A compactification of a fine moduli space of curves

Bert van Geemen and Frans Oort

Introduction

In [4] Deligne and Mumford define stable curves and they prove that the moduli space $\overline{\mathcal{M}_{g}}$ of stable curves of genus g is a 'compactification' of the moduli space \mathcal{M}_{g} of smooth curves. For any given integer $m \geq 3$ (invertible on some base scheme) Mumford has constructed a fine moduli scheme $\mathcal{M}_{g, m}$ of curves of genus g with level- m-structure; moreover $\mathcal{M}_{g, m} \rightarrow \mathcal{M}_{g}$ is a Galois covering. It is useful to have a compactification of $\mathcal{M}_{g, m}$,

$$
\begin{array}{rll}
\mathcal{M}_{g, m} & \hookrightarrow & ? \\
\mathcal{M}_{g} & \hookrightarrow & \frac{\downarrow}{\mathcal{M}_{g}}
\end{array}
$$

We find definitions and properties of such a compactification in [4], page 106, in [12], Lecture 10, and in [1], § 2. With the convenient definitions, the results are not so difficult to find, and in this note we put these properties together. The main results are:

- A compactification $\overline{\mathcal{M}_{g, m}}$, with a tautological family $\mathcal{D} \rightarrow \overline{\mathcal{M}_{g, m}}$ exists, see Theorem (2.1).
- However this space is not constructed as a coarse or a fine moduli scheme associated with a moduli functor.
- The compactification $\overline{\mathcal{M}_{g, m}}$ is a normal space, we describe the local structure of it, in particular for $g \geq 3$ this space is singular, see Theorem (3.2).

The results of this note were written up as Dept. Math., Univ. Utrecht Preprint 301, August 1983. Our results were partly contained in [9], and we never published this preprint. However as there still seems to be some need for our point of view we publish these results now.

We thank J-L. Brylinski and J. Steenbrink for stimulating discussions.

1 Notations.

(1.1) Level structures. We fix an integer $m \in \mathbb{Z}_{\geq 1}$ (and soon we shall suppose $m \geq 3$). In [10], page 129 a level structure on an abelian variety X of dimension g is defined as an isomorphism $X[m] \cong(\mathbb{Z} / m)^{2 g}$. Here we adopt a slightly different notation.
(1.2) Definition. Let S be a base scheme, and $m \in \mathbb{Z}_{\geq 1}$. Note that $\left((\mathbb{Z} / m)_{S}\right)^{D} \cong$ $\mu_{m, S}$ (here superscript D refers to Cartier duality of finite group schemes). The natural bi-homomorphism

$$
\left.\left.e:\left((\mathbb{Z} / m)_{S}\right)^{g} \times\left(\mu_{m, S}\right)^{g}\right) \times\left((\mathbb{Z} / m)_{S}\right)^{g} \times\left(\mu_{m, S}\right)^{g}\right) \longrightarrow \mu_{m, S}
$$

defined by Cartier duality is called the symplectic pairing.
Let $X \rightarrow S$ be an abelian scheme of relative dimension g. Suppose m is invertible on S; i.e. there is a canonical morphism $S \rightarrow$ Spec $\mathbb{Z}\left[\frac{1}{m}\right]$. A symplectic level m-structure on X / S is an isomorphism

$$
\phi: X[m] \xrightarrow{\sim}\left((\mathbb{Z} / m)_{S}\right)^{g} \times\left(\mu_{m, S}\right)^{g}
$$

which identifies the Weil pairing $e_{X}: X[m] \times X[m] \rightarrow \mu_{m, S}$ with the symplectic pairing.

Let $C \rightarrow S$ be a smooth and proper curve over S. A symplectic level m structure on C / S is a symplectic level m-structure on $J:=\mathrm{Pic}_{C}^{0}$.
(1.3) Remark. Suppose m is invertible on S, and suppose a choice of a primitive m-th root of unity $\zeta_{m} \in \Gamma\left(S, \mathcal{O}_{S}\right)$ is possible, and has been made. Then we obtain an identification $(\mathbb{Z} / m)_{S} \cong \mu_{m, S}$, and the notion of a symplectic level- m-structure just given is the same as the one given in [10], page 129.

We could work over schemes over $T=\operatorname{Spec} \mathbb{Z}\left[\zeta_{m}, \frac{1}{m}\right]$, and define a level-$m$-structure using the identification of $(\mathbb{Z} / n)_{T} \cong \mu_{m, T}$.
(1.4) Remark. The definition given above can be generalized as follows. Let m be invertible on S and suppose given a finite flat group scheme $\mathcal{H} \rightarrow S$ such that every geometric fiber is isomorphic to $(\mathbb{Z} / m)^{2 g}$ with a skew pairing $e: \mathcal{H} \times \mathcal{H} \rightarrow \mu_{m, S}$. Use this to define an e-symplectic pairing. The advantage of this is shown in the following example. Choose an elliptic curve E, say over \mathbb{Q}, and let $\mathcal{H}:=E[m]$ plus its Weil-pairing, call it e. The modular curve representing full level m-structure with this e-symplectic pairing is representable (say $m \geq 3$), and it has a \mathbb{Q}-rational point, given by the existence of E.

If you feel that all these fine points are too fancy, just stick to a symplectic structure on $(\mathbb{Z} / m)^{2 g}$, and working with base schemes over $T=\operatorname{Spec} \mathbb{Z}\left[\zeta_{m}, \frac{1}{m}\right]$, then there is no difference.
(1.5) We fix:

- an integer $g \geq 2$ (the genus),
- an integer $m \geq 3$ (the level),
- and an integer $\nu \geq 5$ (used in multi-canonical embeddings),
- and $N:=(2 \nu-1)(g-1)-1$; note that the ν-multi-canonical map gives $\Phi_{\nu \cdot K}: C \hookrightarrow \mathbb{P}$ with \mathbb{P} a projective space of dimension N. We write $P G L$ for $\operatorname{PGL}(N)(=\operatorname{Aut}(\mathbb{P}))$.
We write $S_{n}=\operatorname{Spec}\left(\mathbb{Z}\left[\frac{1}{n}\right]\right)$.
(1.6) By

$$
\mathcal{M}_{g} \rightarrow S_{1}:=\operatorname{Spec}(\mathbb{Z})
$$

we denote the (coarse) moduli scheme of curves of genus g as defined and constructed in [4].

