The Schottky problem and second order theta functions.

Bert van Geemen

December 6, 1999

1 Introduction

The Schottky problem arose in the work of Riemann. To a Riemann surface of genus g one can
associate a period matrix, which is an element of a space H, of dimension ¢g(g+1)/2. Since the
Riemann surfaces themselves depend on only 3g — 3 parameters if ¢ > 2, the question arises
as to how one can characterize the set of period matrices of Riemann surfaces. This is the
Schottky problem.

There have been many approaches, and a few of them have been succesfull. All of them
exploit a complex variety (a ‘ppav’) and a subvariety, the theta divisor, which one can associate
to a point in H,;. When the point is the period matrix of a Riemann surface, this variety is
known as the Jacobian of the Riemann surface. A careful study of the geometry and the
functions on these varieties reveals that Jacobians and their theta divisors have various curious
properties. Now one attempts to show that such a property characterizes Jacobians. We refer
to [M2], Lectures IIT and IV for a nice exposition of four such methods, to [vdG], [B], [D2] for
overviews of later results and [V] for a newer approach.

In these notes we discuss a particular approach to the Schottky problem which has its
origin the work of Schottky and Jung (and unpublished work of Riemann). It uses the fact
that to a genus g curve one can associate certain abelian varieties of dimension g — 1, the Prym
varieties. In our presentation we emphasize an intrinsic line bundle on a ppav (principally
polarized abelian variety) and the action of a Heisenberg group on this bundle. A systematic
study of the geometry associated to these leads in a natural way to Prym varieties. Moreover,
one finds several other remarkable properties of Jacobians which suggest geometrical solutions
of the Schottky problem.

Acknowledgements. I thank the organizers of the conference ‘Variedas abelianas y func-

tiones theta’ for the oppertunity to present these lectures and for providing the pleasent working
conditions in Morelia.

2 The Schottky problem

Introduction. We recall the basic results on period matrices of Riemann surfaces. References
are [ACGH], [C], [GH] and [CGV]. Then we briefly discuss modular forms, a reference is [Igl].
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2.1 Period matrices

2.1.1 Let C be a Riemann surface of genus g (we consider only compact Riemann surfaces in
these lectures). On the homology group H,(C,Z) & Z*9 there is an (alternating, nondegenerate)
intersection form. A symplectic basis of H(C,Z) is a basis {«ay,...,a,, (,..., 3,} satisfying

(i, a5) = (B, B;) =0, (g, ;) = 04,

with 0;; Kronecker’s delta (so §; =1, d;; = 0 if ¢ # j).

The complex vector space of holomorphic one forms on C'is denoted, as usual, by H°(C, Q¢),
it has dimension g. Given a path v in C' and an w € H°(C,¢) one can compute the integral
J,w. We will view [, as a map H°(C,Q¢) — C, thus it is an element of H°(C,Q¢)*, the dual
vector space of H°(C,Q¢). If v is a closed path, the integral only depends on the homology
class of 7, which we denote by the same symbol: v € H;(C,Z). Thus we get a map:

Hl(Caz) —)HU(C,QC)*, ’Y'—>/
v
This map is injective, in fact much more is true:

2.1.2 Theorem. Let {a;, §;} be a symplectic basis of H(C,Z). Then there is a unique
basis {wy, . ..,w,} of H*(C,Q¢) such that:

/ Wj = 61]
o

Thus the elements [, € H°(C,Q¢)* form the dual basis of the basis {w;} of H°(C,Qc).

2.1.3 A symplectic basis of H,(C,Z) thus determines a basis of H'(C, ). For this we only
use the o;. We now use the 3; to define a complex g x g matrix:

2.1.4 Definition. The period matrix of C' (with respect to the symplectic basis «;, 3; of
H,(C,Z)) is the matrix

Bi

and w; € H(C,Q¢) as in Theorem 2.1.2.

2.1.5 Remark. The period matrix determines the image of H,(C, Z) in H°(C,Q¢)*. In fact,
using the basis [, of H°(C,Q¢)*, we have

/:7'1'1/ +Ti2/ +---+7—ig/a
Bi aq o2 a

g

since both sides give the same result when applied to the basis elements w; € H°(C, Q).
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2.1.6 Torelli’s theorem. Torelli’s theorem asserts that one can recover the Riemann surface
from its period matrix. There are many proofs of this theorem, all of them use the Jacobian
its theta divisor which are associated to a period matrix (see also 4.3.7).

2.2 The Siegel upperhalf space

2.2.1 The Schottky problem. The Schottky problem basically asks for equations which
determine the period matrices of Riemann surfaces among all g x ¢ matrices. There are two
well known properties of period matrices: 7;; = 7;; (so period matrices are symmetric) and
Im(7), the imaginary part of 7, which is a symmetric, real, g X g matrix, defines a positive
definite quadratic form on R?: *z(Im7)z > 0 for all z € RY. We write Im(7) > 0.

This leads to the following definition and theorem.

2.2.2 Definition. The Siegel upperhalf space H is:
H,:={r € M,(C): 'r=1, Im(r) >0}

2.2.3 Theorem. Let 7 be the period matrix of a Riemann surface. Then 7 € H,.

2.2.4 The subset H, of M,(C) is actually complex manifold (with the complex structure
induced from that on A, (C)). In fact, H, is an open subset of the vector space of symmetric
g x g matrices (if Im(7) > 0 then also Im(7 + 7') > 0 for any symmetric 7/ with sufficiently
small coefficients). The dimension of Hy is $g(g +1).

We investigate Hy in more detail to see what kind of equations for period matrices one
should expect.

2.2.5 The symplectic group. To define the period matrix of a Riemann surface, we had
to choose a symplectic basis. Any two symplectic bases are related by an element of

T, = Sp(29,2) = {4 € My (2) s AR A =By} with Ey=( ) ().

One can show that I'y acts on H, as follows:

TxH,—H, (A1) dr=(@+he+d?,  a=( ),
where a, ..., d are g x g blocks of A. The period matrices of a Riemann surface X are a I'j-orbit
in Hy. Thus, rather than study the period matrices of Riemann surfaces in H,, one could study
their images under the quotient map

m:H, — A, :=T,\H,.

The action of T'y on H, is properly discontinuous (but not fixed points free) and A, is complex
variety (with singularieties if ¢ > 1). If g = 1, A; = C using the j-invariant for elliptic curves
(=Riemann surfaces of genus 1).
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2.2.6 Moduli spaces. Let M, be the moduli space of Riemann surfaces of genus g. It is a
variety whose points correspond to isomorphism classes of Riemann surfaces. Then we have a
well defined holomorphic map:

Jj: My — Ay, [X] — Tyr

where 7 is a period matrix of X. Torelli’s theorem implies that j is injective.
The Schottky problem can now be reformulated as the problem of finding equations for the
image of j.

