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Introduction

In [4] Deligne and Mumford define stable curves and they prove that the moduli
spaceMg of stable curves of genus g is a ‘compactification’ of the moduli space
Mg of smooth curves. For any given integer m ≥ 3 (invertible on some base
scheme) Mumford has constructed a fine moduli schemeMg,m of curves of genus
g with level-m-structure; moreoverMg,m →Mg is a Galois covering. It is useful
to have a compactification ofMg,m,

Mg,m →֒ ?




y





y

Mg →֒ Mg.

We find definitions and properties of such a compactification in [4], page 106, in
[12], Lecture 10, and in [1], § 2. With the convenient definitions, the results are
not so difficult to find, and in this note we put these properties together. The
main results are:

• A compactification Mg,m, with a tautological family D → Mg,m exists,
see Theorem (2.1).

• However this space is not constructed as a coarse or a fine moduli scheme
associated with a moduli functor.

• The compactificationMg,m is a normal space, we describe the local struc-
ture of it, in particular for g ≥ 3 this space is singular, see Theorem (3.2).

The results of this note were written up as Dept. Math., Univ. Utrecht Preprint
301, August 1983. Our results were partly contained in [9], and we never pub-
lished this preprint. However as there still seems to be some need for our point
of view we publish these results now.

We thank J-L. Brylinski and J. Steenbrink for stimulating discussions.
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1 Notations.

(1.1) Level structures. We fix an integer m ∈ Z≥1 (and soon we shall
suppose m ≥ 3). In [10], page 129 a level structure on an abelian variety X of
dimension g is defined as an isomorphism X[m] ∼= (Z/m)2g. Here we adopt a
slightly different notation.

(1.2) Definition. Let S be a base scheme, andm ∈ Z≥1. Note that ((Z/m)S)D ∼=
µm,S (here superscript D refers to Cartier duality of finite group schemes). The
natural bi-homomorphism

e : ((Z/m)S)g × (µm,S)g)× ((Z/m)S)g × (µm,S)g) −→ µm,S

defined by Cartier duality is called the symplectic pairing.
Let X → S be an abelian scheme of relative dimension g. Suppose m is

invertible on S; i.e. there is a canonical morphism S → Spec Z[ 1
m

]. A symplectic
level m-structure on X/S is an isomorphism

φ : X[m]
∼
−→ ((Z/m)S)g × (µm,S)g

which identifies the Weil pairing eX : X[m]×X[m]→ µm,S with the symplectic
pairing.

Let C → S be a smooth and proper curve over S. A symplectic level m-
structure on C/S is a symplectic level m-structure on J := Pic0

C .

(1.3) Remark. Suppose m is invertible on S, and suppose a choice of a
primitive m-th root of unity ζm ∈ Γ(S,OS) is possible, and has been made.
Then we obtain an identification (Z/m)S

∼= µm,S , and the notion of a symplectic
level-m-structure just given is the same as the one given in [10], page 129.

We could work over schemes over T = Spec Z[ζm,
1
m

], and define a level-
m-structure using the identification of (Z/n)T

∼= µm,T .

(1.4) Remark. The definition given above can be generalized as follows. Let
m be invertible on S and suppose given a finite flat group scheme H → S
such that every geometric fiber is isomorphic to (Z/m)2g with a skew pairing
e : H×H → µm,S . Use this to define an e-symplectic pairing. The advantage of
this is shown in the following example. Choose an elliptic curve E, say over Q,
and letH := E[m] plus its Weil-pairing, call it e. The modular curve representing
full levelm-structure with this e-symplectic pairing is representable (saym ≥ 3),
and it has a Q-rational point, given by the existence of E.

If you feel that all these fine points are too fancy, just stick to a symplectic
structure on (Z/m)2g, and working with base schemes over T = Spec Z[ζm,

1
m

],
then there is no difference.
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(1.5) We fix:

• an integer g ≥ 2 (the genus),

• an integer m ≥ 3 (the level),

• and an integer ν ≥ 5 (used in multi-canonical embeddings),

• and N := (2ν − 1)(g − 1) − 1; note that the ν-multi-canonical map gives
Φν·K : C →֒ P with P a projective space of dimension N . We write PGL
for PGL(N) (= Aut(P)).