We write

$$
\begin{array}{llll}
\mathcal{H}_{g}^{0} & \hookrightarrow & \mathcal{H}_{g} \\
& \searrow & \downarrow \\
& & S
\end{array}
$$

for the Hilbert schemes of smooth (respectively stable) ν-canonically embedded curves of genus g. Note that

$$
\mathcal{M}_{g}=\mathrm{PGL} \backslash \mathcal{H}_{g}^{0} \quad \text { and } \quad \overline{\mathcal{M}_{g}}=\mathrm{PGL} \backslash \mathcal{H}_{g} .
$$

The existence theorems for \mathcal{M}_{g} and for $\mathcal{M}_{g, m}$ are contained in [10]. By [7] we conclude that PGL is geometrically reductive, and by [11], Th. 5.1 we know that its action on \mathcal{H}_{g} is stable, hence the required geometric quotient exists.

(1.7) By

$$
\mathcal{M}_{g, m} \rightarrow S_{m}
$$

we denote the (fine) moduli scheme of curves with a simplectic level- m-structure. Note that this is a fine moduli scheme, i.e. there exists a universal curve

$$
\mathcal{D}^{0} \rightarrow \mathcal{M}_{g, m}
$$

with a symplectic level- m-structure representing the functor of smooth curves of genus g with such levels. The level- m-structures will be symplectic, thus the covering $\tau: \mathcal{M}_{g, m} \rightarrow \mathcal{M}_{g}$ is Galois with group $\Gamma=\operatorname{Sp}(2 g, \mathbb{Z} / m)$ (cf. [10], 7.3). Note that $\mathcal{M}_{g, m} \rightarrow S_{m}$ is smooth (because $m \geq 3$), in particular $\mathcal{M}_{g, m}$ is a normal space.

Note that for every field k of characteristic not dividing m the fiber $\mathcal{M}_{g, m} \otimes$ Spec (K) is a regular variety.
(1.8) Definition. We define

$$
\overline{\mathcal{M}_{g, m}} \longrightarrow S_{m}:=\operatorname{Spec}\left[\frac{1}{m}\right]
$$

to be the normalization of $\overline{\mathcal{M}_{g}}$ in the function field of $\mathcal{M}_{g, m}$; thus $\mathcal{M}_{g, m} \hookrightarrow$ $\overline{\mathcal{M}_{g, m}}$. Compare: [1], p. 307; [4], p. 106.

Note that for every field k of characteristic not dividing m the fiber $\overline{\mathcal{M}_{g, m}} \otimes$ $\operatorname{Spec}(K)$ is a normal variety, see [4], page 106, Th. (5.9)
(1.9) Remark. It would be much more natural to define a moduli functor of "stable curves with a level structures" first, and then try to have a coarse or fine moduli scheme, thus arriving at a definition of $\overline{\mathcal{M}_{g, m}}$. However we do not know such a representable moduli functor defining $\overline{\mathcal{M}_{g, m}}$ (and once the local structure is studied, see Section 3, it will be clear that no "easily defined" functor will do).
(1.10) Tautological curves. Let T be a scheme, and $f: T \rightarrow M$ a morphism, where M is a moduli space of curves, and consider a curve $\mathcal{C} \rightarrow T$ (plus extra structure ...). We say this is a tautological curve if it defines f. In particular, in such a case, for a geometric point $t \in T$ the moduli point of the fiber \mathcal{C}_{t} equals $f(t)$:

$$
\left[\mathcal{C}_{t}\right]=f(t) \in M
$$

Sometimes this is also called a "universal curve", this terminology can be misleading! However if we have a fine moduli scheme, the universal curve is tautological.

2 Construction of a tautological family.

(2.1) Theorem: Let $g \in \mathbb{Z}_{\geq 2}$ and $m \in \mathbb{Z}_{\geq 3}$. There is a unique

$$
\mathcal{D} \rightarrow \overline{\mathcal{M}_{g, m}}
$$

which is tautological, and a symplectic level-m-structure on

$$
\left.\mathcal{D}\right|_{\mathcal{M}_{g, m}}=: \mathcal{D}^{0} \rightarrow \mathcal{M}_{g, m}
$$

representing the moduli functor of smooth curves with level structure.
One could also give the theorem for $g=0$, which would be pedantic, but useful for later use in the case of moduli spaces of pointed curves; in that case the first claim of the theorem is still valid. For $g=1$, considering curves of $g=1$ with one base point (called elliptic curves) the theorem is not so difficult and well-known. From now on we suppose $g \geq 2$.
(2.2) Suppose given an open set $U \subset T$ in a scheme, and suppose given a stable curve over U. If this curve extends to a stable curve over T, if U is dense in T, and if T is normal, this extension to a stable curve is unique once this is possible (this follows using [4], Th. (1.11), and Zariski's Main Theorem). The uniqueness in the theorem is not the surprising part, but existence will require some work.
(2.3) Definition. We write

$$
\mathcal{H}_{g, m}^{0} \longrightarrow S
$$

for the Hilbert scheme of ν-canonically embedded smooth curves of genus g with symplectic level- m-structure. Note that PGL $\backslash \mathcal{H}_{g, m}^{0}=\mathcal{M}_{g, m}$.
(2.4) Definition ([12], p. 137; this definition differs from the one given in [1], p. 307). We define

$$
\mathcal{H}_{g, m} \longrightarrow S
$$

to be the normalization of \mathcal{H}_{g} in the function field of $\mathcal{H}_{g, m}^{0}$,

$$
\begin{array}{ccc}
\mathcal{H}_{g, m}^{0} & \hookrightarrow & \mathcal{H}_{g, m} \\
\mathcal{H}_{g}^{0} & & \hookrightarrow \\
\mathcal{H}_{g}
\end{array}
$$