2.2.7 Definition. Let Jg C Hy be the set of period matrices of Riemann surfaces. Its image
in Ay is

j(My) = Image(J] — Ay = Tj\H,).
The subvarieties .J) and j(M,) are not closed, see 2.2.8. We define the Jacobi locus J; to be
the closure of .J9 in Hy:

Jg = J0 (C Hy).

2.2.8 Decomposable matrices. A 7 € H, will be called decomposable if 7 lies in the I,
orbit of matrices in diagonal block form (the diagonal blocks being matrices in upper half planes
of lower dimension). The set J, — Jg in H, consists of decomposable matrices, the diagonal
blocks being period matrices of Riemann surfaces of lower genus. This follows from a result of
Hoyt.

2.2.9 Modular forms. From Teichmiiller theory one knows that the subset .J, is actually
an irreducible subvariety of H, of dimension 3g — 3 for ¢ > 1, if g = 1 one has H; = J, = J).

Since J, is a complex subvariety of H,, it is natural to ask for holomorphic functions f; on
H, such that f;(1) =0 for all i implies 7 € J,. The fact that J, is invariant under I'; suggests
that we could try to find such f; which are I'j-invariant. It is known that a variant of this idea
will work.

A Siegel modular form of weight & is a holomorphic function on H, which transforms in the
following way under I';:

fiH,—C,  f(Ar) =det(er+ d)Ff(r), A= (‘CL Z) €T,

in case ¢ = 1 one has to add a certain growth condition on f(7) for 7 — iocc. The modular
forms of weight k& form a complex vector space which has finite dimension. For suitable, large,
k, a basis fy,..., fx of this vector space gives an everywhere defined map:

fi : Hy — PV, T+ (fo(r) : ... fn(7)).

Since fi(AT) = det(ct + d)*fi(7) for each i, we have jiz(AT) = jix(7) and thus the map jix
factors over A, = I';)\H,. In this way we get a map:

pi: Ay =T, \H, — P,
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A fundamental result is that for suitable £ the map ju; embeds A, (so A, = uk(A4,)). The
image of 14, (and thus A, itself) is a quasi projective variety, that is, a Zariski open subset of a
projective variety. For this projective variety one can take the Satake compactification of A,
which has the following nice set-theoretic description as a disjoint union:

A, A, U A, UL U Ay,

here Ay is defined to be a point. Actually the maps jy, extend to maps A, and for suitable k
one has pi(A,) = A, =2 ui(4,).

The closure of p;(j7(M,)) is a projective subvariety of PY. Thus it is defined by a (finite) set
of homogeneous polynomials. Determining these polynomials as well as the modular forms of
weight k gives a solution to the Schottky problem. The ‘best type’ of equations for the Jacobi
locus J, are thus homogeneous polynomials in modular forms.

Note that if F' € C[Xy, ..., Xy] is a homogeneous polynomial of degree d and fq,. .., fy is
a basis of M (T, k) then 7 — F(fo(7),..., fn(7)) is a modular form of weight kd. Thus the
equations for J, we look for will be modular forms.

2.2.10 Algebraic geometry. We just explained that the nicest equations for the period
matrices are modular forms. These modular forms are obtained from homogeneous polynomials
which define the (closure in PV of) the image of the composition

M, -1 A, =T,\H, - PV

The map g is given by modular forms on H,. To find the image of point [C] (€ M,), one
has determine a period matrix 7 € H, of C' and then evaluate the modular forms at 7. In
practice these two ‘transcendental’ steps cannot be made explicit, except for very special cases,
for instance when the Riemann surface C' has many automorphisms.

However, any Riemann surface is an algebraic curve and can thus be defined by a polynomial
F € C[X,Y] in two variables. Using the algebraic geometrical approach one finds that the
coordinates of u(j[C]) are given by polynomials in the coefficients of F. For example, if the
curve is hyperelliptic (and F = —Y? 4+ [[(X — a;)) Tomae’s formulas essentially compute these
coordinates (cf. [M3]). In the classical literature one finds several other partial results for more
general curves.

2.2.11 Table. We conclude this section with a table. It shows that the Schottky problem is
trivial for ¢ < 3 and that for ¢ = 4 one equation might be suffcient.

‘gH dim A, ‘dimJg‘ codimy, J, ‘

2 3 3 0
3 6 6 0
1 10 9 1
5 15 12 3
9] 39(¢+1)][39—-3] 3(g —2)(g —3)
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3 Abelian Varieties

3.1 Complex tori and polarizations

3.1.1 We return to the problem of finding the modular forms which solve the Schottky prob-
lem. It turns out that ‘nature’ has already done most of the hard work. To explain this we
introduce abelian varieties and show how they are related to H, and its quotient A, = I',\H,.
In a sense, we take the longest possible route. However, it is an interesting one where we
see various important geometrical objects and constructions. At the end we get, for free, an
explicit map
O: A,(2,4):=T,2,4)\H, — P¥!

which we will introduce and study in detail in the next chapter since it appears to be of great
importance for the Schottky problem. The variety A,(2,4) is a finite covering of A,.

The intrinsic approach which we sketch here is due to Mumford, but is implicit in the
classical literature on theta functions. Readers already familiar with theta functions will find
the classical results in the corresponding notation in the next chapter (and might want to skip
this chapter).

We study line bundles on complex tori and we recall that A, is the moduli space of principally
polarized abelian varieties. Then we introduce the Heisenberg group and give some applications.

3.1.2 Complex tori. As a first step we will associate a geometric object, a complex torus
toa 7 € Hy,. Then we characterize the tori obtained in this way in Theorem 3.1.4.

Since Im(7) > 0, the matrix Im(7) is invertible. The image of Z?? in C? under the g x 2g
matrix (/1) is then a lattice A, in C9:

AN, =29 +779 — CI.
The quotient of CY by this lattice is denoted by
X, :=CI/A,,

it is a (compact) complex variety, a torus. In case 7 € Jg is the period matrix of a Riemann
surface C' this torus is J(C), the Jacobian of C'. Using notation from the previous lecture we
have:

J(C) = H°(C,Qc)*/H\(C, Z).

3.1.3 The polarization. Let V' be a complex g-dimensional vector space and let X = V/A
be a complex torus. Then we can choose a basis B = {a1,..., a4, b1,...,b,} for the lattice A
in such a way that {a;,...,a,} is a C-basis of V. The matrix 75 = 7x g € M,(C) defined by
bi = 3_;(7B)ija; then has an invertible imaginary part, but Im(7p) need not be positive definite
nor is 7 necessarily symmetric.

