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Abstra
tWe expli
itly identify in�nitely many 
urves whi
h are quotients ofFermat 
urves. We show that some of these have simple Ja
obians with
omplex multipli
ation by a non-
y
lotomi
 �eld. For a parti
ular 
ase wedetermine the lo
al zeta fun
tions with two independent methods. The�rst uses Ja
obi sums and the se
ond applies the general theory of 
omplexmultipli
ation, we verify that both methods give the same result.Keywords: Fermat 
urves, 
omplex multipli
ation, Ja
obi sums, He
ke 
har-a
ters1 Introdu
tionIn [5℄ and [10℄, we studied a method for 
onstru
ting CM-hyperellipti
 
urvesof genus 3 and CM-Pi
ard 
urves suitable for 
ryptography. The 
onstru
tionin the 
ited arti
les was done by 
omputing approximations of the invariantsof the 
urves (that are rational fun
tions of theta 
onstants) using a 
omputer.Although these methods give 
ryptographi
ally interesting examples of 
urvesde�ned over Fp , we do not have a rigorous mathemati
al proof that they reallyhave 
omplex multipli
ation with the stated CM-�eld.In this paper we show that some of the examples given in [5℄ and [10℄ are ob-tained as quotients of Fermat 
urves, and that they indeed are Ja
obians of thestated CM type.It seems that the algebrai
 
urves whose Ja
obian is a simple fa
tor of Ja
obiansof Fermat 
urves are not 
ompletely known. We give a sequen
e of su
h 
urvesas 
y
li
 d-gonal 
urves in Se
tion 2.In a spe
ial 
ase, we �nd a Pi
ard 
urve whose Ja
obian has 
omplex multipli-2




ation with the CM-�eld Q(�3 ; �7 + ��17 ). We 
ompute the lo
al zeta fun
tionsfor this 
urve by two di�erent methods: with Ja
obi sums based on a result in[4℄ (Se
tion 3) by He
ke 
hara
ters (Se
tion 4). It is very well known that bothmethods give the same result and we verify this expli
itly in se
tion 4.8.2 Fermat quotient 
urves2.1We 
onsider a 
y
li
 d-gonal 
urveCd;n;k : yd = xk(xnd�2k + 1); n � 1; d > k � 0; nd� 2k > 0 (2.1)over C , whi
h is obtained as a quotient of the Fermat 
urveFd(nd�2k) : td(nd�2k) = sd(nd�2k) + 1by the quotient map (s; t) 7! (x; y) = (sd; tnd�2ksk).The 
urve Cd;n;k has automorphisms� : (x; y) 7�! (x; �dy); � : (x; y) 7�! (�dnd�2kx; �knd�2ky);� : (x; y) 7�! (1=x; y=xn);where �n = exp(2�=n). The involution � 
ommutes with �, and it a
ts on thequotient 
urve Xd;n;k = Cd;n;k= h�i. Namely, the following diagram is 
ommu-tative. Cd;n;k "����! Xd;n;k�??y �0??yP1 
����! P1 (2.2)where �, �0 and " are quotient maps by a
tions of � and � , and 
 is de�ned byx 7! x + x�1. Moreover we have �� = ��1� , so � + ��1 
ommutes with � onthe Ja
obian J(Cd;n;k). Therefore we see that3



Lemma 2.1. We have an automorphism � on Xd;n;k and an endomorphism� + ��1 on J(Xd;n;k).Let us write down an equation of Xd;n;k. Let Bd;n;k be the set of roots ofxnd�2k+1 = 0. Be
ause the restri
tion of " over P1�f�1g gives an �etale double
over ��1(P1 � f�1g)! (�0)�1(P1 � f�2g), Xd;n;k has an aÆne model of theform model Y d = (X � 2)a(X + 2)bY(X � �i); d > a; b � 0; (2.3)where �i 2 
(Bd;n;k) and �i 6= �2. Note that ea
h element in the �ber ��1(1)is �xed by � . So (�0)�1(2) 
onsists of d distin
t points, and we have b = 0.Lemma 2.2. The exponent a in (2.3) is 0 if n is even. In the 
ase that n isodd, we have a = d=2 if d is even, and a = (d+ 1)=2 if d is odd.Proof. If n is even, ea
h element in the �ber ��1(�1) is �xed by � . So we havea = 0 in this 
ase. Now let n be an odd number. If d is odd, �1 is a bran
h pointof � and 
(Bd;n;k) 
onsists of �2 and other (nd � 2k � 1)=2 points. Be
ausethe bran
h divisor of �0 has the multipli
ity k at 1, the degree of the bran
hdivisor is a+ (nd� 2k � 1)=2 + k;and this must be divided by d. So a mod d is uniquely determined, and we seethat a = (d + 1)=2 satis�es this 
ondition and d > a � 0. The same argumentworks for the 
ase that d is even.Next let us 
onsider the polynomial Q(X � �i). This is de�ned over Z sin
ethis is a produ
t of minimal polynomials for algebrai
 integers in the real sub�eldof 
y
lotomi
 �eld. 4



To 
ompute this polynomial, let us 
onsider the rational fun
tions un(x) =xn + x�n. These are determined indu
tively by un+1(x) = X � un(x)� un�1(x)where X = x + x�1. Therefore we 
an regard un(x) as a polynomial in X andwe denote this by Un(X). Namely, Un(X) 2 Z[X ℄ is the moni
 polynomial ofdegree n determined by the relationUn+1(X) = X � Un(X)� Un�1(X); U1(X) = X; U2(X) = X2 � 2: (2.4)Lemma 2.3. The polynomial Q(X � �i) in (2.3) is given by U(nd�2k)=2(X) ifnd� 2k is even, and by V(nd�2k�1)=2(X) if nd� 2k is odd where Vm(X) 2 Z[X℄is the moni
 polynomial of degree m de�ned by U2m+1(X)+2 = (X+2)Vm(X)2.Proof. In the 
ase of nd� 2k = 2m, the assertion follows from thatUm(x + x�1) = 0 , um(x) = xm + x�m = 0 , x2m + 1 = 0:Next let us 
onsider the 
ase of nd� 2k = 2m+ 1. We haveU2m+1(x+ x�1) + 2 = 0 , x2m+1 + x�2m�1 + 2 = 0, x4m+2 + 2x2m+1 + 1 = 0 , (x2m+1 + 1)2 = 0:On the other hand, we have x2m+1+x�2m�1+2 = (px2m+1+px�2m�1)2 andpx2m+1 +px�2m�1 = (px+px�1) 2mXj=0(�1)j(px)j(px�1)2m�j= (px+px�1) 2mXj=0(�1)jxj�m;so U2m+1(x+ x�1) = (x+ x�1 + 2)vm(x)2 with a rational fun
tion vm(x) in x.Therefore U2m+1(X) must be of the form (X +2)Vm(X)2. Now the assertion isobvious.Summarizing, we proved that 5