Note that \mathcal{H}_{g} and $\mathcal{H}_{g, m}$ are non-complete varieties. This is the reason we write $\mathcal{H}_{g, m}$ in stead of a notation like $\overline{\mathcal{H}_{g, m}^{0}}$.
(2.5) Remark. A point $y \in \mathcal{H}_{g}$ corresponds to a ν-canonically embedded curve $C_{y} \subset \mathbb{P}$. A point $x \in \mathcal{H}_{g, m}^{0}$ corresponds to a pair $x=\left(C_{y} \subset \mathbb{P}, \phi\right)$ where

$$
\phi: J\left(C_{y}\right)[m] \xrightarrow{\sim}(\mathbb{Z} / m)^{2 g}
$$

is a symplectic isomorphism. For $a \in \mathrm{PGL}$ we define

$$
a x=\left(C_{a y} \subset \mathbb{P}, \phi \circ\left(a_{\mid C_{y}}\right)^{*}\right)
$$

where

$$
\begin{aligned}
C_{y} & \longrightarrow \mathbb{P} \\
a_{\mid C_{y}} \downarrow & \left.\right|^{\mid} a \\
a\left(C_{y}\right)=C_{a y} & \longrightarrow \mathbb{P}
\end{aligned}
$$

and the Picard aspect of the Jacobian variety gives isomorphisms:

$$
J\left(C_{a y}\right)[m] \xrightarrow{\left(a_{\mid C_{y}}\right)^{*}} J\left(C_{y}\right)[m] \xrightarrow{\phi}(\mathbb{Z} / m)^{2 g} .
$$

This gives an action

$$
\mathrm{PGL} \times \mathcal{H}_{g, m}^{0} \longrightarrow \mathcal{H}_{g, m}^{0}
$$

which extends uniquely to an action of PGL on $\mathcal{H}_{g, m}$ (by [15], Lemma 6.1).
For $h \in \Gamma=\operatorname{Sp}(2 g, \mathbb{Z} / m)$ and $x \in \mathcal{H}_{g, m}$ we define $h \cdot x$ in the natural way:

$$
h \cdot x=h \cdot\left(C_{y} \subset \mathbb{P}, \phi\right):=\left(C_{y} \subset \mathbb{P}, h \circ \phi\right) .
$$

This action commutes with the action of PGL:

$$
h \cdot a x=\left(C_{a y} \subset \mathbb{P}, h \circ \phi \circ\left(a_{\mid C_{y}}\right)^{*}\right)=a(h \cdot x) .
$$

The action of Γ on $\mathcal{H}_{g, m}^{0}$ extends to an action on $\mathcal{H}_{g, m}$ and we obtain an action:

$$
(\mathrm{PGL} \times \Gamma) \times \mathcal{H}_{g, m} \longrightarrow \mathcal{H}_{g, m} .
$$

Note that PGL also acts on the universal families $\mathcal{C} \rightarrow \mathcal{H}_{g, m}$ and $\mathcal{E} \rightarrow \mathcal{H}_{g}$. we conclude that in the diagram

$$
\begin{array}{cccccccc}
\mathcal{H}_{g, m} & \supset & \mathcal{H}_{g, m}^{0} & \longrightarrow & \mathrm{PGL} \backslash \mathcal{H}_{g, m}^{0}= & \mathcal{M}_{g, m} & \subset \overline{\mathcal{M}_{g, m}} \\
\pi \mid & & \downarrow_{0} & & & \downarrow & \\
\mathcal{H}_{g} & \supset & \mathcal{H}_{g}^{0} & \longrightarrow & \mathrm{PGL} \backslash \mathcal{H}_{g}^{0}= & \mathcal{M}_{g} & \subset & \frac{\downarrow \tau}{\mathcal{M}_{g}}=\mathrm{PGL} \backslash \mathcal{H}_{g}
\end{array}
$$

the vertical arrows are Galois coverings, all with Galois group $\Gamma=\operatorname{Sp}(2 g, \mathbb{Z} / m)$.
(2.6) Claim. The action of PGL on $\mathcal{H}_{g, m}$ has no fixed points.
(2.7) We will show that this claim proves the theorem. In fact, we will have:

$$
\operatorname{PGL} \backslash \mathcal{H}_{g, m}=\overline{\mathcal{M}_{g, m}},
$$

and the universal family of curves $\mathcal{C} \rightarrow \mathcal{H}_{g, m}$ descends to a family of stable curves:

$$
\begin{array}{rll}
\mathcal{C} & \longrightarrow & \mathrm{PGL} \backslash \mathcal{C}=\mathcal{D} \\
\mathcal{H}_{g, m} & \longrightarrow & \downarrow \\
\mathrm{PGL} \backslash \mathcal{H}_{g, m}=\overline{\mathcal{M}_{g, m}} .
\end{array}
$$

(2.8) Notations. Before we give proofs we introduce some further notations. Let $\mathcal{E} \rightarrow \mathcal{H}_{g}$ be the universal family; by results of Raynaud, cf. [13], it can be proved that

$$
J:=\operatorname{Jac}\left(\mathcal{E} / \mathcal{H}_{g}\right):=\operatorname{Pic}^{0}\left(\mathcal{E} / \mathcal{H}_{g}\right)
$$

exists and that this formation commutes with base change (cf. [4], Th. (2.5) for precise arguments). Denote by $J[m] \subset J \rightarrow S$ the scheme of m-torsion points.