We should recall however that the period matrix of a Riemann surface was defined with
respect to a symplectic basis (w.r.t. the intersection form). The formulation of the following
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theorem is not so elegant since various conventions are not compatible. Note that if B is a
symplectic basis for an alternating form E on A and we define

B':={a,...,a4 —by,...,—b,} (with B = {ay,...,aq, b1,...,b,})

then B’ is a symplectic basis for the form —FE.
3.1.4 Theorem. A complex torus X = V/A has a basis B for which 75 € H, iff there is an
alternating form E : A x A — Z such that

1. B is symplectic basis for —F,

2. The R-linear extension of £ to CY = A ®z R satisfies the two conditions:

E(iv,iw) = E(v,w), E(v,iv) > 0 (v, w e CY)
and v # 0 in the second condition.

In case 7 € Hy, the basis B = {ey,...,eg, Te;...,Te,} of A; (with e; the i-th standard basis
vector of CY) and the alternating form E defined by the matrix — Ejy satisfy these two conditions.

Proof. Let B and FE satisfy the conditions of the theorem and let B’ be as above. Then B'is a
symplectic basis of A and F is given by the matrix Fj on the basis B". Let [i] : V — V| z — iz
be multipication by 4 (i> = —1) and let .J, be the 2g x 2¢g matrix of [i] w.r.t. the R-basis B’ of
V. The conditions in 2 translate in the following matrix identities:

JEad=Fo,  Fado>0  with Bo=(") ).

To determine J; we define W =Ray + ... + Ray (2 RY) and
R:WxW —YV, (u,v) — u + .

Since [i](u + vi) = —v + ui we have [i]R(u,v) = RJ(u,v) where J : W? — WW?2 is given by the

matrix: 0 )
— 1P — -
J=R [Z]R—(l 0).

By definition of 75, the map
Q= —715): W? —V

maps (u,v) to uyay + ... ugay +v1(=b1) + ...+ vy(—by). Thus
J. = Q' Q, = (U 'R)(RT[IR)(R™'Q,).

Let 7 = X +iY and X, Y € My (R), then Q. (vy,v3) = v1 — 709 = (v; — Xvg) +i(—Ywvy) =
R(v; — Xy, —Yvs), so we have

e (1 —X) fl 1_(1 —XY—1> _(-XY—1 Y+XY—1X>
R QT‘(O y) BT = Sy =y yix )¢
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The matrix J.Ey.J, is then:

( ty L(EX — X)Y ! Sy 41y (X —tX)Y LY )
—YY L4 IXY HX — XYL XYY Y Y OLX XY (X — X)Y X )

The condition *J, EyJ, = Ej is equivalent to 'X = X, 'Y =Y (since Y is invertible, X =*X
iff we have a zero in the upper left corner, then we have a I upper right iff 'YY ! =T (i.e.
Y =1Y), the rest follows).

The condition E.J, > 0 is:

( v —Y'X >>0 ivalentl] (1 0><Y_1 0 )(1 _X>>o
XY V4 XYVOIX equivalently, —\ _x 1 o v')\o 1 '

Since a matrix A is positive definite iff “SAS is positive definite (where S is invertible) iff
AT = (A7) AA™! is positive definite, this condition is equivalent to Y > 0. O

3.2 Line bundles.

3.2.1 To understand the significance of an alternating form with properties as in Theorem
3.1.4 we recall the basic facts on line bundles. Line bundles on a complex variety X are
important in the study of maps from X to a projective space PY. There is a natural line
bundle, usually denoted by O(1) on P¥. Given a holomorphic map ¢ : X — P the pull-back
of O(1) to X is a line bundle L := ¢*O(1) on X. Moreover, the map ¢ is given by global
sections of L. Thus a knowledge of line bundles and their sections allows one to determine all
embeddings (if any) of X in a projective space. We restrict ourselves to a discussion of line
bundles on a torus. References for line bundles on tori are [M1], Chapter 1 and [LB], Chapter
2.

3.2.2 Cocycles. To construct a map
f:X=V/A — PV

one could use holomorphic functions f; : V. — C (0 < i < N) satisfying the transformation
rules:

filz+ X)) =can(2) fi(2), (ANeA, zeV)

with ¢, independent of ¢ and ¢)(z) #0 for all z € V. Then (...: fi(z+ ) :...) = (... fi(2):
..) and the map V' — PV 2 — (...: fi(2) : ...) factors over X = V/A. The transformation
law implies that
aatu(2) = ez + )eu(z)
(replace z by z + p in the transformation rule). This is the cocycle rule and {cy}rea is called
a cocycle for A.
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3.2.3 Line bundles. Given a cocycle {c,} one can construct a complex variety L of dimen-
sion 1 4+ dim X as follows. Let A act on V' x C by the rule:

A (z,8) = (2 + A ea(2)),

that (A + p) - (2,t) = p- (A (2,t)) follows from the cocycle condition. The orbit space L :=
(V' xC)/A is a complex manifold and has a holomorphic map 7, : L — X induced by (z, 1) + z.
The triple (L, 7, X) is a line bundle. Any line bundle on a torus can be defined by a cocycle.

3.2.4 Global sections and theta functions. A holomorphic function f : V' — C satisfying
the rule f(z + A) = e\(2) f(2) defines a map

§:V—=VxC, zw(zf(2) and A-5(z) =8§(z+\),

hence § gives a well-defined holomorphic map s : X — L which obviously satisfies (71,s)(z) = z
for all z € V. Such maps s : X — L are called (holomorphic) sections of the line bundle L and
such functions are called theta functions. Any section is obtained from a theta function. The
global sections form a finite dimensional C-vector space denoted by I'(X, L).

3.3 Classification of Line bundles

3.3.1 Isomorphism of bundles. Given a torus X = V/A we now want to determine all
line bundles on X as well as the vector spaces I'(X, L).

Two line bundles L, L' on X are isomorphic if there is a bi-holomorphic, fibre preserving
map

L % I
ﬂ-Ll lﬂ-l"
X Zd—X> X 7TLI¢:7TL

which is linear on the fibers. Let ¢y, ¢} be the cocycles defining L and L'. Then ¢ corresponds
to a bi-holomorphic map

®:VxC—VxC, (z,t) — (24 X, ¢(2)t)
which intertwines the actions of A given by the two cocycles, so:
(24X ax(2)6(2)1) = (2 + A, ¢z + N\ (2)t)

for all z, £, .