Theorem 2.1. The 
urve Xd;n;k = Cd;n;k= h�i is de�ned byY d = U(nd�2k)=2(X) (n even)Y d = (X + 2)d=2U(nd�2k)=2(X) (n odd; d even)Y d = (X + 2)(d+1)=2V(nd�2k�1)=2(X) (n odd; d odd)for n � 1, d > k � 0 and nd � 2k > 0. The Ja
obian J(Xd;n;k) has anendomorphism � indu
ed from � + ��1 2 End(J(Cd;n;k)).Be
ause we 
an identify the � -invariant subspa
eH0(Cd;n;k;
1)� withH0(Xd;n;k;
1),we 
an 
ompute the type of endomorphism � expli
itly.Example 2.1. Let p > 3 be an odd prime number. Then the hyperellipti

urve C2;p+1;1 : y2 = x(x2p + 1)has the following base(1� xp�1)dx=y; (x� xp�2)dx=y; � � � ; (x(p�3)=2 � x(p�1)=2)dx=yof H0(C2;p+1;1;
1)� . Let � be the automorphism (x; y) 7! (�2px; �py). Above1-forms 
orrespond to eigenve
tors of � = � + ��1 with eigenvalues�p + ��1p ; �2p + ��2p ; � � � ; �(p�3)=2p + �(p�1)=2p
hanging orders if ne
essary.Also the automorphism � : (x; y) 7! (�x; �4y) indu
es an a
tion on X2;p+1;1,and we see that � and � give a simple CM-type, that isEnd(J(X2;p+1;1))
 Q = Q(�4 ; �p + ��1p ):In the 
ase of p = 7, the 
urve X2;8;1Y 2 = U7(X) = X(X6 � 7X4 + 14X2 � 7)6



is found in [10℄.Example 2.2. Next we 
onsider the hyperellipti
 
urve C2;n;0 : y2 = x2n + 1for an odd number n = 2m + 1. Let Cn be the hyperellipti
 
urve de�ned byy2 = xn + 1. Then we have a morphismp : C2;n;0 �! Cn; (x; y) 7�! (x2; y);and a de
omposition H0(C2;n;0;
1) = p�H0(Cn;
1)� V�. Let us take a base'i = x2i+1dx=y; (i = 0; � � � ;m� 1)of p�H0(Cn;
1), and a base i = x2idx=y; (i = 0; � � � ;m� 1)of V�. Then f'i� 2m�igi=0;���m�1 gives a base of H0(Cn;
1)� . Thus we haveJ(C2;n;0) � J(Cn)2 and J(Cn) � J(X2;n;0) (isogenous).Example 2.3. Let us 
onsider the 
urveC3;3;1 : y3 = x(x7 + 1): (2.5)The trigonal 
urve X3;3;1Y 3 = (X + 2)2V3(X) = (X + 2)2(X3 �X2 � 2X + 1)gives an example of a Pi
ard 
urve (see [3℄) of CM-type. The Ja
obian has theendomorphism ring End(J(X3;3;1))
 Q = Q(�3 ; �7 + ��17 ). PuttingX = (7� 2x)=x; Y = �7y=x2;we obtain a smooth modely3 = x(x3 � 14x2 + 49x� 49): (2.6)7



Note that the Ja
obian J(C3;3;1) is isogenous to the produ
t J(X3;3;1)2�E witha CM-ellipti
 
urve E. To see this, note that we have a non-trivial morphismC3;3;1 �! E; (x; y) 7�! (t; s) = (x7; y7=(x7 + 1)2)to a CM ellipti
 
urve E : s3 = t(t+1). A base of H0(C2;p+1;1;
1)� is given by(1� x)dx=y; (1� x4)dx=y2; (x� x3)dx=y2and they are eigenve
tors for the a
tion of �7 + ��17 . The �1-eigenspa
e ofH0(C2;p+1;1;
1) for the a
tion of � is given by(1 + x)dx=y; (1 + x4)dx=y2; (x+ x3)dx=y2and x2dx=y2 (this 1-form is pulled ba
k from E). Considering the CM-type, we
an 
on
lude the desired isogeny.3 Computation of the zeta fun
tion of C3;3;13.1We would like to 
ompute the lo
al zeta-fun
tionZC;p(t) = exp 1Xr=1 #C(Fpr )r tr!for the 
urves C3;3;1 given by equation (2.5) and X3;3;1 given by equation (2.6)at primes p 6= 3; 7. It is well-known that we 
an writeZC3;3;1(t) = LC3;3;1(t)(1� t)(1� pt) and ZX3;3;1(t) = LX3;3;1 (t)(1� t)(1� pt) :where LC3;3;1(t) resp. LX3;3;1(t) is the L-polynomial of C3;3;1 resp. X3;3;1. There
ipro
al of the L-polynomial of a 
urve is the 
hara
teristi
 polynomial of theFrobenius endomorphism on its Ja
obian.8



