x,-1(z,) = o~ (z;!).

In our case it is easy to see that [[o; () = [[oi(z) for all € K, hence we

will omit the inverse on the ¢; from now on. The Frobenius elements are then
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given by:

Fr, = x(@1,...,1,m,,1,...)
= )((71';1,...,71'51,1,71';1,...)
= Xps (ﬂ'g:l)Xpm (ﬂ-g:l)X@7.2 (7@1) Haez o(my)

—1

(so we took z¢ = m

). The fact that ¢ is unique up to a unit of Ox implies
that

Xps3 (U_l)Xm,l(U )Xpr.2 (u™") H o(u) =1 Vu € O

Note that for u € O, we have [] .5 0(u) = Ng,/o(u) = £1, hence it is not
so surprising that Hecke characters actually exist. The continuity of x implies
that the x, take values in the subgroup of roots of unity of K* which is the
group of order six generated by w := —(3.

At this point it is natural to define a homomorphism

P K* — K~, T = Xps (w_l)Xp7,1 (m_l)ng,z (w_l) H O'(ZL')
cEY

Then we have:
Fro =1(my),  (u) =1

for all units u € O} . We will determine ¢ explicitly using these conditions.

4.5

To determine the x,, we note that any homomorphism (Ok/pk)* — Z/6Z is
trivial on the subgroup of elements = 1 mod 3 (consider the ps-adic valuation of
(1437)?), hence it factors over (Ok /p3)*. This group has 35 —1 elements, it has
a subgroup of 3% — 1 = 26 elements which is (Ok,/(3))*. This subgroup maps

isomorphically onto (O /p3)* under the homomorphism below. The subgroup

Ok [93)1 = ker (O /93)" — (O /93)")
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has order 3% and every element is 3-torsion, hence this subgroup is isomorphic
to (Z/37Z)%. To be explicit, any element in (Ok /p3); can be written uniquely
as T pe = 1+ (a+ ba+ ca®)(1 — (3) with a,b,c € Z /37 and any = € (0/p3)*

as T1%ap,c with 1 € (Og,/(3))*. Then
Xoa () = e(2) G340, w = w1 (14 (a+ ba +ca®)(1 - G)),

where € is either trivial or is onto {£1} and e(z) = e(x1).

Similarly, but easier, any homomorphism (O / p’?l)* — Z/6Z factors over
the cyclic group (Ox /p7,:)* = Z/6Z. We will fix an isomorphism (Ok /p7,:)* =
(Z/7Z)* = 7 /6Z using the generator 3 of (Z/7Z)*. Then the characters are

determined by elements n; € Z/6Z as follows

(XP7,1X@7,2)(x) = wd1n1+d2n2 T = (wdlawd2) € (OK/pll)* X (OK/p7,2)*a
when the image of = in (O /pr;)* is 3%.

Lemma 4.1. With the notation above, the characters xy;, Xo,, ond Xy, ., are
determined by:

E=0,l=m=2,n =4, ny =2,
and the character € is non-trivial.

Proof. To determine € and k, [, m,ny,n, from 4.5 we first consider a prime p =

8, 20 mod 21, such a prime splits as

(p) = p19203 p =38, 20 mod 21.

Since (p) already splits in Of,, also a principal ideal domain, we can choose
a generator m € Ok, for the the ideal p1 C Og. Then x,,(7) = €(7). Since

—a € OF, maps to —2, a generator (Z/77Z)*, we may assume (after multiplying
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7 by a power of the unit —a) that x,, () = 1 for i = 1,2. (One may take

p=29, 7 =a*(2 - 2a + a?) for example). Then we get
P(m) = e(m) Nk, (7) = e(=m) Nk /ey (=) = —e(=m) Nk /1, (7)),

the second equality holds because the character 1) is trivial on units, so ¢(—1) =
1. Hence € must be the non-trivial character on (Ok /gps3)*.
Next we exploit that ¢» must be trivial on units of Og. Since e(—1) = —1,

e(a) =1 (since a = (& — a?)® mod p3) and Nk, /g(e) = 1 we find:
L= y(-1) = (NG, 1= (a) = Gt

hence ny = —ny mod 2 and ny = —ns mod 3, hence n; = —ns mod 6, so we

may take ny = —ny from now on. Next we consider:

1= x(Cs) = B (=Ca) i t2m2 ¢y la¢s = (FHmt2natt

hence k —n; + 1= 0 mod 3.