3.3.2 The Picard group. The set of line bundles on the torus X modulo isomorphism is
an abelian group with tensor product as group law, equivalently, product {z — c\(2)c)(2)}x
of cocycles. This group is called the Picard group of X, Pic(X). It can be identified with the
sheaf cohomology group H' (X, O%). From the exponential sequence:

0—7Z—O0x 0% —0, e(f):=e
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one obtains an exact sequence:
0 — Pic®(X) — Pic(X) - NS(X) — 0,

here NS(X) is the Néron-Severi group of X (which is the subgroup H*(X,Z) N H“!'(X) of
H*(X,Z) = 79297Y) and Pic®(X) (2 HY(X,0)/H'(X,Z)) is a complex torus. The map c is
the first Chern class of a line bundle. For X = V/A the group N.S(X) is canonically isomorphic
to the group of Z-valued alternating bilinear forms F on A with E(iz,iy) = E(z,y):

NS(X)={E € Hom(A x \,Z), E(z,y)=—-E(y,x), E(iz,iy) = E(z,y) }.
The group Pic’(X) is canonically isomorphic to:
Pic®(X) = Hom(A,U(1)), with U(l)={z€C: |2|=1},

we do not discuss the complex structure on Pic®(X).

Given f € Hom(A,U(1)) the corresponding line bundle Lg is defined by the cocycle
{ea(2) = B(A)}a, thus the cocycle does not depend on z. Actually any homomorphism
v : A — C* defines a cocycle in this way, but the bundle L. is isomorphic to a unique
Ls.

3.3.3 Appell-Humbert data. Given a § € Hom(A,U(1)) and an E € NS(X) it is not
possible in general to define canonically a line bundle on X. However, one can write down
cocycles which exactly parametrize Pic(X). These cocycles are determined by Appell-Humbert
data which are defined as follows. For E € NS(X) define a (Hermitian) form

H=Hp:VxV — C, H(v,w) := E(v,iw) +iE(v,w)

(that H is Hermitian follows from E(iz,iy) = E(x,y) = —E(y,)). Next one considers maps
« (not homomorphisms in general):

a: N —U(1), a(A 4 1) = a(N)a(p)(=1)FOm,

Note that if a, o' are such maps then o/a™! is a homomorphism A — U(1). A pair («, H) is

called Appell-Humbert data (for the torus X) and it defines a cocycle by:
ea(z) = a()\)e%H()‘a/\)JrﬂH(/\,Z)_

Let L(q,m) be the line bundle on X defined by this cocycle.

3.3.4 Theorem. (Appell-Humbert) Let X be a complex torus. Then each line bundle on X
is isomorphic to a L, gy for uniquely determined Appell-Humbert data (o, H).
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3.3.5 Very ample line bundles It is now an interesting problem to determine the vector
spaces I'(X, L(o,my) and to see for which bundles the global sections define an embedding of X in
a projective space. Such line bundles are called very ample. The precise results are not so easy
to state but the following result, due to Lefschetz, is classical. We recall that an Hermitian form
H on a complex vector space V is called positive definite (and one writes H > 0) if H(v,v) > 0
for all v € V' — {0}. In terms of E (= Im(H)), the condition H > 0 is obviously:

E(w,iw)>0  YveV—{0}.

3.3.6 Theorem. (Lefschetz) Let (o, H) be Appell-Humbert data on a torus X.
If H > 0 then the line bundle L4 ) is very ample for any n > 3 (the bundle La,m) 18
then called ample). Conversely, if L(q ) is very ample then H > 0.

3.3.7 Definition. A complex torus is called an abelian variety if it has a very ample line
bundle, equivalently, if it has an embedding # : X — P". (In that case, Chow’s theorem implies
that the image 0(X) is a projective variety, that is, is defined by homogeneous polynomials.)

3.3.8 Riemann-Roch. The reader now recognises the two conditions on the polarization
we met in 3.1.4. The first garantees that E € NS(X), the second that there exist very ample
line bundles on X.

One can determine the dimension of I'(X, L, m)) in terms of o and H. To state a weak
version of this result, we recall that if £ : A x A — Z is an alternating form then there is a
(generalized symplectic) basis {ai,..., a4, b1,...,b,} of A such that

E(aj,ar) = 0= E(bj,b),  Elaj,b) = e,

with §;, = 0if j # k, §;; = 1, and e; € Z>, with e; dividing e;;; (we adopt the convention
that any e; divides 0). These e; are uniquely determined by E and are called the elementary
divisors of E. In case E(v,iv) > 0 for all v # 0 we have of course e; # 0 for all j.

3.3.9 Theorem. Let L, ;) be an ample line bundle on X (so H > 0) and let ey,...,e, be
the elementary divisors of E = Im(H). Then

dim (X, Lia,m)) = e1€2. .. €4.

3.4 Principally polarized abelian varieties.

3.4.1 The tori which interest us particularly are the Jacobians of curves and more generally,
those defined by a 7 € H,. Theorem 3.1.4 and the general results above show that such a torus
X = X, comes with a given element £ € NS(X) which defines ample line bundles L, z) (with
H = Hg) and E has elementary divisors e; = ... = ¢, = 1 (so dimI'(X, L(,,i)) = 1). Note
that H > 0 implies all e; # 0 and thus: dimT'(X, Lo, m)) = 1 iff e; = 1 for all j.
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3.4.2 Translates of ample bundles For any a € X we have an isomorphism
T, : X — X, r+— x+a,

the translation by a. One can pull-back line bundles along a translation. This gives a map
T} : Pic(X) — Pic(X) which preserves the Chern class ¢(T, L) = ¢(L). The map

¢ X — Pic®(X) = Hom(A,U(1)), ar—T;L®L™'
is a homomorphism which is determined by E = ¢(L) in the following way:

¢r(a) = [\ — TPV (A e A)
where @ € V maps to a € X = V/A (since E(A,A) C Z this does not depend on the choice of
a). In case det(F) # 0, this map is surjective with kernel

ker(¢r) = (Z/e1Z)° @ ... ® (Z/e,Z)*.

In particular, if two ample line bundles L, L' have the same Chern class (¢(L) = ¢(L') ) then
L'® L7' € Pic®(X) = ¢1(X) is isomorphic to T L ® L~ for some a € X and thus L and L/
are translates of each other: L' =2 T*L.

If L is ample, det(E) # 0 so the map ¢;, induces an isomorphism on the tangent spaces at
the origins. Since Pic’(X) = HY(X,Ox)/H'(X,Z) its tangent space at 0 is H'(X, Ox) and
we get ToX =2 H'(X, Ox).

3.4.3 Definition. A principally polarized abelian variety (ppav for short) is a pair (X, F)
with X a complex torus and E' € NS(X) satisfying

Hg >0,  dimT(X, Ligu,) = 1.