It is well-known that the L-polynomial of a 
urve C is of degree 2g and has aspe
ial form, i.e it satis�es L(t) = a0 + a1t + : : : + a2gt2g 2 Z[t℄ with a2g�1 =pg�iai for 0 � i � g and a0 = a2g = 1. It is therefore determined by theg 
oeÆ
ients a1; : : : ; ag whi
h 
an be determined from the number of points#C(Fpr ) for r = 1; : : : ; 7.Let Sr = #C(Fpr )� (pr +1) and ai be the undetermined 
oeÆ
ients. We havea1 = S1; ai = 1=i0�Si + Xj+k=i;1�j;k�i�1 akSj1A :In this se
tion we 
ompute LC3;3;1 and LX3;3;1 using Ja
obi sums.For � 2 Fq , we set e(�) = exp�2�iTrFq=Fp�p � :Let � be a 
hara
ter on a �nite �eld Fq . The Gauss sum (resp. Ja
obi sum) isde�ned by�(�) = �1(�) = �X�2Fq �(�)e(�) resp. J(�s; �t) = �X� �s(�)�t(1� �):We have the relation J(�s; �t) = �(�s)�(�t)�(�s+t) :Some Ja
obi sums are easy to 
ompute.Lemma 3.1 ([1℄,Theorem 11.6.1). Let � be 
hara
ter of order m in Fp2twith p > 2 and suppose that pt � �1 mod m for some positive integer t. Thenp�t�(�) = 8>><>>: �1 if p = 2;�(�1) pt+1m if p > 2.
9



3.2We are now going to 
ompute the number of points on C3;3;1(Fq ) over �nite�elds Fq . We redu
e our problem to 
ounting the number of points of 
urvesof the form a1xn11 + a2xn22 = a3. These 
urves have already been 
onsidered byDavenport and Hasse [2℄.Lemma 3.2. Let q be a prime power.1. Suppose q � 2 mod 3, then #C3;3;1(Fq ) = #X3;3;1(Fq ) = q + 1:2. Let q = pr, q � 1 mod 3 but q 6� 1 mod 7. We distinguish two 
ases:(a) p � 1 mod 3. Then#C3;3;1(Fq ) = q + 1� �r � �rwhere �� = p and � = a+ b�3 � 1 mod 3 in Z[�3℄, �23 + �3 + 1 = 0.(b) p � 2 mod 3. Then#C3;3;1(Fq ) = 8>><>>: pr + 1 if r oddpr + 1� 2(�p) r2 if r even.Proof. 1. Obvious, sin
e every element in Fq is a third power of a uniqueelement in Fq .2. Let � be a generator of F�q . By Lemma 1 in [4℄, the number of aÆnesolutions in Fq of the equation y3 = x8 + x is equal toN = 13 �jA11j+ jA��2 j+ jA�2�j� ;where A�1�2 = f(t; u) 2 k � kj �71t21 + 1 = �2u3g:10



Sin
e q 6� 1 mod 7, the map t! t7 is an isomorphism and we are lookingfor the points on the aÆne part of the ellipti
 
urves E�1�2 given by �71t3+1 = �2u3 resp. �71t3 + �2u3 = 1.For an ellipti
 
urve de�ned over a prime �eld Fp , the number of pointsover Fpr is already determined by #E(Fp ).If p 6� 1 mod 3, all three ellipti
 
urves obtained from A11, A��2 and A�2�are supersingular. Hen
e, #C3;3;1(Fq ) is equal to the number of points ofa supersingular ellipti
 
urve.Now assume that p � 1 mod 3. We apply the te
hnique explained in [7℄,Se
tion 10.3.Embed Fp into Z[�3℄=(�) where � 2 Z[�3℄ is an element above p satisfying� � 1 mod 3. Let � be the 
hara
ter of order 3 given by the 
ubi
 residuesymbol � :� �3. We getjA11j = Xa+b=1 2Xj=0 �j(a) 2Xk=0�k(b) = 2Xj=0 2Xk=0 Xa+b=1�j(a)�k(b)= 2Xj=0 2Xk=0 Xa2Fp �j(a)�k(1� a) = � 2Xj=0 2Xk=0 J(�j ; �k)= q � 2Xj=1 2Xk=1 J(�j ; �k) = q � 2� J(�; �)� J(�2; �2):Now J(�; �) = � ([7℄, Proposition 7.5).Similar 
omputations show that jA��2 j = jA�2�j = q + 1 � J(�; �) �J(�2; �2). Hen
e, the assertion follows.Note that we 
an do the same 
omputation for q with p 6� 1 mod 3. Thisshows that J(�; �) + J(�2; �2) = 2(�p)r (3.1)for q = p2r with p 6� 1 mod 3. We will use this observation later.11



Theorem 3.1. Finally let q � 1 mod 21. Let  be a 
hara
ter of order 21 onFq and set � = J( 7;  ). We have#C3;3;1(Fq ) = q + 1� TrQ(�21)=Q(�)� J( 7;  7)� J( 14;  14):Proof. We follow very 
losely the proof of Proposition 3 in [4℄.Let � be generator of F�q . Again we form the setsA�1�2 for (�1; �2) = f(1; 1); (�; �2); (�2; �)g.By the theorem of Davenport-Hasse [2℄ the number of solutions of the equationa1u3 + a2t21 = a3 in Fq is given byN(a1; a2; a3) = q � �(�a1a2 )� �2(�a1a2 )� X1���2 X1���20 �a1( 7�)�a2( �)�a3( 7�+�)where �x( ) = �P�2Fq  (�)ex(�).We dedu
ejA11j = N(�1; 1;�1) = q � 2� 20X�=1;�6=14 ��1( 7)�1( �)��1( 7+�) � 20X�=1;�6=7 ��1( 14)�1( �)��1( 14+�) ;jA��2 j = N(��2; �7;�1) = q + 1� 20X�=1;�6=14 ���2( 7)��7( �)��1( 7+�) � 20X�=1;�6=7 ���2( 14)��7( �)��1( 14+�) andjA�2�j = N(��; �14;�1) = q + 1� 20X�=1;�6=14 ���( 7)��14 ( �)��1( 7+�) � 20X�=1;�6=7 ���2( 14)��14( �)��1( 14+�) :Hen
e,jA11j+ jA��2 j+ jA�2�j = 3q� 20X�=1;�6=14���1( 7)�1( v) + ��2( 7)��7( �) + ���( 7)��14( �)��1( 7+v) �� 20X�=1;�6=7���1( 14)�1( v) + ���2( 14)��7( �) + ���(�14)��14 ( �)��1( 14+v) � :Sin
e  (�1) = 1, we get ��1( s) = �1( s) and using �d( ) =  �1(d)�( ) we12