We write Sn = Spec (Z[ 1
n
]).

(1.6) By
Mg → S1 := Spec (Z)

we denote the (coarse) moduli scheme of curves of genus g as defined and con-
structed in [4].

We write
H0

g →֒ Hg

ց ↓
S

for the Hilbert schemes of smooth (respectively stable) ν-canonically embedded
curves of genus g. Note that

Mg = PGL\H0
g and Mg = PGL\Hg.

The existence theorems for Mg and for Mg,m are contained in [10]. By [7] we
conclude that PGL is geometrically reductive, and by [11], Th. 5.1 we know that
its action on Hg is stable, hence the required geometric quotient exists.

(1.7) By
Mg,m → Sm

we denote the (fine) moduli scheme of curves with a simplectic level-m-structure.
Note that this is a fine moduli scheme, i.e. there exists a universal curve

D0 →Mg,m

with a symplectic level-m-structure representing the functor of smooth curves
of genus g with such levels. The level-m-structures will be symplectic, thus the
covering τ :Mg,m →Mg is Galois with group Γ = Sp(2g,Z/m) (cf. [10], 7.3).
Note that Mg,m → Sm is smooth (because m ≥ 3), in particular Mg,m is a
normal space.

Note that for every field k of characteristic not dividing m the fiber Mg,m ⊗
Spec (K) is a regular variety.
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(1.8) Definition. We define

Mg,m −→ Sm := Spec [
1

m
]

to be the normalization of Mg in the function field of Mg,m; thus Mg,m →֒
Mg,m. Compare: [1], p. 307; [4], p. 106.

Note that for every field k of characteristic not dividing m the fiber Mg,m ⊗
Spec (K) is a normal variety, see [4], page 106, Th. (5.9)

(1.9) Remark. It would be much more natural to define a moduli functor
of “stable curves with a level structures” first, and then try to have a coarse
or fine moduli scheme, thus arriving at a definition of Mg,m . However we do
not know such a representable moduli functor defining Mg,m (and once the
local structure is studied, see Section 3, it will be clear that no “easily defined”
functor will do).

(1.10) Tautological curves. Let T be a scheme, and f : T → M a mor-
phism, where M is a moduli space of curves, and consider a curve C → T (plus
extra structure . . .). We say this is a tautological curve if it defines f . In partic-
ular, in such a case, for a geometric point t ∈ T the moduli point of the fiber Ct
equals f(t):

[Ct] = f(t) ∈M.

Sometimes this is also called a “universal curve”, this terminology can be mis-
leading! However if we have a fine moduli scheme, the universal curve is tauto-
logical.

2 Construction of a tautological family.

(2.1) Theorem: Let g ∈ Z≥2 and m ∈ Z≥3. There is a unique

D →Mg,m

which is tautological, and a symplectic level-m-structure on

D|Mg,m
=: D0 →Mg,m

representing the moduli functor of smooth curves with level structure.

One could also give the theorem for g = 0, which would be pedantic, but useful
for later use in the case of moduli spaces of pointed curves; in that case the
first claim of the theorem is still valid. For g = 1, considering curves of g = 1
with one base point (called elliptic curves) the theorem is not so difficult and
well-known. From now on we suppose g ≥ 2.
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(2.2) Suppose given an open set U ⊂ T in a scheme, and suppose given a
stable curve over U . If this curve extends to a stable curve over T , if U is dense
in T , and if T is normal, this extension to a stable curve is unique once this is
possible (this follows using [4], Th. (1.11), and Zariski’s Main Theorem). The
uniqueness in the theorem is not the surprising part, but existence will require
some work.

(2.3) Definition. We write

H0
g,m −→ S

for the Hilbert scheme of ν-canonically embedded smooth curves of genus g with
symplectic level-m-structure. Note that PGL\H0

g,m =Mg,m.

(2.4) Definition ([12], p. 137; this definition differs from the one given in [1],
p. 307). We define

Hg,m −→ S

to be the normalization of Hg in the function field of H0
g,m,

H0
g,m →֒ Hg,m




y





y

H0
g →֒ Hg.