Note that the morphism $J[m] \rightarrow S$ is étale and quasi-finite. Let $x \in \mathcal{H}_{g, m}$, $y=\pi(x) \in \mathcal{H}_{g}$, let $U_{y} \subset \mathcal{H}_{g}$ be the formal neighborhood of y in \mathcal{H}_{g}, and let $\Delta=\Delta_{y} \subset U_{y}$ denote the locus of points over which $\mathcal{E} \rightarrow \mathcal{H}_{g}$ is not smooth. By [4], 1.9, we know that Δ is a divisor with normal crossings. We denote by v the generic point of U_{y}, and by $\pi_{1}\left(U_{y}-\Delta, v\right)$ the algebraic fundamental group prime to the characteristic of $k(y)$. Note that

$$
J[m]_{\mid\left(U_{y}-\Delta\right)} \longrightarrow U_{y}-\Delta
$$

is an étale covering, thus we obtain a representation

$$
R: \pi_{1}\left(U_{y}-\Delta, v\right) \longrightarrow \operatorname{Sp}\left(J_{v}[m]\right)
$$

The image of this 'monodromy' R is denoted by

$$
I_{y}:=R\left(\pi_{1}\left(U_{y}-\Delta, v\right)\right) \subset \operatorname{Sp}\left(J_{v}[m]\right)
$$

(here $J_{v}[m]$ is considered as the abstract group $J_{v}[m](\overline{k(v)})$).
(2.9) Lemma. The fiber $\pi^{-1}(y) \subset \mathcal{H}_{g, m}$ is given by

$$
\pi^{-1}(y)=I_{y} \backslash\left\{\phi \mid \phi: J_{v}[m] \xrightarrow{\sim}(\mathbb{Z} / m)^{2 g}, \phi \text { symplectic }\right\} .
$$

Proof. Consider:

$$
\begin{array}{cccccc}
X= & \pi^{-1}(Y) & \hookrightarrow & \pi^{-1}\left(U_{y}\right) & \supset & \pi^{-1}(y) \\
\mid \pi^{0} & & & \pi \mid & & \\
Y= & U_{y}-\Delta & \hookrightarrow & & U_{y} & \supset
\end{array}
$$

Because we work with stable curves, the monodromy around each component of Δ is unipotent, so of order dividing n, so not divisible by $\operatorname{char}(k(y))$ (we work over $S_{n}=\operatorname{Spec}\left(\mathbb{Z}\left[n^{-1}\right]\right)$). The covering $\pi^{0}: X \rightarrow Y$ is étale so each component is determined by the monodromy R. Because R is tame, because Δ is a divisor with normal crossings, and because $\mathcal{H}_{g, m}$ is normal we see that π is a generalized Kummer covering in the sense of [6], page 12 (use [6], page 39, Corollary 2.3.4). For Kummer coverings one easily proves that the fiber over a point (as a set) is canonically isomorphic with he orbits of the inertia group in the Galois group. Hence the same result follows for generalized Kummer coverings. By definition of $\mathcal{H}_{g, m}$ the fiber $\pi^{-1}(v)$ corresponds to the set of all ϕ as indicated. Thus the lemma follows.
(2.10) Lemma. We have:

$$
J_{y}[m]=\left(J_{v}[m]\right)^{I_{y}}
$$

Proof. First we note that $J[m] \rightarrow \mathcal{H}_{g}$ is an étale morphism, hence a point of $J_{y}[m]$ extends to a section of $J[m]_{\mid U_{y}} \rightarrow U_{y}$, cf. [5] $=$ EGA, IV 4.18.5.17; thus

$$
J_{y}[m] \hookrightarrow\left(J_{v}[m]\right)^{I_{y}} .
$$

Let k be the number of singular points of the curve $C=\mathcal{E}_{y}$. By [4], Theorem (1.6) we can choose local coordinates $\left\{t_{i}\right\}(1 \leq i \leq N)$ in $y \in U_{y} \subset \mathcal{H}_{g}$ so that $\Delta \subset U_{y}$ is given by the union of the divisors defined by $t_{j}=0,1 \leq j \leq k$; moreover the singularities of \mathcal{E}_{y} are locally given inside \mathcal{E} by equations of the form $a_{j} b_{j}-t_{j}=0$. Define $V_{i} \subset U_{y}$ by the equations $t_{i}=t_{i+1}=\ldots=t_{N}=0$, thus $V_{1}=\{y\}$, $V_{i} \subset V_{i+1}$ and $V_{N+1}=U_{y}$; let $v_{i} \in V_{i}$ be the generic point. In each step $V_{i} \subset V_{i+1}, 1 \leq i \leq N$, we can apply local monodromy on one parameter, cf. [16], page 495, Lemma 2: let \mathcal{A} be the Néron minimal model of $J_{v_{i+1}}$ over $\operatorname{Spf}\left(k\left(v_{i}\right)\left[\left[t_{i}\right]\right]\right)$ with special fiber $A:=\mathcal{A}\left(t_{i} \mapsto 0\right)$, then the invariants under the monodromy group in $J_{v_{i+1}}[m]$ are precisely $A[m]$. Because the singularities are ordinary quadratic singularities, by [2], page 192, Proposition (3.3.5), we conclude that the relevant part of the monodromy equals

$$
\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right)
$$

or is trivial thus $A[m] \cong(\mathbb{Z} / m)^{m-1}$ when $J_{v_{i+1}}[m] \cong(\mathbb{Z} / m)^{m}$ in the first case and $A[m] \cong J_{v_{i+1}}[m]$ in the second case. We conclude that $J_{y}[m] \supset\left(J_{v}[m]\right)^{I_{y}}$.