�nd ��1( 7)�1( �) + ��2( 7)��7 ( �) + ���( 7)��14 ( �)= �( 7)�( �)�1 + w�v�2 + w�2(v�2)� and��1( 14)�1( �) + ���2( 14)��7 ( �) + ���( 14)��14 ( �)= �( 14)�( �)�1 + w�v�1 + w�2(v�1)�where w =  7(�) is a third root of unity.Therefore13 �jA11j+ jA��2 j+ jA�2� j� =q � J( 7;  7)� J( 14;  14)� 6Xi=0 J( 7;  3i+1)� 6Xi=0 J( 14;  3i+2): (3.2)The Galois group of the �eld extension Q(�21 ) is generated by two elements A,B of order six resp. two, say �A21 := �521 and �B21 := �821. We easily see that the 12elements J( 7i;  k) with 7 - k in (3.2) are 
onjugate over Q(�21 ) and the resultfollows.Corollary 3.1. For p � 5; 17 mod 21 we getLC3;3;1(t) = 1 + pt2 + 2p3t6 + 2p4t8 + p6t12 + p7t14= (p2t4 � pt2 + 1)2(pt2 + 1)3:Proof. Using Lemma 3.2 we get S1 = S3 = S5 = S7 = 0, S2 = 2p and S4 =�2p2. From Lemma 3.1, the observation (3.1) and the fa
t that p3 + 1 � 0mod 42 we dedu
e S6 = 14p3.3.3Let us 
onsider the Ja
obi sum J( 7;  ) more 
losely.13



Theorem 3.2. Let q = pr � 1 mod 21 and let  be a 
hara
ter of order 21 inFq . Suppose that n is the smallest integer su
h that pn � 1 mod 21.1. The absolute value of every Ja
obi sum is pq.2. There exists a prime ideal p above p in Z[�21℄ su
h that we have the fol-lowing prime ideal de
ompositionJ( 7;  )Z[�21℄ = �ppA4pA5pABpA2BpA3B� rnwhere A and B have been de�ned in the proof of Theorem 3.1.Moreover, NormQ(�21)=Q(�3;p�7)(J( 7;  )) = qJ( 7;  7).3. Let p7 be a prime ideal in Q(�21 ) lying above 7. We getJ( 7;  ) � 1 mod (1� �721) and J( 7;  ) � J( 7;  7) mod p7:The properties 1), 2), 3) determine J( 7;  ) (up to 
onjugation in Q(�21 ))uniquely.Proof. 1. Well known fa
t on Ja
obi sums ([2℄, equation (4.2)).2. By Sti
kelberger's theorem (see e.g. [1℄, Chapter 11.2), the de
ompositionof the Ja
obi sum is given byJ( 7;  )Z[�21℄ =  YJ pd(�7j;�j)j ! rnwhere J runs through all automorphisms of Q(�21 ) (where � : � 7! �k isidenti�ed with k 2 (Z=21Z)�), j = J�1 mod 21 and d is given byd(�7j;�j) = r(�7j) + r(�j)� r(�8j)21 :where r(x) is the smallest non-negative residue of x mod 21. Both asser-tions follow from straight forward 
al
ulations.14



3. By Theorem 2.1.7 in [1℄ we have J( 7;  ) = q mod (1� �721). The primeideal (7) is the sixth power of a produ
t of two prime ideals in Q(�21 ). Letp7 be a prime ideal lying above 7. Using the Frobenius in Z[�21℄=p7 ' F7we get J( 7;  ) = �Xa2Fq  7(a) (1� a)� �Xa2Fq  7(a) 7(1� a) mod p7� J( 7;  7) mod p7:Property 2) �xes J( 7;  ) up to units, Property 1) �xes it up to roots ofunity and Property 3) �xes the root of unity, sin
e 1 is the only root ofunity in Q(�21 ) 
ongruent to 1 mod (1� �721)p7.Corollary 3.2. Let p be a prime.1. If p � 2; 11 mod 21, we haveLC3;3;1(t) = 1 + pt2 + 2p3t6 + 2p4t8 + p6t12 + p7t14:= (p2t4 � pt2 + 1)2(pt2 + 1)3:2. If p � 8; 20 mod 21, we haveLC3;3;1(t) = p7t14 + 7p6t12 + 21p5t10 + 35p4t8+ 35p3t6 + 21p2t4 + 7pt2 + 1 = (1 + pt2)7:Proof. 1. We have S1 = S3 = S5 = S7 = 0 and S2 = 2p, S4 = �2p2. ByTheorem 3.2, A3B �xes the ideal generated by � = J( 7;  ). Moreover,every prime ideal above p is �xed by A4B (� 2 mod 21) resp. A2B (� 1115



mod 21). Hen
e (�)Z[�21℄ = (p3)Z[�21℄ and using part 3 of Theorem 3.2we get S6 = 14p3.2. This 
an be shown analogously to part 1 and is left to the reader.Corollary 3.3. Let p be a prime su
h that p � 1 mod 3 and let � be an elementin Z[�3℄ su
h that �� = p and � � 1 mod 3.1. Suppose p � 4; 16 mod 21. Let �k3 be a third root of unity su
h that7jNQ(�3)=Q ��k3 �p� �3� :ThenLC3;3;1(t) = (pt2 � (� + �)t+ 1) � (p3t6 � p(�k3� + �k3�)t3 + 1)2:2. Suppose p � 10; 19 mod 21. Let �k3 be a third root of unity su
h that7jNQ(�3)=Q(�k3�2p2 � �6):Then LC3;3;1(t) = (t2p� (� + �)t+ 1)(p3t6 � (�2k3 � + �2k3 �)pt3 + 1)(p3t6 + (�2k3 � + �2k3 �)pt3 + 1):Proof. 1. Let  be a 
hara
ter of order 21 in Fp3 su
h that  7 = � ÆNFp3=Fpwhere � is the 
hara
ter given by the 
ubi
 residue symbol � �� �3. We haveSi = ��i � �i for i = 1; 2; 4; 5; 7 and Sj = ��j � �j � TrQ(�21)=Q�j=3 forj = 3; 6 and � = J( 7;  ). By Theorem 3.2 we get (�)Z[�21℄ = (�p)Z[�21℄.Using Corollary 4.33 and Proposition 7.5. in [7℄ we �nd J( 7;  7) = �3.Hen
e, J( ;  7) � �3 mod p7 by Theorem 3.2. Hen
e we 
an 
hoose �16