We can also use the action of the Galois group to get restrictions on .
For example if a prime p splits completely, and if g is prime dividing p, then
0a,b(¥(m,)) must be a Galois conjugate of ¢(m,,) (both are roots of the character-
istic polynomial of the Frobenius x + 2P), hence, considering the infinity type,
Oap(P(7y)) = Y(0ap(7p)). If 0qp is trivial on Q((3) (so a = 1), then it acts
trivially on the values of x,, and x,, ;, and it acts trivially on O/gp7 ;. However,
it acts non-trivially on (O/3)1. As a1 2(a+ba+ca®) = a+b+2ca+ (b+2c)a?
mod 3, we get ka + bl + em = k(a + b) + 2lc + m(b + 2¢), this must hold for all
a,b,c, hence k =0 and [ = m mod 3.

Finally we can use explicit computations to determine . We considered

some primes p = 1,13 mod 21 which split completely in Og. Let p be prime
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dividing such a p, then we have:
Np = ﬁX37371(Fp) = 1 — t’l"K/Q(FT@) —l—p

Taking p = 43, we counted points and found Ny3 = 62. We also found that
1 — a — (3 has norm 43 hence generates a prime ideal p dividing 43. Therefore

we must have:

trg/o((1 —a —(3)) = —18.
On the other hand, computing the character gives:
P(l—a—G) = (-1 (=GP (—4— a4 3a® + (-9 — 2a + 3a7)(3).

Here we must have that the trace of ¥(1 — a — (3) is —18. Using the previous

results, this is the case iff
¢hrm =1, hence I +m1 =0mod 3,

using alson; = 1 mod 3 we get [ =2 mod 3 and ny =1 or n; =4 mod 6. Using
the prime p = (a + (3) over 13 and Ny3 = 8 we found that n; = 4 and ny = 2,

which completes the determination of . O

4.6 Remark.

The ps-torsion points A[ps] of A form a subgroup of A(K) isomorphic to
O/p3(=2 Fs3). The divisor class a = P — @, where P = (0,0), @ = (z0,0) €
X33.1(K), with 29 # 0, is a non-trivial element in this group. Using the Og-
action on A we see that all points of A[p3] are indeed rational over K. This

implies that Fr, =1 mod g3 for any prime of p of good reduction.
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4.7

To determine the local zeta function of X331 at the prime p, it suffices to give

the eigenvalue polynomial P, € Z[T] of the Frobenius F, : z + 2P, in fact:
Lxg, (t) = pStGPP(til)-
Let Nk /q(gp) = p", then F' = Fr, = 1(m,) and we have:

Py(T) = H (T" = ¢(mp)) -

plp

In case p = 1,13 mod 21, the ideal (p) splits completely in O, hence

Py(T) = (T = 4(m)), (p=1,13 mod 21),

plp

hence Lx, ;. (t) = [[,,(1 —¥(m,)t). We also have ¢(m,) = Fr, = 1 mod g3

(and p3 = (1 — (3)) for all p dividing p.

The case p = 8, 20 mod 21 was discussed earlier. We have (p) = p1p2p3 in
Or, we can choose generators m, € Ok, and ¢(7,) = Nk g, (T,) = £p. By the
previous remark (or by using the explicit form of ) one finds that ¥ (p) = —p,
hence

Py(T) = (T* +p)®,  (p=8,20mod 21),

0 Ly, ,,(t) = (pt* +1)3.

In case p = 4,10,16,19 mod 21, we have (p) = p1gp> and we can choose
generators m, € Z[(3], in fact, the condition 7, = 1 mod 3 determines the
generator uniquely. Then ¢(r,) = w'm,Tom, = wpm, for some a € Z/6Z

which can be determined explicitly. Then we find:

Py(T) =T — (¢(my,) + (7)) T? + p?, (p = 4,10,16,19 mod 21),

hence Lx, ,, (t) = p*t® — (¢(m) + ¥(m,))t* + L.
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In the remaining cases, the ideal (p) is prime in Ok and Fr, = ¢(p) = —p°,
hence

Py(T) =TS +p*, (p=2,511,17mod 21),

hence Lx, ,, (t) = p*t® + 1.