Equivalently, a ppav is a pair (X, L) with X a complex torus and L an ample line bundle with
dim['(X, L) = 1, but ppavs (X, L), (X, L") will be identified if ¢(L) = ¢(L'), that is, if L and
L’ are translates. The dimension of a ppav (X, E) is defined to be dim X.

Two ppav’s (X, E), (X', E') are isomorphic, we write (X, E) 2 (X', E'), if there is an
isomorphism ¢ : X — X’ with ¢*E' = E, where ¢* : H*(X',Z) — H*(X,Z) is the map
induced by ¢.

3.4.4 Moduli of ppav’s. With these definitions one can verify that A, = I';\H, is the
moduli space of g-dimensional ppav’s, roughly speaking:

A, ={(X,E)}/ =,
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3.4.5 The theta divisor of a ppav. Given a ppav (X, F) of dimension ¢, any two line
bundles L, L' with ¢(L) = ¢(L') = E are translates and they have, upto scalar multiple, a
unique non-zero global section. Thus the zero locus of such a section is a variety © = O(xp)
of dimension g — 1 which depends only on (X, F) and is called the theta divisor of (X, E).
In case (X, F) = JC (with E the intersection form), Riemann proved that the divisor © ¢ is
isomorphic to the image of an Abel-Jacobi map:

Ojc = Image(C’(g_l) — JC).

This divisor thus carries interesting geometrical information on the Riemann surface.
It is known that the dimension of the singular locus of O ¢ is at least g — 4. This property
has been used to study the Schottky problem.

3.4.6 Symmetric line bundles. Given a ppav (X = V/A, F) there is no canonical way to
find a line bundle L on X with ¢(L) = E. However, one can consider Appell-Humbert data
(a, Hg) with o« : A — {£1} (C U(1)). The corresponding bundles have the property that
they are symmetric: [—1]*L =2 L where for n € Z:

n]: X — X, T —> nx.

There are 229 such o and thus 229 such bundles, in fact if o defines a symmetric bundle, then
so does £a where € : A — {+1} is a homomorphism.

To see that such « indeed exist, let B := {a4,..., a4, b1,...,b,} be a symplectic basis of A.
We define

ap: N=Z9x 79— U),  ag((m,n)):=(=1)™"

where (m,n) € Z9 x Z9 corresponds to mya; + ... + mgya, + niby + ... + ngb, € A and
bm-n =min +...4+myn, It is easy to check that (ap, Hp) are Appell-Humbert data and
thus define a symmetric line bundle Mz on X and (X, Mp) is a ppav.

3.4.7 An intrinsic line bundle. Although it is impossible to define intrisically a line bundle
L on a ppav (X, E) with ¢(L) = E, one can define such a line bundle with ¢(L) = 2E. In fact,
since (—1)22O = 41, we have the line bundle

L= L(a,H); Im(H) =2F, a()\) =1 (V)\ S A)

on X. This bundle is isomorphic to M®? for any symmetric line bundle with Chern class
¢(M) = E. Since the elementary divisors of 2E are 2e; = 2, we get:

dim H°(X, L) = 29.

This bundle will be very important in the remainder of these notes.
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3.5 Heisenberg groups

3.5.1 Introduction. We now recall an interesting aspect of line bundles on an abelian
variety. It permits one to find an intrinsic basis of the vector spaces H°(X, M) for any line
bundle M on X. More precisely, one finds a finite set of such basis, and each such basis is
defined up to multiplication by a constant. For the sake of simplicity we restrict ourselves to
the case of the intrinsic bundle L on a ppav. References for this section are [Igl], [LB], Chapter
6 and [K].

3.5.2 Let (X, E) be a ppav and let L be the intrinsic line bundle on X. Since ¢(L) = 2E we
get from 3.4.2 that

T)L=L < ¢r(a) =0 < a € X[2] :=ker([2] : X — X).

Given a € X|[2] there is no intrinsic isomorphism 7 L — L. If L is given by a cocycle {cx(2)},
then T L is given by the cocycle {c\(z 4+ a)} but since ¢)(2) # cx(z + a), one has to choose a
map d; as in 3.3.1 to get an isomorphism. This forces us to consider the Heisenberg group of
L. Its elements are couples of a 2-torsion point and an isomorphism of bundles:

H(L) :={(¢,a): ae X[2], ¢:T'L = L}.

With the natural group law, the Heisenberg group turns out to be non-abelian (1), in 3.5.3 we
give a concrete description of H(L). There is an exact sequence:

11— C"— H(L) — X[2] — 0.

The first non trivial map is ¢ — (¢,0), the second is (¢, a) — ¢. In fact, the map H(L) — X|[2]

is obviously surjective and the only isomorphisms of (any) line bundle on a compact complex

variety with itself are scalar multiples of the identity. The subgroup C* is the center of H(L).
The group H(L) acts on the vector space of global sections I'(X, L) = C? as follows:

(¢, a)s := o(T,'s).

A basic fact is that this action is irreducible (the only invariant subspaces are {0} and the space
itself).

3.5.3 A concrete description of the Heisenberg group H(L) and its action on H°(X, L) is
obtained as follows. We define a group

H=H,:=C"x (Z/2Z)° x Homz((Z/2Z)?, C")
with product (the term m(u) makes it non-abelian):
(t,u,l)(s,v,m) = (tsm(u),u + v, + m).

Note that the image of 1 € Z/2Z by a homomorphism f to C* must be 2-torsion, so f(1) =
(—1)™ for a unique n € Z/2Z. The map f — n gives an isomorphism Hom(Z/2Z,C*) — Z/2Z.
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The Heisenberg group H(L) is isomorphic to the group H. An isomorphism which is the
identity on the subgroups C* is called a theta structure:

a:H(L) = H,  «agc =ide-

There are only a finite number of theta structures: the elements (1,u,l) € H have order at
most 4 and, together with C*, generate H, moreover there are only a finite number of elements
of order at most 4 in H (and thus in H(L)) so a theta structure is determined by the map it
induces from the finite set of order at most 4 in H(L) to the corresponding finite set in H.

The group H has a natural representation (the Schrédinger representation) on the vector
space V := Functions((Z/2Z)9, C) (= C¥) as follows:

(tu,O)f) (W) =) flu+u)  (tul)eH, o €(Z/2Z).
The vector space V' has a natural basis of ‘delta functions’ {6, },¢(z/2z)s With

if u#o

if uw=o.

5, (Z/2Z)° —s C, u»—>{ ;

The main result on Heisenberg groups asserts that this representation of H on V coincides with
the action of H(L) on H°(X, L). The irreducibility of the representations and Schur’s lemma
imply that, given a theta structure o : H(L) — H, there is an essentially unique isomorphism
H°(X,L) 2 V which intertwines the representations. The basis of delta functions in V' then
gives a canonical basis of the vector space H°(X, L). The consequences of this remarkable fact
are discussed in the next chapter. We summarize the results in the theorem below.