su
h that � � �3 mod p7 where p7 is any prime ideal lying above 7 inQ(�21 ). We get Sj = ��j � �j � 6pj=3((�k3 �)j=3 + (�k3�)j=3) for j = 3; 6and � given as above.2. Similar to (1) and left to the reader.Corollary 3.4. Let K = Q(�3 ; �7 + ��17 ) and let p � 1 mod 21 (resp. p � 13mod 21) and let � be an integer in K su
h that �� = p (resp. �� = p2). Let� 2 Z[�3℄, � � 1 mod 3, be su
h that p� generates the ideal NormK=Q(�3)(�)(resp. p2�2 generates the ideal NormK=Q(�3)(�2)). After multiplying � by asuitable root of unity we may assume that � � 1 mod (1 � �3) and � � �mod p7 (resp. �2 � 1 mod (1 � �3) and �2 � �2 mod p7)) where p7 is anyprime lying above 7 in K. Let f�ig be the set of Galois 
onjugates of �.1. If p � 1 mod 21, thenLC3;3;1(t) = (1� �t)(1� �t) 6Yi=1(1� �it)2:2. If p � 13 mod 21, thenLC3;3;1(t) = (1� �t)(1� �t)g1(t)g1(�t):where g1(t) =Q6i=1(1� �it).Proof. 1. The re
ipro
als of the zeros of the L-polynomial are the numbers�j of absolute value pp su
h thatNr = qr � 1� Sr = qr + 1� 14Xj=1 �rj :We have Si = ��i � �i � 12Xj=1(��j )i:17



The �rst equation follows. The Ja
obian over Q has a fa
tor of dimension6 (see example 2.3). Sin
e this fa
tor has CM by K = Q(�3 ; �7 + ��17 ), �lies in K.The 
onditions on � follow from Theorem 3.2.2. We have Si = ��i��i for i = 1; 3; 5; 7 and Si = ��i��i�Ti for i = 2; 4; 6for some integers Ti and � with �� = p. Plugging this into the formulafor the 
omputation of LC3;3;1(t) we �ndLC3;3;1(t) = (1� �t)(1� �t)feven(t)where feven(t) is an even polynomial.Set �2 = J(�7; �) as in Theorem 3.1. We have feven(t) = g(t2) whereg(�2) = 0. Sin
e the Ja
obian over Q has a fa
tor of dimension 6 withCM by K, every root of feven(t) lies in K.The 
onditions on � follow from Theorem 3.2.We now 
onsider the L-polynomial of the 
urve X3;3;1.Theorem 3.3. Let K be as above and let p 6= 3; 7 be a rational prime. Wedistinguish the following four 
ases:1. Suppose p is inert inK=Q (i.e. p � 2; 5; 11; 17 mod 21). Then LX3;3;1(t) =p3t6 + 1. The 
urve X3;3;1 is a supersingular 
urve, i.e. its Ja
obian isisogenous to a produ
t of supersingular ellipti
 
urves.2. Suppose p splits into three prime ideals (i.e. p � 8; 20 mod 21). ThenX3;3;1=Fp is supersingular and LX3;3;1(t) = (pt2 + 1)3.18



3. Suppose p splits into two prime ideals. Let p � 4; 16 mod 21 (resp. 10; 19mod 21) and let � � 1 mod 3 be an integer in Z[�3℄ su
h that �� = p.Let �k3 be a third root of unity su
h that 7jNQ(�3)=Q ��k3�p� �3�(resp. 7jNQ(�3)=Q(�2k3 �2p2 � �6).) ThenLX3;3;1(t) = p3t6 � p(�k3 � + �k3 �)t3 + 1:4. Suppose p splits 
ompletely. Let � be an integer in K su
h that �� = pand � � 1 mod (1 � �3) (resp. �2 � 1 mod (1 � �3)). Let � 2 Z[�3℄,� � 1 mod 3, be su
h that p� generates the ideal NormK=Q(�3)(�) (resp.p2�2 generates the ideal NormK=Q(�3)(�2)). Assume moreover that � � �mod p7 (resp. �2 � �2 mod p7) where p7 is any prime lying above 7 inK. Then LX3;3;1(t) =Q6i=1(1��it), where the �i are the Galois 
onjugatesof �.Proof. This follows easily from the lo
al L-series of C3;3;1. For 3), p � 10; 19mod 21 and 4), p � 13 mod 21 we use the fa
t that the lo
al L-series evaluatedat 1 gives the order of group of Fp -rational points on the Ja
obian whi
h mustbe divisible by 27 (see also Remark 4.6). This tells us whi
h fa
tor of LC3;3;1(t)we have to take.4 The He
ke 
hara
ter of X3;3;14.1It is well known that the L-fun
tion of an abelian variety with CM is the L-fun
tion of a He
ke 
hara
ter (
f. [6℄). In parti
ular, if the abelian variety is theJa
obian of a 
urve, one �nds the number of points on that 
urve over �nite19