4.8 Comparison.

Comparing the theorem above with Theorem 3.3 it is clear that they give con-
sistent results, except maybe in the case that p splits in two or six prime ideals.
However it is easy to check that also in these cases both methods give the same
result.

In fact, assume p = p; p2 and choose a generator © € Z[(3] for 1, so 77 = p.
Multiplying 7 by a suitable power of w = —(, we may assume that 7 = 1 mod

3 and hence that x,,(7~') = 1. Let r, s € Z/6Z be such that
™ (3",8%) € (Z/TL)" = Ok [p1,1 x Ox[pr1.2-
Then (Xo;, Xpro)(® 1) = (—Cs)7*772% = ™. Thus we get
W(m) = G pr.

Now assume that p = 16 mod 21, hence p =2 = 32 mod 7. Then p = 77 —
(37,3%)(3%,3") = (37+%,37+%), hence r = 2 — s and ¥ (7) = (3 *pr. Next we
show that, with k = 1 — s, (¥pm — 7® has Norm divisible by 7, hence the L
function from Theorem 3.3(3) coincides with the one computed with the Hecke

character. We have (recall (3 — (2,4) = (32,3) and r =2 — s):
éispﬂ' _ 7T3 — (32(175)+2+’r‘ _ 337‘, 34(175)+2+S _ 335) = (0, 0)

so indeed NQ(Cg)/Q(Cé_sﬂp — ) = 0 mod 7. The cases p = 4,10,19 mod 21

can be done similarly.
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Finally we consider the case p = 1 mod 21 (the case p = 13 mod 21 is
similar). Let p be a prime ideal in Ok dividing p and let 7, € Og be a
generator. Multiplying m, with —1 if necessary, we may assume that w, is
congruent to a square mod (1 — (3), in particular e(z') =1 and xp,(7,") is a

cube root of unity. Then

n:=y(ry,) = (Xstmepv,z)(ﬂ';l) ~o1,1(mp)02,2(Tg)o1,4(7p),

and it is easy to see that n =1 mod (1 — (3).
Let m € Z[(3], # = 1 mod 3, be the unique element such that 7p generates

the ideal (N /q(¢s)(n)) in Z[(3]. Thus

mp = (o1 (mp)on 2 ()01 4(my),

where k is chosen such that 7 = 1 mod 3 (as m, is a square mod (1 — (3), also
01,1(mp)01,2(m)o1,4(m,) € Z[(3] is a square mod (1 — (3) and hence is 1 mod

(1 = (3)). Theorem 3.3(4) asserts that

(XP3X@7,1 XP7,2)(7T;1)02,2(7T@) = 4501’2(71-@) mod 01,4

for each of the primes p7; over 7.

To compute k and x, (7,), we write m, = x1(1 + 22(1 — (3)) mod 3 with

tr(zsa)

Ty = a+ba+ca®. Then o1 (m,)01 2(7,)01 4(m,) is congruent to (5 mod

3,80 k = tr(xs), with
tr(wa) == tri/g(e,)(a + ba + ca®) =b+c¢ mod 3.

As e(my) =1, xps (751) = ¢ 20T = ¢lr(®2) 56 it remains to prove that:
(Xpr1 Xpr2) (75 No22(m,) = 012(7p)  mod pr,;.

Since Gal(K/Q(¢3)) acts trivially modulo each of the g7 ;’s, we have o3 2(7,) =

T, and o1,5(m,) = 7, modulo p7;. Let r,s be such that 7, — (3",3%) €
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(Z|TZ)?, so 7, = (3%,3"). The fact that p=1 mod 7 implies that (m,7,)* —

(1,1),s0r+s =0 mod 2. Asabove, (Xp,, Xp;2) (75 ") = (375 s (34r+28 32r+is),

Therefore
(Xpr1 Xora) (5 1) - T — (377139 3%7H45) = (37,37,

which coincides with the image of 7,. Hence we verified the congruence from

Theorem 3.3(4).
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