Note that Hg and Hg,m are non-complete varieties. This is the reason we write

Hg,m in stead of a notation like H0
g,m.

(2.5) Remark. A point y ∈ Hg corresponds to a ν-canonically embedded
curve Cy ⊂ P. A point x ∈ H0

g,m corresponds to a pair x = (Cy ⊂ P, φ) where

φ : J(Cy)[m]
∼
−→ (Z/m)2g

is a symplectic isomorphism. For a ∈ PGL we define

ax = (Cay ⊂ P, φ ◦ (a|Cy
)∗)

where
Cy −→ P

a|Cy





y





ya

a(Cy) = Cay −→ P

and the Picard aspect of the Jacobian variety gives isomorphisms:

J(Cay)[m]
(a|Cy

)∗

−→ J(Cy)[m]
φ
−→ (Z/m)2g.
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This gives an action
PGL×H0

g,m −→ H
0
g,m

which extends uniquely to an action of PGL on Hg,m (by [15], Lemma 6.1).

For h ∈ Γ = Sp(2g,Z/m) and x ∈ Hg,m we define h · x in the natural way:

h · x = h · (Cy ⊂ P, φ) := (Cy ⊂ P, h ◦ φ).

This action commutes with the action of PGL:

h · ax = (Cay ⊂ P, h ◦ φ ◦ (a|Cy
)∗) = a(h · x).

The action of Γ on H0
g,m extends to an action on Hg,m and we obtain an action:

(PGL× Γ)×Hg,m −→ Hg,m.

Note that PGL also acts on the universal families C → Hg,m and E → Hg. we
conclude that in the diagram

Hg,m ⊃ H0
g,m −→ PGL\H0

g,m = Mg,m ⊂ Mg,m

π




y





y





y





yτ

Hg ⊃ H0
g −→ PGL\H0

g = Mg ⊂ Mg = PGL\Hg

the vertical arrows are Galois coverings, all with Galois group Γ = Sp(2g,Z/m).

(2.6) Claim. The action of PGL on Hg,m has no fixed points.

(2.7) We will show that this claim proves the theorem. In fact, we will have:

PGL\Hg,m =Mg,m,

and the universal family of curves C → Hg,m descends to a family of stable
curves:

C −→ PGL\C = D




y





y

Hg,m −→ PGL\Hg,m =Mg,m.

(2.8) Notations. Before we give proofs we introduce some further notations.
Let E → Hg be the universal family; by results of Raynaud, cf. [13], it can be
proved that

J := Jac(E/Hg) := Pic0(E/Hg)

exists and that this formation commutes with base change (cf. [4], Th. (2.5) for
precise arguments). Denote by J [m] ⊂ J → S the scheme of m-torsion points.
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Note that the morphism J [m] → S is étale and quasi-finite. Let x ∈ Hg,m,
y = π(x) ∈ Hg, let Uy ⊂ Hg be the formal neighborhood of y in Hg, and let
∆ = ∆y ⊂ Uy denote the locus of points over which E → Hg is not smooth.
By [4], 1.9, we know that ∆ is a divisor with normal crossings. We denote by v
the generic point of Uy, and by π1(Uy −∆, v) the algebraic fundamental group
prime to the characteristic of k(y). Note that

J [m]|(Uy−∆) −→ Uy −∆

is an étale covering, thus we obtain a representation

R : π1(Uy −∆, v) −→ Sp(Jv[m]).

The image of this ‘monodromy’ R is denoted by

Iy := R(π1(Uy −∆, v)) ⊂ Sp(Jv[m])

(here Jv[m] is considered as the abstract group Jv[m](k(v))).

(2.9) Lemma. The fiber π−1(y) ⊂ Hg,m is given by

π−1(y) = Iy\{φ|φ : Jv[m]
∼
−→ (Z/m)2g, φ symplectic }.

Proof. Consider:

X = π−1(Y ) →֒ π−1(Uy) ⊃ π−1(y)




yπ0 π




y

Y = Uy −∆ →֒ Uy ⊃ {y}.