�elds with very little e�ort. We will determine the He
ke 
hara
ter asso
iatedto A = Ja
(X3;3;1) expli
itly and use it to determine the zeta fun
tion of X3;3;1.The values of the He
ke 
hara
ter are essentially Ja
obi sums, and we already
onsidered that point of view in the previous se
tion.4.2A basis of H0(X3;3;1;
1) �= H0(C2;p+1;1;
1)� is given by(1� x)dx=y; (1� x4)dx=y2; (x� x3)dx=y2:The automorphism of order three (x; y) 7! (x; �3y) a
ts as diag(�23 ; �3; �3). Theendomorphism � = �+��1 of A = Ja
(X3;3;1) is indu
ed by the automorphism� of C3;3;1 given by (x; y) 7! (�37x; �7y), thus � a
ts as diag(�27 + ��27 ; �7 +��17 ; �37 + ��37 ). These endomorphisms of A generate a ring isomorphi
 to thering of integers OK = Z[�3; �7 + ��17 ℄ whereK = Q(�3 ; �); � = �7 + ��17 ;thus K is CM �eld of degree 6 over Q with totally real sub�eld K0 = Q(�).The minimum polynomial of � is X3 +X2 � 2X � 1.Let Sq = f1; 4; 2g � (Z=7Z)� be the subgroup of squares, then the Galoisgroup GK = Gal(K=Q) �= (Z=3Z)�� Sq a
ts as:�(a;b) : K �! K; �3 7�! �a3 ; � = �7 + ��17 7�! �b7 + ��b7 :Embedding K ,! C by �7 7! e2�i=7, the set of 
omplex embeddings of K isidenti�ed with GK by K �! K ,! C . The CM type of A is then the subset� = f�1 = (1; 1); �2 = (2; 2); �3 = (1; 4)g (� GK = (Z=3Z)�� Sq)It is easy to verify that this CM type is simple.20



The 
urve X3;3;1 has good redu
tion away from 3 and 7 and in OK we have(3) = }23; (7) = }37;1}37;2with prime ideals }3 = (1� �3), }7;1 = (2� �3; 2� �), }7;2 = (4� �3; 2� �).4.3We brie
y re
all how to �nd the Frobenius endomorphism Fr} of A} at a primeof good redu
tion } of A. Here A} is the abelian variety over the �nite �eldO=} whi
h is the redu
tion of A at }. Sin
e OK is a prin
ipal ideal domain, we
an 
hoose a generator �} for ea
h prime ideal } in OK . Let !i, i = 1; 2; 3, be abasis of the regular 1-forms of A} on whi
h x 2 OK a
ts as x�!i = �i(x)!i, su
ha basis 
an be obtained by redu
tion mod } of a basis of 1-forms of A. Notethat x�!i = 0 if �i(x) 2 }. Thus the elementQj ��1j (�}) 2 OK a
ts trivially onthe 1-forms. This implies that it is an inseparable endomorphism. The degreeof this endomorphism is NK=Q(�})3, whi
h is also the degree of Fr}. ThereforeFr} = uQj ��1j (�}) where u is some automorphism of A}. The theory of
omplex multipli
ation (whi
h uses results from 
lass �eld theory) allows one todetermine Fr} pre
isely.4.4The He
ke 
hara
ter � of K whi
h des
ribes the a
tion of Gal(Q=K) on the�rst �etale 
ohomology group of A is a homomorphism� : A �K �! K�; �(: : : ; x}; : : :) =Y} �}(x})where A �K are the ideles ofK (the restri
ted produ
t of the K�}) and the produ
tis taken over all pla
es ofK. A He
ke 
hara
ter is trivial onK� ,! A �K (diagonal21



embedding).The main result of 
omplex multipli
ation is that for a prime } where Ahas good redu
tion A} the Frobenius endomorphism Fr} 2 OK � End(A}) isgiven by: Fr} = �(1; : : : ; 1; �}; 1; : : :)where the idele (1; : : : ; 1; �}; 1; : : :) has all 
omponents equal to one ex
ept at thepla
e } where �} is a(ny) generator of the maximal ideal of the lo
al ring O}.The He
ke 
hara
ter is unrami�ed outside the pla
es of bad redu
tion, whi
hare the primes dividing 21, hen
e if } does not divide 21 then �} is trivial onthe units of the lo
al ring O} of the lo
al �eld K�}.As before, we 
hoose a generator �} 2 OK for ea
h prime ideal }. Then forany idele � = (�}) there is an element x� 2 K, unique up to a unit of OK , su
hthat x��} is in O�} for all �nite pla
es. Hen
e � is determined by the in�nityand the rami�ed 
omponents:�(�) = �(�x�) = 0�Y�j1��(�}x�)1A0�Y}j21�}(�}x�)1AThus � is determined by the in�nity 
omponents and the restri
tions of the �}to O�} for }j21.From the dis
ussion in se
tion 4.3 it follows that the in�nity 
omponent �� isnon-trivial only if ��1 2 �, the CM type of A, and then ���1(x�) = ��1(x�1� ).In our 
ase it is easy to see that Q��1i (x) = Q�i(x) for all x 2 K, hen
e wewill omit the inverse on the �i from now on. The Frobenius elements are then
22



given by: Fr} = �(1; : : : ; 1; �}; 1; : : :)= �(��1} ; : : : ; ��1} ; 1; ��1} ; : : :)= �}3(��1} )�}7;1(��1} )�}7;2 (��1} )Q�2� �(�})(so we took x� = ��1} ). The fa
t that x� is unique up to a unit of OK impliesthat �}3(u�1)�}7;1(u�1)�}7;2 (u�1)Y�2��(u) = 1 8u 2 O�K :Note that for u 2 O�K0 we have Q�2� �(u) = NK0=Q(u) = �1, hen
e it is notso surprising that He
ke 
hara
ters a
tually exist. The 
ontinuity of � impliesthat the �} take values in the subgroup of roots of unity of K� whi
h is thegroup of order six generated by ! := ��3.At this point it is natural to de�ne a homomorphism : K� �! K�; x 7�! �}3(x�1)�}7;1 (x�1)�}7;2(x�1) Y�2� �(x):Then we have: Fr} =  (�});  (u) = 1for all units u 2 O�K . We will determine  expli
itly using these 
onditions.4.5To determine the �} we note that any homomorphism (OK=}k3)� ! Z=6Z istrivial on the subgroup of elements � 1 mod 3 (
onsider the }3-adi
 valuation of(1+3x)3), hen
e it fa
tors over (OK=}23)�. This group has 36�1 elements, it hasa subgroup of 33 � 1 = 26 elements whi
h is (OK0=(3))�. This subgroup mapsisomorphi
ally onto (OK=}3)� under the homomorphism below. The subgroup(OK=}23)�1 := ker �(OK=}23)� �! (OK=}3)��23