3.5.4 Theorem. Given a theta structure o : H(L) — H, there is a unique (up to scalar
multiple) isomorphism:
T(a): HY(X,L) — V

which satisfies:

mx, ) ™ py
T(a) ((,a)s ) = a(¢,a) (T(a)s) (¢,0) ] | (4, a)
mx, ) ™ py

In particular, the elements T'(«) 1(d,) are a basis of H°(X, L) and in these sections give a map
O X — P¥7' =PV,

where the coordinates of PV are parametrized by (Z/2Z)9.
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3.5.5 We need one more fact. Since (¢,0,0) € H acts by scalar multiplication on V', it acts

trivially on PV and thus the Schrodinger representation induces a representation of H/C* =2
(Z/2Z)? on PV. Let a = (t,u,l) € H map to a € H/C*, then we write

Ula) : PV — PV

for the projective linear map induced by the action of @ on V.

For z € X[2] any two elements (¢, x), (¢',z) € H(L) are related by ¢' = t¢ for some ¢ € C*
and thus a theta structure induces an isomorphism (a level two structure), which we also denote
by a (with some abuse of notation):

o2

a: X[2]= H(L)/C* = (Z/2Z)* = H/C".

With this notation, the following diagram is commutative:

X 24 PV

Torl(a)l lU(a)
X 24 PV

so the translation by two-torsion points on X is given by projective transformations on PV.

4 Geometry of second order theta functions

4.0.6 Introduction. We work out the consequences of the theory of the previous chapter
and show that we recover some classical results from theta function theory. In particular, we
find intrinsically defined maps ©, : X, — PV and © : H; — PV.

In section 4.2 we consider the intersection of the images of these maps. Somewhat surpris-
ingly we find that if X, is a Jacobian the intersection is rather large. This is the first hint that
second order theta functions are rather efficient at detecting Jacobians.

Next we consider the intersection of a tangent space of O(H,) with ©(X,), again the
Jacobians behave in a peculiar manner. This led Izadi to a geometrical solution of the Schottky
problem in the case g = 4.

4.1 Classical theta functions

4.1.1 Classical notation. We return to the upper half plane and the compex tori X, :=
CI/A,.

The standard basis of Z?9 gives a symplectic basis B of A, = Z + 729, the corresponding
symmetric line bundle Mp will be denoted by M, (cf. 3.4.6). Thus (X, M) is a ppav. This
bundle can thus be defined by a cocycle {c,} as in 3.3.3 but Riemann’s original cocycle {e,}
is more convenient for various purposes (for example, Riemann’s cocycle is holomorphic as
function of 7 but the ¢, are not, since H is not holomorphic in 7). The explicit formula for
Riemann’s cocycle is:

ex(t,z) == e (kT +2'kz) A=1+71k €A,).
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The global section of M, is called Riemann’s theta function. In general, the global sections of
a line bundle M on X, with Chern class ¢(M) = kc(M,) for k € Z~, are called theta functions
of level £.

The intrinsic bundle L (c.f. 3.4.7) over X, will be denoted by L,. Its defining cocycle is
{e3} (since a% = 1).

4.1.2 Canonical basis. For applications of Theorem 3.5.4, which gives bases of T'(X,, L, ),
it is important to know that given 7 € H,, the intrinsic line bundle L, on X, has a natural
theta structure

ar: H(L;) — H.

It has the property: a, : (¢, (a + 7b)/2) —> (t4,a,b) for some t, € C* and b € (Z/2Z)9 =
Hom((Z/2Z)?,C*). The corresponding canonical basis of H°(X,, L,) is given by the second
order theta functions:
0o(r,2) = 3 D)2 (0 5))
nez9

where 0 € (Z/2Z)% (and one may take representatives o with components o; € {0,1}). That
is, the isomorphism T'(c;) defined by the theta structure ., satisfies:

T(a,): H' (X, L) —V, 0, —> 0,.

4.1.3 Maps. As a consequence of the previous results we now have, for any 7 € H, the
natural map:
O, :=0,, : X, — PV, zr— (oo l,(T,2) ).

We see that the maps O, for various 7 glue together, in fact the theta functions 6, are holomor-
phic in both z and 7. Thus we get a map from H, x C9 to the projective space PV. These theta
functions and these maps were well known classically, but the approach with the Heisenberg
group emphasizes that the construction is a canonical one.

4.1.4 Theta constants. Since an abelian variety X = V/A has a ‘canonical’ point, the
origin, any theta structure a defines a canonical point ©,(0) € PV. Thus we get a map ©
from the moduli space of pairs ((X, E), a) of ppav’s with theta structure to PV, defined by:
O((X, E),a) := 0,(0).

In the classical picture, this gives the map

©:H, — PV, T 0,(0)=(...:0,(1,0):...).

the coordinates are called theta constants (but they are not constant in 7 (!)). Since there is
more than one theta structure, one should not expect that this map factors over A, = T',\H,.
However this is ‘almost’ true.
For an even, positive, integer k we define (normal) subgroups (of finite index) of I'y =
Sp(2g,7Z) by:
Lyk):={Ael,: A=Imodk},
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/ /

Zl Z,> and diag(b') = diag(c') = 0 mod Qk} .

T, (k, 2k) := {A ET,(k): A=T+k (

We denote by A(H) the subgroup of automorfisms of H which are the identity on C* C H.

If a, o/ : H(L) — H are theta structures, the map o/a™' : H — H is in A(H) and for

¢ € A(H) the map ¢ : H(L) — H is a theta structure. In this way the set of theta structures
is a principal homogeneous space under A(H). There is an isomorphism of finite groups:

A(H) = Ty/Ty(2,4),

and the space A,(2,4) :=T',(2,4)\H, is the moduli space of ppav’s with a theta structure. The
group A(H) is the Galois group of the covering A4,(2,4) — A,.

4.1.5 Theorem. (Igusa) The map O factors over the quasi-projective variety A,(2,4) :=
I'y(2,4)\H,. The induced map, denoted by the same symbol,

O:4,(2,4) — PV

has degree 1 on its image and its differential is injective at any point of A,(2,4). (It is not

known if © is an embedding.) The closure ©(H,) of the image of © is a projective variety of
dimension g(g +1)/2 in PV.