Because we work with stable curves, the monodromy around each component of
∆ is unipotent, so of order dividing n, so not divisible by char(k(y)) (we work
over Sn = Spec (Z[n−1])). The covering π0 : X → Y is étale so each component
is determined by the monodromy R. Because R is tame, because ∆ is a divisor
with normal crossings, and becauseHg,m is normal we see that π is a generalized
Kummer covering in the sense of [6], page 12 (use [6], page 39, Corollary 2.3.4).
For Kummer coverings one easily proves that the fiber over a point (as a set) is
canonically isomorphic with he orbits of the inertia group in the Galois group.
Hence the same result follows for generalized Kummer coverings. By definition
of Hg,m the fiber π−1(v) corresponds to the set of all φ as indicated. Thus the
lemma follows.

(2.10) Lemma. We have:

Jy[m] = (Jv[m])Iy .
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Proof. First we note that J [m] → Hg is an étale morphism, hence a point of
Jy[m] extends to a section of J [m]|Uy

→ Uy, cf. [5]=EGA, IV4.18.5.17; thus

Jy[m] →֒ (Jv[m])Iy .

Let k be the number of singular points of the curve C = Ey. By [4], Theorem (1.6)
we can choose local coordinates {ti} (1 ≤ i ≤ N) in y ∈ Uy ⊂ Hg so that ∆ ⊂ Uy

is given by the union of the divisors defined by tj = 0, 1 ≤ j ≤ k; moreover the
singularities of Ey are locally given inside E by equations of the form ajbj−tj = 0.
Define Vi ⊂ Uy by the equations ti = ti+1 = . . . = tN = 0, thus V1 = {y},
Vi ⊂ Vi+1 and VN+1 = Uy; let vi ∈ Vi be the generic point. In each step
Vi ⊂ Vi+1, 1 ≤ i ≤ N , we can apply local monodromy on one parameter,
cf. [16], page 495, Lemma 2: let A be the Néron minimal model of Jvi+1

over
Spf(k(vi)[[ti]]) with special fiber A := A(ti 7→ 0), then the invariants under
the monodromy group in Jvi+1

[m] are precisely A[m]. Because the singularities
are ordinary quadratic singularities, by [2], page 192, Proposition (3.3.5), we
conclude that the relevant part of the monodromy equals

(

1 1
0 1

)

or is trivial thus A[m] ∼= (Z/m)m−1 when Jvi+1
[m] ∼= (Z/m)m in the first case

and A[m] ∼= Jvi+1
[m] in the second case. We conclude that Jy[m] ⊃ (Jv[m])Iy .

Note that the term “relevant part of the monodromy” has the following
meaning. Consider a stable curve C0 with singularities P1, · · · , Pd. The universal
deformation space D of C0 contains ∆ ⊂ D, the discriminant locus, the closed
part over which the universal curve is non-smooth. This is a union of divisors
∆ = ∪1≤i≤d Hi, such that “Pi stays singular” over Hi. The monodromy around
Hi is trivial iff deleting Pi gives a disconnected curve C0−{Pi}. In this case the
generic point of Hi parameterizes a “curve of compact type”, i.e. a curve where
the Jacobian variety is an abelian variety. The monodromy around Hi is non-
trivial, and in fact is as indicated as above, iff the curve C0−{Pi} is connected;
this is the case if the generic point of Hi parameterizes an irreducible (singular)
curve, and in this case its Jacobian variety is not an abelian variety.

(2.11) Proposition. In the diagram

F := {φ|φ : Jv[m]
∼
−→ (Z/m)2g, φ symplectic } −→ Iy\F
↓ ւ η

F ′ := {ρ| ρ : Jy[m] →֒ (Z/m)2g, ρ symplectic }

the natural map η is surjective, but in general η is not injective.
Proof. From the preceding lemma we have Jy[m] →֒ (Jv[m])Iy , and this shows
the existence of η. The symplectic structure on Jy[m] (which is degenerate if
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and only if Jy is not an abelian variety) is induced by the symplectic structure
on Jv[m], and it is not difficult to see that a given ρ extends:

Jv[m]
∃
−→ (Z/m)2g

∪ ρ ↑
(Jv[m])Iy ⊃ Jy[m].