has order 33 and every element is 3-torsion, hen
e this subgroup is isomorphi
to (Z=3Z)3. To be expli
it, any element in (OK=}23)�1 
an be written uniquelyas xa;b;
 = 1 + (a+ b�+ 
�2)(1� �3) with a; b; 
 2 Z=3Z and any x 2 (O=}23)�as x1xa;b;
 with x1 2 (OK0=(3))�. Then�}3(x) = �(x)�ka+lb+m
3 ; x = x1(1 + (a+ b�+ 
�2)(1� �3));where � is either trivial or is onto f�1g and �(x) = �(x1).Similarly, but easier, any homomorphism (OK=}k7;i)� ! Z=6Z fa
tors overthe 
y
li
 group (OK=}7;i)� �= Z=6Z. We will �x an isomorphism (OK=}7;i)� =(Z=7Z)� �= Z=6Z using the generator 3 of (Z=7Z)�. Then the 
hara
ters aredetermined by elements ni 2 Z=6Z as follows(�}7;1�}7;2)(x) = !d1n1+d2n2 x � (!d1 ; !d2) 2 (OK=}7;1)� � (OK=}7;2)�;when the image of x in (OK=}7;i)� is 3di .Lemma 4.1. With the notation above, the 
hara
ters �}3 , �}7;1 and �}7;2 aredetermined by: k = 0; l = m = 2; n1 = 4; n2 = 2;and the 
hara
ter � is non-trivial.Proof. To determine � and k; l;m; n1; n2 from 4.5 we �rst 
onsider a prime p �8; 20 mod 21, su
h a prime splits as(p) = }1}2}3 p � 8; 20 mod 21:Sin
e (p) already splits in OK0 , also a prin
ipal ideal domain, we 
an 
hoosea generator � 2 OK0 for the the ideal }1 � OK . Then �}3(�) = �(�). Sin
e�� 2 O�K0 maps to �2, a generator (Z=7Z)�, we may assume (after multiplying24



� by a power of the unit ��) that �}7;i(�) = 1 for i = 1; 2. (One may takep = 29, � = �2(2� 2�+ �2) for example). Then we get (�) = �(�)NK=K0(�) = �(��)NK=K0(��) = ��(��)NK=K0(�);the se
ond equality holds be
ause the 
hara
ter  is trivial on units, so  (�1) =1. Hen
e � must be the non-trivial 
hara
ter on (OK=}3)�.Next we exploit that  must be trivial on units of OK . Sin
e �(�1) = �1,�(�) = 1 (sin
e � � (� � �2)2 mod }3) and NK0=Q(�) = 1 we �nd:1 = �(�1) = (�1)�03!3n1+3n2(�1); 1 = �(�) = �03!4n1+4n2hen
e n1 � �n2 mod 2 and n1 � �n2 mod 3, hen
e n1 � �n2 mod 6, so wemay take n2 = �n1 from now on. Next we 
onsider:1 = �(�3) = �k3 (��3)4n1+2n2�3 ��3�3 = �k+n1+2n2+13 ;hen
e k � n1 + 1 � 0 mod 3.We 
an also use the a
tion of the Galois group to get restri
tions on  .For example if a prime p splits 
ompletely, and if } is prime dividing p, then�a;b( (�})) must be a Galois 
onjugate of  (�}) (both are roots of the 
hara
ter-isti
 polynomial of the Frobenius x 7! xp), hen
e, 
onsidering the in�nity type,�a;b( (�})) =  (�a;b(�})). If �a;b is trivial on Q(�3 ) (so a = 1), then it a
tstrivially on the values of �}3 and �}7;i , and it a
ts trivially on O=}7;i. However,it a
ts non-trivially on (O=}23)1. As �1;2(a+b�+
�2) = a+b+2
�+(b+2
)�2mod 3, we get ka+ bl+ 
m = k(a+ b) + 2l
+m(b+ 2
), this must hold for alla; b; 
, hen
e k � 0 and l � m mod 3.Finally we 
an use expli
it 
omputations to determine  . We 
onsideredsome primes p � 1; 13 mod 21 whi
h split 
ompletely in OK . Let } be prime25



dividing su
h a p, then we have:Np := ℄X3;3;1(Fp ) = 1� trK=Q(Fr}) + p:Taking p = 43, we 
ounted points and found N43 = 62. We also found that1� �� �3 has norm 43 hen
e generates a prime ideal } dividing 43. Thereforewe must have: trK=Q( (1� �� �3)) = �18:On the other hand, 
omputing the 
hara
ter gives: (1��� �3) = (�1)��k�l�m3 (��3)2n1+4n2(�4��+3�2+(�9� 2�+3�2)�3):Here we must have that the tra
e of  (1� � � �3) is �18. Using the previousresults, this is the 
ase i��l+n13 = 1; hen
e l + n1 � 0 mod 3;using also n1 � 1 mod 3 we get l � 2 mod 3 and n1 = 1 or n1 = 4 mod 6. Usingthe prime } = (�+ �3) over 13 and N13 = 8 we found that n1 = 4 and n2 = 2,whi
h 
ompletes the determination of  .4.6 Remark.The }3-torsion points A[}3℄ of A form a subgroup of A(K) isomorphi
 toO=}3(�= F33 ). The divisor 
lass a = P � Q, where P = (0; 0), Q = (x0; 0) 2X3;3;1(K), with x0 6= 0, is a non-trivial element in this group. Using the OK -a
tion on A we see that all points of A[}3℄ are indeed rational over K. Thisimplies that Fr} � 1 mod }3 for any prime of } of good redu
tion.
26