Note that the term "relevant part of the monodromy" has the following meaning. Consider a stable curve C_{0} with singularities P_{1}, \cdots, P_{d}. The universal deformation space D of C_{0} contains $\Delta \subset D$, the discriminant locus, the closed part over which the universal curve is non-smooth. This is a union of divisors $\Delta=\cup_{1 \leq i \leq d} H_{i}$, such that " P_{i} stays singular" over H_{i}. The monodromy around H_{i} is trivial iff deleting P_{i} gives a disconnected curve $C_{0}-\left\{P_{i}\right\}$. In this case the generic point of H_{i} parameterizes a "curve of compact type", i.e. a curve where the Jacobian variety is an abelian variety. The monodromy around H_{i} is nontrivial, and in fact is as indicated as above, iff the curve $C_{0}-\left\{P_{i}\right\}$ is connected; this is the case if the generic point of H_{i} parameterizes an irreducible (singular) curve, and in this case its Jacobian variety is not an abelian variety.
(2.11) Proposition. In the diagram

$$
\begin{aligned}
F:=\left\{\phi \mid \phi: J_{v}[m] \xrightarrow{\sim}\right. & \left.(\mathbb{Z} / m)^{2 g}, \phi \text { symplectic }\right\} \quad \longrightarrow \quad I_{y} \backslash F \\
& \downarrow \\
F^{\prime}:=\left\{\rho \mid \rho: J_{y}[m] \hookrightarrow\right. & \left.(\mathbb{Z} / m)^{2 g}, \rho \text { symplectic }\right\}
\end{aligned}
$$

the natural map η is surjective, but in general η is not injective.
Proof. From the preceding lemma we have $J_{y}[m] \hookrightarrow\left(J_{v}[m]\right)^{I_{y}}$, and this shows the existence of η. The symplectic structure on $J_{y}[m]$ (which is degenerate if
and only if J_{y} is not an abelian variety) is induced by the symplectic structure on $J_{v}[m]$, and it is not difficult to see that a given ρ extends:

$$
\begin{array}{cll}
J_{v}[m] & \xrightarrow{\exists} & (\mathbb{Z} / m)^{2 g} \\
\cup & & \rho \uparrow \\
\left(J_{v}[m]\right)^{I_{y}} & \supset & J_{y}[m] .
\end{array}
$$

We choose an irreducible curve C with two ordinary double points. We can choose a symplectic base (intersection form in standard form)

$$
\left\{\alpha_{1}, \ldots, \alpha_{g}, \beta_{1}, \ldots, \beta_{g}\right\} \quad \text { for } \quad J_{v}[m]
$$

such that I_{y} acts on $J_{v}[m]$ by

$$
\left\{\begin{aligned}
&\left\{\alpha_{1}, \ldots, \alpha_{g-2}, \beta_{1}, \ldots, \beta_{g}\right\} \subset\left(J_{v}[m]\right)^{I_{y}}=J_{y}[m], \\
& \alpha_{g-1} \longmapsto \alpha_{g-1}+k_{1} \beta_{g-1}, \\
& \alpha_{g} \longmapsto \alpha_{g}+k_{2} \beta_{g},
\end{aligned}\right.
$$

with $k_{1}, k_{2} \in \mathbb{Z} / m$ depending on which element of I_{y} is acting, i.e. I_{y} acts via matrices of the form

$$
\left(\begin{array}{c|ccc}
& 0 & \vdots & 0 \\
1 & \cdots & & \cdots \\
& 0 & \vdots & B \\
\hline 0 & 1 &
\end{array}\right) \quad B=\left(\begin{array}{cc}
k_{1} & 0 \\
0 & k_{2}
\end{array}\right)
$$

where 1 stands for a diagonal-1-matrix and 0 for a zero matrix; this determines the action of I_{y}, and

$$
\left\{\alpha_{1}, \ldots, \alpha_{g-2}, \beta_{1}, \ldots, \beta_{g}\right\}
$$

is a base for $J_{y}[m]$. Take a ρ and extend it to some ϕ. Note that the matrix

$$
N=\left(\begin{array}{c|ccc}
& 0 & \vdots & 0 \\
1 & \cdots & & \cdots \\
& 0 & \vdots & A \\
\hline 0 & 1 &
\end{array}\right) \quad A=\left(\begin{array}{cc}
0 & 1 \\
1 & 0
\end{array}\right)
$$

is symplectic, hence $\psi:=\phi \circ N$ is symplectic. Note that $N \notin I_{y}$, thus ϕ and ψ define different elements of $I_{y} \backslash F$, but they restrict to the same $\rho \in \eta\left(I_{y} \backslash F\right)$. This proves Proposition (2.10).
(2.12) Remark. Note that this shows that [12], p. 137, Theorem (10.6) is incorrect.

One should like to have an a-priori definition of the functor which is represented by the scheme $\overline{\mathcal{M}_{g, m}}$ (and the same for $\mathcal{H}_{g, m}$); we were unable to do so, and the previous proposition indicates why we have taken Definition (1.8).
(2.13) Proof of the claim (2.6). We denote by

$$
\mathbb{P} \supset \mathcal{C} \longrightarrow \mathcal{H}_{g, m}
$$

the universal family, by $J=\operatorname{Jac}\left(\mathcal{C} / \mathcal{H}_{g, m}\right)$ its relative Jacobi scheme (which is the pull-back by $\mathcal{H}_{g, m} \rightarrow \mathcal{H}_{g}$ of $\operatorname{Jac}\left(\mathcal{E} / \mathcal{H}_{g}\right)$), and by

$$
\mathcal{N}=J[m] \supset \mathcal{N}^{0}=\mathcal{N}_{\mid \mathcal{H}_{g, m}^{0}}
$$

endowed with universal symplectic level- m-structure

$$
\Phi: \mathcal{N}^{0} \xrightarrow{\sim}(\mathbb{Z} / n \mathbb{Z})^{2 g} \times \mathcal{H}_{g, m}^{0}
$$

Let $a \in \mathrm{PGL}, x \in \mathcal{H}_{g, m}$ and $a(x)=x$. By the universal property of Hilbert schemes there exists a unique morphism A such that

$$
\begin{array}{ccccc}
\mathcal{E} & \xrightarrow{A} & a^{-1} \mathcal{E} & \longrightarrow & \mathcal{E} \\
& \downarrow & & \downarrow \\
& \mathcal{H}_{g} & & a & \mathcal{H}_{g}
\end{array}
$$

commutes, because $a(x)=x$, for $y=\pi(x) \in \mathcal{H}_{g}$ we have $a(y)=y$, thus

$$
\begin{array}{rll}
\mathcal{E}_{y} & \hookrightarrow & \mathbb{P} \\
A_{y} \downarrow & & \mid a \\
\left(a^{-1} \mathcal{E}\right)=\mathcal{E}_{y} & \hookrightarrow & \mathbb{P}
\end{array}
$$

hence $A_{y} \in \operatorname{Aut}\left(\mathcal{E}_{y}\right)$. If we show that $A_{y}=\mathrm{id}$, it follows that $a=\mathrm{id}$ (because $\mathcal{E}_{y} \hookrightarrow \mathbb{P}$ is ν-canonical). Consider

$$
F^{\prime}:=\left\{\rho \mid \rho: J_{y}[m] \hookrightarrow(\mathbb{Z} / m)^{2 g}, \rho \text { symplectic }\right\}
$$

and let

$$
a_{*}: F^{\prime} \longrightarrow F^{\prime}, \quad a_{*}(\rho):=\rho \circ\left(A_{y}\right)^{*} .
$$