4.1.6 Modular forms. Thus we have a very explicit map © of a finite cover of A, to a
projective space. The coordinate functions 6,(7,0) of the map © are modular forms of ‘weight
1/2’ (so basically transform with /det(ar 4+ b) but the sign of the root has to be specified).
Taking the second Veronese image of this map (given by all products 6,6,) one gets a map
whose coordinate functions are modular forms of weight 1. The theory of automorphisms of
the Heisenberg group, or equivalently, the classical transformation laws for theta constants,
imply that the finite group I',/T";(2,4) acts on PV in such a way that © is an equivariant map:

O(AT) = A-O(7) (AeT,).

Thus one can obtain modular forms for I'; by taking all homogeneous polynomials on PV which
are invariant under the action I';/T";(2,4) and substituting the 6, for the variables.

4.1.7 Kummer varieties. We consider now the map ©, : X, — PV. According to
Lefschetz’ Theorem, for n > 3 the map given by global sections of the bundle M®? on the the
ppav (X,, M,) embed X, in a projective space. We are interested in the bundle L, = M®?
however.

The map O, given by the global sections of L is not injective. In case 7 is indecomposable,
the variety ©(X ) is isomorphic to the quotient of X, by the involution x + —x (second order



December 6, 1999 19

theta functions are even: 0, (7, —z) = 6,(7, z), as one verifies from the Fourier series in 4.1.1).
This quotient variety is called the Kummer variety of X, and will be denoted by

K. =X,/+1.

The Kummer variety has 2% singular points, corresponding to the two-torsion points X, [2]
(these are the fixed points of the involution).

0,(X,;) =2 K, =X, /{£1}, Sing(K;) = X,;[2].
In case 7 is decomposable, the ppav X, is isomorphic to a product of lower dimensional ppav’s

and the O, ,(X;) is isomorphic to the product of their Kummer varieties ([K], Chapter 10).

4.2 Intersections

4.2.1 We face the obvious question: what is the intersection
O(H,) N 6,(X;) (C PV)

between the moduli space and the Kummer variety? This question was raised in [GG], in view
of the dimensions of the spaces involved, one wouldn’t expect any intersection at all for g > 3.
From the definition of © it is however obvious that at least ©.(0), the origin of K, lies in the
intersection.

We consider the pre-image of this intersection in X, and call it Y;, so

Y, = 07" (6(H,) N6,(X,)).

In case 7 is the period matrix of a Riemann surface, a relation between theta functions discov-
ered by Fay implies that Y, has dimension at least two!

4.2.2 Recall that J(C) = H°(C,Q¢)*/H,(C,Z). For any p, ¢ € C we can define an element
in this space, simply denoted by p — ¢, as follows. Take any path v in C starting in ¢ and
ending in p, then we get a map [ : H°(C,Q¢) — C. If we choose another path, J, will change
to [, + [, where a is a closed path, so a gives an element of H,(C,Z). Therefore the class of
J, in J(C') depends only on p and ¢ and this is the desired p — ¢ € J(C).

For g > 1 one then obtains a surface in .J(C):

C—C:={p—-qeJC): pgeC}.

With this notation Fay’s result is:

4.2.3 Theorem. Let 7 be the period matrix of a Riemann surface C'. Then:

{reJC): dve C—-C} — Y.
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4.2.4 Remarks. In case g = 3 one has Y, = (1/4)(C — C'). It would be interseting to know
for which 7 one has dimY; > 0 but I don’t know of any results beyond g = 3.

We will consider an ‘infinitesimal’ version of this condition in 4.3.5 where we replace the
moduli space by its tangent space.

One should note that the points of order 4 of J(C) = X, are contained in Y, (since 0 =
p—p € C—C). A further study of these points, which we carry out in section 5.5, does lead
to rather explicit Siegel modular forms (related to the classical Schottky-Jung relations) which
give non-trivial equations for the period matrices of Riemann surfaces.

4.2.5 Sketch of proof of Theorem 4.2.3 Let x € J(C) with 4 = p — ¢, let D := 2z,
then 2(D + q) = p + ¢ (linear equivalence of divisors). Interpreting J(C) as Pic’(C), the
variety of line bundles of degree 0 on C|, this implies that O¢(D + ¢)®? = O(p + ¢). Let s
be the global section of O(p + ¢) which is zero in p and ¢. Inside the global space of the line
bundle O¢(D + q) we can now consider the subvariety Cp of points & satisfying £ ® £ € s. The
subvariety Cp is an irreducible curve (provided p # ¢) and the bundle projection induces a 2:1
map 7 : C'p — C which ramifies only over p and ¢. Thus the genus of C}p is 2¢g. The pull-back
map 7* : H*(C,Q¢) — H°(Cp,Qc,) induces a ‘Norm’ map Nm : J(Cp) — J(C). The kernel
of Nm is an abelian variety of dimension ¢ and has a principal polarization induced by the one
on J(Cp). This ppav is called the Prym variety of the cover .

Thus ker(Nm) = X, for some 7 € H,. Fay [Fa] proves that, for a suitable pair of 7, 7 € H,
with J(C) 2 X, and ker(Nm) = X, one has:

O-(r) = 0,(0)  (=06(r) € ©(H)).

Therefore x € Y;. The case p = ¢ follows by taking the limit p — ¢. In that case the cover will
become singular (and in fact the Prym variety in that case is best seen as a ppav of dimension

g—1).

4.3 Local intersections

4.3.1 Tangent spaces. Let 7 € H; be indecomposable. Then the image of O, : X, — PV
is isomorphic to the Kummer variety K, := X,/ £+ 1. The point ©,(0) = (... : 0,(7,0) : ...) is
singular on K. Let

020,
to:=0,(0) =(...:0,(1,0):...), tr = (... m(ﬂ 0) :...)oefo,1}9 (e PV).

(The second order theta functions z +— 6,(7,z) are all even, thus the first order deriviatives
vanish.) The embedded tangent space of ©,(X,) at ©.(0) is the span of these points:

TKT,O = <t0, Ce ,tkl, .. ->1§k§l§ga dim TK,_,O = %g(g + 1)
The classical Heat equations for second order theta functions:

020, ) 00,
m(T, Z) = 47TZ(1 + 5kl)—

(7, 2)

aTkl
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for all 7 € H,, z € CY and i* = —1, these are easy to verify from the series definition of the 6,
in 4.1.2. Therefore we also have:
) 00,
try = 4mi(1+ dg) (.. . 5 (7,0) : .. )4
Tkl

The vectors on the righthand side of the equation above and t; together obviously span the
embedded tangent space Tem,)o(-) to O(Hy) at t, = O(7). Thus this space coincides with
Tk, 0, we denote it by T

T; =Tk, 0 = Towm,)0m)-

4.3.2 Remark. This may be seen as a geometric version of an intrinsic isomorphism. The
Kummer variety K, is singular, but its tangent space is still defined by (m/m?)* where m C
Ok, o is the maximal ideal in the local ring at 0 € K. This local ring is the ring of invariants
(under z — —z) of the local ring Ox, ¢ = Ocs . Thus Ok_ may be identified with the ring of
even, convergent power series in g variables. Any f € Ok, o has a Taylor series expansion:
ij
We obviously have:
feEm < f(0)=0, and fem®<= (f(0)=0, a;=0 Vi,j).
Thus (m/m?®)* is spanned by the monials zjz;. Each z; is an element of T%_, thus we find:
Tx.o = S?*Tx_ o = S°H' (X, 0),

the last isomorphism comes from the principal polarization on X, as in 3.4.2.