4.7To determine the lo
al zeta fun
tion of X3;3;1 at the prime p, it suÆ
es to givethe eigenvalue polynomial Pp 2 Z[T ℄ of the Frobenius Fp : x 7! xp, in fa
t:LX3;3;1(t) = p3t6Pp(t�1):Let NK=Q(}) = pn, then Fnp = Fr} =  (�}) and we have:Pp(T ) =Y}jp (Tn �  (�})) :In 
ase p � 1; 13 mod 21, the ideal (p) splits 
ompletely in OK , hen
ePp(T ) =Y}jp(T �  (�})); (p � 1; 13 mod 21);hen
e LX3;3;1(t) = Q}jp(1 �  (�})t). We also have  (�}) = Fr} � 1 mod }3(and }3 = (1� �3)) for all } dividing p.The 
ase p � 8; 20 mod 21 was dis
ussed earlier. We have (p) = }1}2}3 inOK , we 
an 
hoose generators �} 2 OK0 and  (�}) = NK=K0(�}) = �p. By theprevious remark (or by using the expli
it form of  ) one �nds that  (}) = �p,hen
e Pp(T ) = (T 2 + p)3; (p � 8; 20 mod 21);so LX3;3;1(t) = (pt2 + 1)3.In 
ase p � 4; 10; 16; 19 mod 21, we have (p) = }1}2 and we 
an 
hoosegenerators �} 2 Z[�3℄, in fa
t, the 
ondition �} � 1 mod 3 determines thegenerator uniquely. Then  (�}) = !a�}�}�} = !ap�} for some a 2 Z=6Zwhi
h 
an be determined expli
itly. Then we �nd:Pp(T ) = T 6 � ( (�}) +  (�}))T 3 + p3; (p � 4; 10; 16; 19 mod 21);hen
e LX3;3;1(t) = p3t6 � ( (�}) +  (�}))t3 + 1.27



In the remaining 
ases, the ideal (p) is prime in OK and Frp =  (p) = �p3,hen
e Pp(T ) = T 6 + p3; (p � 2; 5; 11; 17 mod 21);hen
e LX3;3;1(t) = p3t6 + 1.4.8 Comparison.Comparing the theorem above with Theorem 3.3 it is 
lear that they give 
on-sistent results, ex
ept maybe in the 
ase that p splits in two or six prime ideals.However it is easy to 
he
k that also in these 
ases both methods give the sameresult.In fa
t, assume p = }1}2 and 
hoose a generator � 2 Z[�3℄ for }1, so �� = p.Multiplying � by a suitable power of ! = ��, we may assume that � � 1 mod3 and hen
e that �}3(��1) = 1. Let r; s 2 Z=6Z be su
h that� 7�! (3r; 3s) 2 (Z=7Z)2 �= OK=}7;1 �OK=}7;2:Then (�}7;1�}7;2)(��1) = (��3)�4r�2s = �2r+s3 . Thus we get (�) = �2r+s3 p�:Now assume that p � 16 mod 21, hen
e p � 2 � 32 mod 7. Then p = �� 7!(3r; 3s)(3s; 3r) = (3r+s; 3r+s), hen
e r = 2 � s and  (�) = �1�s3 p�. Next weshow that, with k = 1 � s, �k3 p� � �3 has Norm divisible by 7, hen
e the Lfun
tion from Theorem 3.3(3) 
oin
ides with the one 
omputed with the He
ke
hara
ter. We have (re
all �3 7! (2; 4) = (32; 34) and r = 2� s):�1�s3 p� � �3 7�! (32(1�s)+2+r � 33r; 34(1�s)+2+s � 33s) � (0; 0)so indeed NQ(�3)=Q(�1�s3 �p � �3) � 0 mod 7. The 
ases p � 4; 10; 19 mod 21
an be done similarly. 28



Finally we 
onsider the 
ase p � 1 mod 21 (the 
ase p � 13 mod 21 issimilar). Let } be a prime ideal in OK dividing p and let �} 2 OK be agenerator. Multiplying �} with �1 if ne
essary, we may assume that �} is
ongruent to a square mod (1� �3), in parti
ular �(��1} ) = 1 and �}3(��1} ) is a
ube root of unity. Then� :=  (�}) = (�}3�}7;1�}7;2)(��1} ) � �1;1(�})�2;2(�})�1;4(�});and it is easy to see that � � 1 mod (1� �3).Let � 2 Z[�3℄, � � 1 mod 3, be the unique element su
h that �p generatesthe ideal (NK=Q(�3)(�)) in Z[�3℄. Thus�p = �k3 �1;1(�})�1;2(�})�1;4(�});where k is 
hosen su
h that � � 1 mod 3 (as �} is a square mod (1� �3), also�1;1(�})�1;2(�})�1;4(�}) 2 Z[�3℄ is a square mod (1 � �3) and hen
e is 1 mod(1� �3)). Theorem 3.3(4) asserts that(�}3�}7;1�}7;2)(��1} )�2;2(�}) � �k3�1;2(�}) mod }7;ifor ea
h of the primes }7;i over 7.To 
ompute k and �}3(�}), we write �} = x1(1 + x2(1 � �3)) mod 3 withx2 = a+ b�+ 
�2. Then �1;1(�})�1;2(�})�1;4(�}) is 
ongruent to ��tr(x2)3 mod3, so k = tr(x2), withtr(x2) := trK=Q(�3)(a+ b�+ 
�2) � b+ 
 mod 3:As �(�}) = 1, �}3(��1} ) = ��2(b+
)3 = �tr(x2)3 , so it remains to prove that:(�}7;1�}7;2)(��1} )�2;2(�}) � �1;2(�}) mod }7;i:Sin
e Gal(K=Q(�3 )) a
ts trivially modulo ea
h of the }7;i's, we have �2;2(�}) ��} and �1;2(�}) � �} modulo }7;i. Let r; s be su
h that �} 7! (3r; 3s) 229



(Z=7Z)2, so �} 7! (3s; 3r). The fa
t that p � 1 mod 7 implies that (�}�})3 7!(1; 1), so r+s � 0 mod 2. As above, (�}7;1�}7;2 )(��1} ) = �2r+s3 7! (34r+2s; 32r+4s).Therefore (�}7;1�}7;2)(��1} ) � �} 7�! (34r+3s; 33r+4s) � (3r; 3s);whi
h 
oin
ides with the image of �}. Hen
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