Note that $a \in$ PGL acts on $\mathcal{N}^{0} \rightarrow \mathcal{H}_{g, m}^{0}$; it follows that

has the property

$$
\Phi \circ a^{*}=a^{-1}(\Phi) .
$$

If $a y=y$ then a maps $\pi^{-1}(y)$ to itself and we are going to prove
(2.14) With notations as in Lemma (2.9), the diagram:

gives rise to a map a^{\prime} such that

$$
\begin{array}{rll}
I_{y} \backslash F & \xrightarrow{a} & I_{y} \backslash F \\
\eta \mid & & \mid \eta \\
F^{\prime} & \xrightarrow{a^{\prime}} & F^{\prime}
\end{array}
$$

and

$$
a^{\prime}=a_{*}: F^{\prime} \longrightarrow F^{\prime}
$$

as constructed above.

Indeed, we have seen that $\Phi \circ a^{*}=a^{-1}(\Phi)$ on \mathcal{N}^{0}, since $a(y)=y$ we get $\phi \circ a^{*}=a^{-1}(\phi)$ where $\phi=\Phi_{\mathcal{N}_{y}}$.
(2.15) Serre's lemma. Let C be a stable curve and let $A \in \operatorname{Aut}(C)$ be such that

$$
\left(A^{*}: \operatorname{Jac}(C)[m] \longrightarrow \operatorname{Jac}(C)[m]\right)=\mathrm{id}
$$

(where $n \geq 3$ is an integer, prime to the characteristic); then $A=\mathrm{id}$. See [1], Lemma 4.
(2.16) End of proof of the claim (2.6). We have assumed that $a x=x$, so for $y=\pi x$ we can apply the claim, thus there exists $\rho \in F^{\prime}$, with $a^{\prime}(\rho)=\rho$; this implies

$$
\left(\left(A_{y}\right)^{*}: J_{y}[m] \longrightarrow J_{y}[m]\right)=\operatorname{id}_{J_{y}[m]}
$$

(because ρ is injective). We see that the (2.14) and Serre's Lemma prove the Claim (2.6).
(2.17) We show that Claim (2.6) implies the theorem. We see that $\overline{\mathcal{M}_{g, m}}$ is a geometric quotient of a Hilbert scheme. For $\nu \geq 5$ the points of \mathcal{H}_{g} are stable with respect to the action of of PGL (cf. [11], Theorem 5.1), so the same holds for points of $\mathcal{H}_{g, m}$. Hence the quotient PGL $\backslash \mathcal{H}_{g, m}$ exists (same arguments as in [11]), it is a normal variety (cf. [10], p. 5 and use that $\mathcal{H}_{g, m}$ is integral and normal). We have:

Here i, i^{\prime} are inclusions and τ, τ^{\prime} are finite maps from normal spaces which coincide on the set $\mathcal{M}_{g, m}$ which is dense in both; by uniqueness of the normalization we conclude (and may identify)

$$
\overline{\mathcal{M}_{g, m}}=\mathrm{PGL} \backslash \mathcal{H}_{g, m}
$$

The action of PGL on $\mathcal{H}_{g, m}$ extends naturally to the universal curve $\mathcal{C} \rightarrow \mathcal{H}_{g, m}$, and by the Claim (2.6) we conclude that this action has no fixed points on \mathcal{C}. Thus

$$
\operatorname{PGL} \backslash \mathcal{C}=: \mathcal{D} \longrightarrow \overline{\mathcal{M}_{g, m}}=\mathrm{PGL} \backslash \mathcal{H}_{g, m}
$$

is a family of stable curves (which extends the universal family over $\mathcal{M}_{g, m}$). This proves Theorem (2.1).

3 Local structure of the moduli space

(3.1) We introduce some notation, needed below. We choose $x \in \mathcal{H}_{g, m}$ and denote by C the corresponding curve. The images of this point are denoted as follows:

We denote by

$$
I=I_{x}=\operatorname{Inertia}\left(x \in \overline{\mathcal{H}_{g, m}^{0}} \xrightarrow{\pi} \mathcal{H}_{g}\right) \subset \Gamma
$$

the inertia group at x of the covering π, and analogously

$$
G=G_{z}=\operatorname{Inertia}\left(z \in \overline{\mathcal{M}_{g, m}} \xrightarrow{\tau} \overline{\mathcal{M}_{g}}\right) \subset \Gamma ;
$$

note that we identified the Galois groups

$$
\operatorname{Gal}\left(\overline{\mathcal{H}_{g, m}^{0}} \longrightarrow \mathcal{H}_{g}\right)=\Gamma=\operatorname{Gal}\left(\overline{\mathcal{M}_{g, m}} \longrightarrow \mathcal{M}_{g, m}\right)
$$

A choice of an imbedding $k(v) \subset k\left(U_{x}\right) \subset \overline{k(v)}$ indices an isomorphism $I_{y} \cong I_{x}$ (which explains the notation).

Let $k=\overline{k(w)}$, an algebraically closed field. We write $W=k$ if $\operatorname{char}(k)=0$, and $W=W_{\infty}(k)$ the ring of infinite Witt vectors with coordinates in k if $\operatorname{char}(k)=p>0$. Note that the universal deformation space

$$
\mathcal{X} \longrightarrow \operatorname{Spf}\left(W\left[\left[t_{1}, \ldots, t_{N}\right]\right]\right)=D
$$

exists (cf. [4], pp. 81-83).