We choose an irreducible curve C with two ordinary double points. We can
choose a symplectic base (intersection form in standard form)

{α1, . . . , αg, β1, . . . , βg} for Jv[m]

such that Iy acts on Jv[m] by







{α1, . . . , αg−2, β1, . . . , βg} ⊂ (Jv[m])Iy = Jy[m],
αg−1 7−→ αg−1 + k1βg−1,
αg 7−→ αg + k2βg,

with k1, k2 ∈ Z/m depending on which element of Iy is acting, i.e. Iy acts via
matrices of the form

















1

∣

∣

∣

∣

∣

∣

∣

∣

0
... 0

. . . . . .

0
... B

0 1

















B =

(

k1 0
0 k2

)

where 1 stands for a diagonal-1-matrix and 0 for a zero matrix; this determines
the action of Iy, and

{α1, . . . , αg−2, β1, . . . , βg}

is a base for Jy[m]. Take a ρ and extend it to some φ. Note that the matrix

N =

















1

∣

∣

∣

∣

∣

∣

∣

∣

0
... 0

. . . . . .

0
... A

0 1

















A =

(

0 1
1 0

)

is symplectic, hence ψ := φ ◦ N is symplectic. Note that N 6∈ Iy, thus φ and
ψ define different elements of Iy\F , but they restrict to the same ρ ∈ η(Iy\F ).
This proves Proposition (2.10).
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(2.12) Remark. Note that this shows that [12], p. 137, Theorem (10.6) is
incorrect.

One should like to have an a-priori definition of the functor which is rep-
resented by the scheme Mg,m (and the same for Hg,m); we were unable to do
so, and the previous proposition indicates why we have taken Definition (1.8).

(2.13) Proof of the claim (2.6). We denote by

P ⊃ C −→ Hg,m

the universal family, by J = Jac(C/Hg,m) its relative Jacobi scheme (which is
the pull-back by Hg,m → Hg of Jac(E/Hg)), and by

N = J [m] ⊃ N 0 = N|H0
g,m

endowed with universal symplectic level-m-structure

Φ : N 0 ∼
−→ (Z/nZ)2g ×H0

g,m.

Let a ∈ PGL, x ∈ Hg,m and a(x) = x. By the universal property of Hilbert
schemes there exists a unique morphism A such that

E
A
−→ a−1E −→ E
ց ↓ ↓

Hg
a
−→ Hg

commutes, because a(x) = x, for y = π(x) ∈ Hg we have a(y) = y, thus

Ey →֒ P

Ay





y





ya

(a−1E) = Ey →֒ P

hence Ay ∈ Aut(Ey). If we show that Ay = id, it follows that a = id (because
Ey →֒ P is ν-canonical). Consider

F ′ := {ρ| ρ : Jy[m] →֒ (Z/m)2g, ρ symplectic },

and let
a∗ : F ′ −→ F ′, a∗(ρ) := ρ ◦ (Ay)∗.

Note that a ∈ PGL acts on N 0 → H0
g,m; it follows that

(Z/m)2g ×H0
g,m (Z/m)2g ×H0

g,m

Φ
x



 a−1(Φ)ր
x



Φ

N 0 a∗

←− a−1(N 0) −→ N 0

ց ↓ ↓

H0
g,m

a
−→ H0

g,m
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has the property

Φ ◦ a∗ = a−1(Φ).

If ay = y then a maps π−1(y) to itself and we are going to prove

(2.14) With notations as in Lemma (2.9), the diagram:

π−1(y)
a
−→ π−1(y)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

Iy\F
a
−→ Iy\F

gives rise to a map a′ such that

Iy\F
a
−→ Iy\F

η




y





yη

F ′ a′

−→ F ′

and

a′ = a∗ : F ′ −→ F ′

as constructed above.

Indeed, we have seen that Φ ◦ a∗ = a−1(Φ) on N 0, since a(y) = y we get
φ ◦ a∗ = a−1(φ) where φ = ΦNy

.

(2.15) Serre’s lemma. Let C be a stable curve and let A ∈ Aut(C) be such
that

(A∗ : Jac(C)[m] −→ Jac(C)[m]) = id

(where n ≥ 3 is an integer, prime to the characteristic); then A = id.
See [1], Lemma 4.