(3.2) Theorem.

(1) There is an exact sequence of groups

$$
0 \rightarrow I_{x} \longrightarrow G_{z} \xrightarrow{\beta} \operatorname{Aut}(C) \rightarrow 0
$$

(2) The fibers of π and τ are:

$$
\pi^{-1}(y) \cong F / I_{y}, \quad \text { and } \quad \tau^{-1}(w) \cong F / G_{z}
$$

(with F as in Proposition (2.11)).
(3) We have the following isomorphisms and a commutative diagram:

(4) If $g \geq 3$ the schemes $\mathcal{H}_{g, m}$ and $\overline{\mathcal{M}_{g, m}}$ have singularities in codimension 2.
(3.3) Remark. Suppose that $w \in \mathcal{M}_{g}$, i.e. the curve C is nonsingular. Then $I_{x}=\{1\}$, we have $G_{z}=\operatorname{Aut}(C)$, and $D \cong U_{z}$ (note that $m \geq 3$), and locally on \mathcal{M}_{g} we have: $U_{w} \cong \operatorname{Aut}(C) \backslash D \cong \operatorname{Aut}(C) \backslash U_{z}$. This is well-known.
(3.4) Proof. By (2.7) we have isomorphisms

$$
C:=\mathcal{E}_{y} \cong \mathcal{C}_{x} \cong \mathcal{D}_{z} .
$$

Let $h \in G_{z} \subset \Gamma$. Then $h \in \Gamma \cong \operatorname{Gal}\left(\mathcal{H}_{g, m} \rightarrow \mathcal{H}_{g}\right)$ operates on $\mathcal{H}_{g, m}$, and from $h \in G_{z}$ it follows that

$$
z=x \bmod \mathrm{PGL}=h x \bmod \mathrm{PGL}
$$

hence there exists an element $a \in \mathrm{PGL}$, unique by (2.6), such that

$$
h x=a x .
$$

Then $a y=y$, thus

and we define

$$
\beta_{x}(h)=a_{\mid C} \in \operatorname{Aut}(C) .
$$

Clearly β_{x} is a group homomorphism. If $\beta_{x}(h)=\operatorname{id}_{C}$, then $a=\mathrm{id}_{C}$, so $h \in I_{x}$; if $h \in I_{x}$ then $a=\mathrm{id}$, thus $\beta_{x}(h)=\mathrm{id}_{C}$. Equivalently

$$
\operatorname{Ker}\left(\beta_{x}\right)=I_{x} .
$$

By Lemma (2.9) we conclude:

$$
\sharp \pi^{-1}(y)=\sharp \Gamma / \sharp I_{x} ;
$$

the group $\operatorname{Aut}(C)$ acts faithfully on the fiber $\pi^{-1}(y)$, it acts via PGL, so every $\operatorname{Aut}(C)$-orbit is mapped to a point in $\overline{\mathcal{M}_{g, m}}$, thus

$$
\sharp \pi^{-1}(w) \leq \sharp \pi^{-1}(y) / \sharp \operatorname{Aut}(C) .
$$

Moreover

$$
\sharp \pi^{-1}(w)=\sharp \Gamma / \sharp G,
$$

thus we conclude that $\sharp G=\sharp \operatorname{Aut}(C) \cdot \sharp I_{x}$, and we have proved exactness of the sequence in (3.2).1.

Note that (3.2). 2 has already been proved (cf. Lemma (2.9) plus the identification of I_{x} and I_{y}).

Using (2.7), the isomorphism $C \cong \mathcal{D}_{z}$ and the universality of the deformation space D of the curve C we obtain canonically a commutative diagram

$$
I_{x} \backslash U_{x}=\stackrel{\mid}{U}_{U_{y}}^{U_{x}} \longrightarrow \stackrel{{ }^{\prime}}{D} \longrightarrow \operatorname{Aut}(C) \backslash D \longrightarrow U_{w}, \quad\left(C \cong \mathcal{D}_{z}\right)
$$

Note that $U_{x} \rightarrow D$ is surjective (any point of D can be lifted to U_{y} by taking a base for the sections in the ν-canonical sheaf, and $U_{x} \rightarrow U_{y}$ is surjective), hence $U_{z} \rightarrow D$ is surjective, and we conclude that $U_{z} \rightarrow D$ factors as follows

$$
U_{z} \longrightarrow I_{x} \backslash U_{z} \longrightarrow D
$$

Moreover, since $\overline{\mathcal{M}_{g, m}} \rightarrow \overline{\mathcal{M}_{g}}$ is a Galois covering and $\overline{\mathcal{M}_{g}}$ is normal

$$
G_{z} \backslash U_{z} \xrightarrow{\sim} U_{w} .
$$

Thus we obtain a commutative diagram

$$
\begin{array}{rll}
& & U_{z} \\
& \swarrow & \downarrow \\
I_{x} \backslash U_{z} & \longrightarrow & D \\
\downarrow & & \downarrow \\
G_{z} \backslash U_{z} & \longrightarrow & \operatorname{Aut}(C) \backslash D \\
& \cong \searrow & \downarrow \\
& & U_{w}
\end{array}
$$

and we conclude

$$
\operatorname{Aut}(C) \backslash D \xrightarrow{\sim} U_{w}
$$

(this seemed to be known, cf. [8], §1). Using (1) we conclude the proof of (3.2).3.
To prove (3.2). 4 let $g \geq 3$ and let C be a stable curve obtained by choosing regular curves of genus

$$
g\left(C^{\prime \prime}\right)=i \geq 1, \quad g\left(C^{\prime}\right)=g-i-1 \geq 1
$$