(2.16) End of proof of the claim (2.6). We have assumed that ax = x,
so for y = πx we can apply the claim, thus there exists ρ ∈ F ′, with a′(ρ) = ρ;
this implies

((Ay)∗ : Jy[m] −→ Jy[m]) = idJy[m]

(because ρ is injective). We see that the (2.14) and Serre’s Lemma prove the
Claim (2.6).
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(2.17) We show that Claim (2.6) implies the theorem. We see that Mg,m is
a geometric quotient of a Hilbert scheme. For ν ≥ 5 the points of Hg are stable
with respect to the action of of PGL (cf. [11], Theorem 5.1), so the same holds
for points of Hg,m. Hence the quotient PGL\Hg,m exists (same arguments as
in [11]), it is a normal variety (cf. [10], p. 5 and use that Hg,m is integral and
normal). We have:

Mg,m = PGL\Hg,m

iւ ↓ ց i′

Mg,m M PGL\Hg.
τ ց ↓ ւ τ ′

Mg

Here i, i′ are inclusions and τ , τ ′ are finite maps from normal spaces which coin-
cide on the setMg,m which is dense in both; by uniqueness of the normalization
we conclude (and may identify)

Mg,m = PGL\Hg,m.

The action of PGL on Hg,m extends naturally to the universal curve C → Hg,m,
and by the Claim (2.6) we conclude that this action has no fixed points on C.
Thus

PGL\C =: D −→Mg,m = PGL\Hg,m

is a family of stable curves (which extends the universal family over Mg,m).
This proves Theorem (2.1).

3 Local structure of the moduli space

(3.1) We introduce some notation, needed below. We choose x ∈ Hg,m and
denote by C the corresponding curve. The images of this point are denoted as
follows:

x ∈ H0
g,m −→ Mg,m ∋ z





y
π τ





y

π(x) = y ∈ Hg −→ Mg ∋ w = τ(z).

We denote by
I = Ix = Inertia(x ∈ H0

g,m

π
−→ Hg) ⊂ Γ

the inertia group at x of the covering π, and analogously

G = Gz = Inertia(z ∈Mg,m
τ
−→Mg) ⊂ Γ;

note that we identified the Galois groups

Gal(H0
g,m −→ Hg) = Γ = Gal(Mg,m −→Mg,m).
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A choice of an imbedding k(v) ⊂ k(Ux) ⊂ k(v) indices an isomorphism Iy ∼= Ix
(which explains the notation).

Let k = k(w), an algebraically closed field. We write W = k if char(k) = 0,
and W = W∞(k) the ring of infinite Witt vectors with coordinates in k if
char(k) = p > 0. Note that the universal deformation space

X −→ Spf(W [[t1, . . . , tN ]]) = D

exists (cf. [4], pp. 81–83).

(3.2) Theorem.

(1) There is an exact sequence of groups

0→ Ix −→ Gz
β
−→ Aut(C)→ 0.

(2) The fibers of π and τ are:

π−1(y) ∼= F/Iy, and τ−1(w) ∼= F/Gz

(with F as in Proposition (2.11)).

(3) We have the following isomorphisms and a commutative diagram:

Uz →֒ Mg,m

↓
I\Uz

∼= D ↓
↓ ↓

G\Uz
∼= Aut(C)\D ∼= Uw ⊂ Mg.

(4) If g ≥ 3 the schemes Hg,m and Mg,m have singularities in codimension 2.

(3.3) Remark. Suppose that w ∈Mg, i.e. the curve C is nonsingular. Then
Ix = {1}, we have Gz = Aut(C), and D ∼= Uz (note that m ≥ 3), and locally
on Mg we have: Uw

∼= Aut(C)\D ∼= Aut(C)\Uz. This is well-known.

(3.4) Proof. By (2.7) we have isomorphisms

C := Ey ∼= Cx ∼= Dz.

Let h ∈ Gz ⊂ Γ. Then h ∈ Γ ∼= Gal(Hg,m → Hg) operates on Hg,m, and from
h ∈ Gz it follows that

z = x mod PGL = hx mod PGL
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hence there exists an element a ∈ PGL, unique by (2.6), such that

hx = ax.

Then ay = y, thus

C
y
−→ P





y
a|C





y
a

C
y
−→ P

and we define

βx(h) = a|C ∈ Aut(C).

Clearly βx is a group homomorphism. If βx(h) = idC , then a = idC , so h ∈ Ix;
if h ∈ Ix then a = id, thus βx(h) = idC . Equivalently

Ker(βx) = Ix.

By Lemma (2.9) we conclude:

♯π−1(y) = ♯Γ/♯Ix;

the group Aut(C) acts faithfully on the fiber π−1(y), it acts via PGL, so every
Aut(C)-orbit is mapped to a point inMg,m, thus

♯π−1(w) ≤ ♯π−1(y)/♯Aut(C).

Moreover

♯π−1(w) = ♯Γ/♯G,

thus we conclude that ♯G = ♯Aut(C) · ♯Ix, and we have proved exactness of the
sequence in (3.2).1.

Note that (3.2).2 has already been proved (cf. Lemma (2.9) plus the iden-
tification of Ix and Iy).

Using (2.7), the isomorphism C ∼= Dz and the universality of the deforma-
tion space D of the curve C we obtain canonically a commutative diagram

Ux −→ Uz




y





y

Ix\Ux = Uy −→ D −→ Aut(C)\D −→ Uw,

(C ∼= Dz).

Note that Ux → D is surjective (any point of D can be lifted to Uy by taking a
base for the sections in the ν-canonical sheaf, and Ux → Uy is surjective), hence
Uz → D is surjective, and we conclude that Uz → D factors as follows

Uz −→ Ix\Uz −→ D.
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Moreover, since Mg,m →Mg is a Galois covering andMg is normal

Gz\Uz
∼
−→ Uw.

Thus we obtain a commutative diagram

Uz

ւ ↓
Ix\Uz −→ D

↓ ↓
Gz\Uz −→ Aut(C)\D

∼=ց ↓
Uw

and we conclude
Aut(C)\D

∼
−→ Uw

(this seemed to be known, cf. [8], §1). Using (1) we conclude the proof of (3.2).3.
To prove (3.2).4 let g ≥ 3 and let C be a stable curve obtained by choosing

regular curves of genus

g(C ′′) = i ≥ 1, g(C ′) = g − i− 1 ≥ 1,

which intersect transversally in 2 different points

{P, Q} = C ′ ∩ C ′′.

The universal deformation family X → D is smooth over D − ∆, and ∆ =
∆P ∪∆Q consists of two divisors intersecting transversally. Let d ∈ ∆P , d 6∈ ∆Q

and e ∈ ∆Q, e 6∈ ∆P and let Xd, Xe denote the fibers of X over d and e
respectively. Note that

Jac(Xd)[m] ∼= Jac(C)[m] ∼= Jac(Xe)[m] (∼= (Z/m)2g−1),

and one easily sees that

Z× Z ∼= π1(D −∆, v)
R
−→ Aut(Jac(Xv)[m]),

where the isomorphism can be taken such that

Ker(R) = 〈(n, 0), (0, n), (1,−1)〉, R(π1(D −∆), v) ∼= Z/m;

moreover the unique normal cover U → D which is étale outside ∆ and which
is given by this representation R has a local description

U = Spf(W [[t1, . . . , tN ]][T ]/(TN − t1t2))

(which is a singularity of ‘’type An−1”) (Proof: this U is normal, and outside
t1 = 0 = t2 it has the correct structure, hence it is the one we are looking for.)

15



By what has been proved we know that U ∼= Uz, thus for the choice of C
we made, any point z ∈ τ−1([C]) is singular onMg,m; clearly this gives a closed
subset in codimension two asMg,m is normal, so is non-singular in codimension
one. If we take

E|Uy
−→ Uy

the same arguments apply, and we conclude that any point in Hg,m above the
[C] ∈Mg chosen above is singular onHg,m. This concludes the proof of Theorem
(3.2).

(3.5) Remark. It is easy to check that Mg,m → Sm is smooth if g = 2 and
m ≥ 3. This can be proved by a direct (easy) verification. We can also use [9],
page 91, Satz I.
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Verlag (1973).

[3] P. Deligne, Le lemme de Gabber. In: Sém. sur les pinceaux
arithmétiques: la conjecture de Mordell (Ed. L.. Szpiro). Astérisque
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