which intersect transversally in 2 different points

$$
\{P, Q\}=C^{\prime} \cap C^{\prime \prime}
$$

The universal deformation family $\mathcal{X} \rightarrow D$ is smooth over $D-\Delta$, and $\Delta=$ $\Delta_{P} \cup \Delta_{Q}$ consists of two divisors intersecting transversally. Let $d \in \Delta_{P}, d \notin \Delta_{Q}$ and $e \in \Delta_{Q}$, e $\notin \Delta_{P}$ and let $\mathcal{X}_{d}, \mathcal{X}_{e}$ denote the fibers of \mathcal{X} over d and e respectively. Note that

$$
\operatorname{Jac}\left(\mathcal{X}_{d}\right)[m] \cong \operatorname{Jac}(C)[m] \cong \operatorname{Jac}\left(\mathcal{X}_{e}\right)[m] \quad\left(\cong(\mathbb{Z} / m)^{2 g-1}\right)
$$

and one easily sees that

$$
\mathbb{Z} \times \mathbb{Z} \cong \pi_{1}(D-\Delta, v) \xrightarrow{R} \operatorname{Aut}\left(\operatorname{Jac}\left(\mathcal{X}_{v}\right)[m]\right)
$$

where the isomorphism can be taken such that

$$
\operatorname{Ker}(R)=\langle(n, 0),(0, n),(1,-1)\rangle, \quad R\left(\pi_{1}(D-\Delta), v\right) \cong \mathbb{Z} / m
$$

moreover the unique normal cover $U \rightarrow D$ which is étale outside Δ and which is given by this representation R has a local description

$$
U=\operatorname{Spf}\left(W\left[\left[t_{1}, \ldots, t_{N}\right]\right][T] /\left(T^{N}-t_{1} t_{2}\right)\right)
$$

(which is a singularity of 'type A_{n-1} ") (Proof: this U is normal, and outside $t_{1}=0=t_{2}$ it has the correct structure, hence it is the one we are looking for.)

By what has been proved we know that $U \cong U_{z}$, thus for the choice of C we made, any point $z \in \tau^{-1}([C])$ is singular on $\overline{\mathcal{M}_{g, m}}$; clearly this gives a closed subset in codimension two as $\overline{\mathcal{M}_{g, m}}$ is normal, so is non-singular in codimension one. If we take

$$
\mathcal{E}_{\mid U_{y}} \longrightarrow U_{y}
$$

the same arguments apply, and we conclude that any point in $\mathcal{H}_{g, m}$ above the $[C] \in \overline{\mathcal{M}_{g}}$ chosen above is singular on $\mathcal{H}_{g, m}$. This concludes the proof of Theorem (3.2).
(3.5) Remark. It is easy to check that $\overline{\mathcal{M}_{g, m}} \rightarrow S_{m}$ is smooth if $g=2$ and $m \geq 3$. This can be proved by a direct (easy) verification. We can also use [9], page 91, Satz I.

References

[1] J-L. Brylinski, Propriétés de ramification à l'infini du groupe modulaire de Teichmüller. Ann. Sci. École Norm. Sup. (4) 12 (1979), 295-333.
[2] P. Deligne, La formule de Picard-Lefschetz. Exp. XV in: SGA 7 II, Groupes de monodromie en géométrie algébrique. LNM 340, SpringerVerlag (1973).
[3] P. Deligne, Le lemme de Gabber. In: Sém. sur les pinceaux arithmétiques: la conjecture de Mordell (Ed. L.. Szpiro). Astérisque 127 (1985), 131-150.
[4] P. Deligne and D. Mumford, The irreducibility of the space of curves of a given genus. Publ. Math. IHES 36 (1969) 75-109.
[5] A. Grothendieck \& J. Dieudonné, Éléments de géométrie algébrique $I V^{4}:$ Étude locale des schémas et des morphisms de schémas. Publ. Math. IHES 32 (1967).
[6] A. Grothendieck and J. P. Murre, The tame fundamental group of a formal neighbourhood of a divisor with normal crossings on a scheme. LNM 208, Springer-Verlag 1971.
[7] W. J. Haboush, Reductive groups are geometrically reductive. Ann. Math. 102 (19750, $67-83$.
[8] J. Harris and D. Mumford, On the Kodaira dimension of the moduli space of curves. Invent. Math. 67 (1982), 23-86.
[9] S. M. Mostafa, Die Singularitäten der Modulmannigfaltigkeit $\bar{M}_{g}(n)$ der stabilen Kurven vom Geschlecht $g \geq 2$ mit n-Teilungspunktstruktur. Journ. reine angew. Math. (Crelle), 343 (1983), 81-98.
[10] D. Mumford, Geometric invariant theory. Ergebnisse, Neue F. Vol. 34, Springer-Verlag (1965). (2nd enlarged edition: Mumford, D.; Fogarty, J., Springer-Verlag (1982); 3rd enlarged edition: Mumford, D.; Fogarty, J.; Kirwan, F., Springer-Verlag (1993))
[11] D. Mumford, Stability of projective varieties. L'Enseignement Math. 23 (1977) 39-110.
[12] H. Popp, Moduli theory and classification theory of algebraic varieties. LNM 620, Springer-Verlag (1977).
[13] M. Raynaud, Spécialisation du foncteur de Picard. Publ. Math. IHES 38 (1970) 27-76.
[14] A. Grothendieck (with M. Raunaud and D. S. Rim), Groupes de monodromie en géométrie algébrique (SGA 7 I). Séminaire de géométrie algébrique du Bois-Marie. Lect. Notes Math. 288, Springer - Verlag 1972.
[15] C. S. Seshadri, Quotient spaces modulo reductive algebraic groups. Ann. Math. 95 (1972) 511-556.
[16] J-P. Serre and J. Tate, Good reduction of abelian varieties. Ann. Math. 88, 492-517.

Bert van Geemen
Dipartimento di Matematica
Via Ferrata 1
27100 Pavia
Italy
email: geemen@dragon.ian.pv.cnr.it

Frans Oort
Mathematisch Instituut
Budapestlaan 6
NL - 3508 TA Utrecht
The Netherlands
email: oort@math.ruu.nl