On the other hand, the first order deformations of an algebraic variety X are parametrized
by H'(X,Tx). Since the tangent bundle of X, is trivial, Tx, = Tx, o ® Ox, and thus
HY(X,,Tx,) &2 H'(X,,0) ® H'(X,,0). The deformations of X, parametrized by H, pre-
serve the polarization. This gives an identification:

THg),T = SQHl(XTv O)a and S0 THg),T = TK 0-

Ty

4.3.3 Tgo. The (linear) projective subvariety T, C PV of dimension $¢(g+ 1) is defined by
(29 —1) — 3g(g + 1) linear equations. We identify these equations in the following way.

Let H =3, a,X, be the equation of a hyperplane in PV. Then we can pull-back H to X,
along the map ©, : X, — PV. This pull-back is the theta function 8y := %, a,0, (T, 2):

e:: H'(PV,0(1)) — H(X,, L,), H+— 0y.
Then we find that ¢, = ©,(0) lies in H iff 05(0) = 0 and similarly, ¢;; € H iff ?/02z;02;0(0) =
0. Therefore the defining equations for T, are the elements of the vector space:

T := {0 € H'(X;, L) : mo(0) >4},

where mg stands for multiplicty at zero (since these theta functions are even, the multplicity
is also even). That is,
T, CH < 0y € Ty.
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4.3.4 Explicit equations. We will need the following observation later. Let P €&
Cl..., X,,...] be a homogeneous polynomial which is zero on the projective variety ©(H,) (C
PV’). Then

Ho= Y ;}2 (@)X,,  with a=0(r)= (.. 0,(r0):..)

g

is a linear form on PV which is zero on the tangent space T, at a to ©(H,). Thus its restriction
to ©(X;) gives a section in I'gy. In case a is a smooth point of ©(H,), these linear forms cut
out T, (C PV) and the corresponding sections span I'gg.

4.3.5 The local intersection. We will now investigate an infinitesimal version of the

intersection ©,(X,;) N O(H,) (see 4.2.3). That is, we replace ©(H,) by T, its embedded
tangent space at (7).

We define:

Fo={zeX,: 0x)=0 VOeTy}.

Then by the previous discussion F’ is the pre-image of this intersection:
O.(F;) = 0.(X;) N (Ngyere H) = 0,(X;) NT,.

For period matrices of Riemann surfaces this intersection is again large (and it is related in a
somewhat surprising way with the intersection ©,(X,) N ©(H,)).

The incusion C in the following theorem was observed by Fay, Gunning, van Geemen and
van der Geer, the inclusion D is due to Welters.

4.3.6 Theorem. Let X, = J(C), the Jacobian of a Riemann surface C'. Then:
F,=C-C except if

we are in the case that ¢ = 4 and that C' has two distinct line bundles of degee 3 with dim H® = 2
(this is the case for the generic curve of genus 4). In that case we write the points in Pic*(C)
corresponding to these bundles by g3 and h} and we have F, = C — C U {%(g3 — hi)}.

4.3.7 The surface C — C C J(C) is singular at the origin 0 € J(C). Its tangent cone there
(viewed as subvariety of PTj)0) is the canonically embedded embedded curve. Thus if C' is
non hyperelliptic, Theorem 4.3.6 gives a proof of Torelli’s theorem (it can also be used to prove
Torelli for HE curves with a little bit of extra work).

4.3.8 For dimension reasons, one does not expect that dim . > 0 for a 7 € Hy. This leads
to the following conjecture, which was proved in case ¢ = 4 by Izadi [Iz]. For ¢ = 4 we thus
have a geometrical solution to the Schottky problem. More refined versions of the conjecture
and variants are discussed in [GG], [BD] and [D1].

4.3.9 Conjecture. Let 7 € H, be indecomposable, then dim F, > 0 & re Jg.
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4.3.10 Example. The case g = 3 is easy to understand. Fix an indecomposable 7 € H3 and
let T =T,. Then dimT = 6 so T is a hyperplane in PV. The corresponding section ft spans
Too and its zero locus must be C'— C. One can also verify directly that C' — C' € [20], the
linear system defined by L®?. We have mg(ft) = 4 and if 1 (z) = Fy(z) + H.O.T is the Taylor
series of A, then the quartic polynomial F} is the defining equation for the canonical curve C
if X, = J(C) with C non hyperelliptic. In case C' is hyperelliptic one has F, = FZ and C — C
is the surface C® — gl counted with multiplicity two; its tangent cone is the rational normal
curve of degree g — 1 (counted with multiplicity two).

5 Schottky-Jung relations

Introduction. We consider the eigenspaces of the linear maps U(a) : PV — PV for a €
(Z/2Z)* = H/C*, and, of course(!), the intersection of these eigenspaces with both the moduli
space ©(H,) (in 5.1.3) and with the Kummer varieties ©,(X;) in PV (in 5.1.4).

This leads us to a geometrical picture of the classical Schottky-Jung relations. We show
how these relations can be used to construct to modular forms which are zero on the locus of

period matrices of Riemann surfaces. Next we recall the known results.

5.1 Eigenspaces of Heisenberg group elements

5.1.1 Let a € H/C* be a point of order two, let and let U(a) : PV — PV be the projective
transformation defined in 3.5.5. We denote by a, € X,[2] the point for which the following
diagram commutes:

X, 25 PV
Tarl lU(a) a, = a;'(a)
X, 2% PV

here a, is the canonical theta structure which induces an isomorphism

a, - X[2] = H/C*.

5.1.2 Going down. Since U(a)? = idpy, any lift of U(a) to a linear map U(a) : V — V,
satisfies U(a)? = AT for a non-zero A € C. The map U(a) gives the action of an element
(t,u,l) € H on V. The explicit formula for the action of H on V (see 3.5.3), shows that if
a # 0, the map U(a) has two eigenspaces V,* in V. Their projectivizations PV,;" and PV, will
be called the eigenspaces of U(a). The signs are not defined intrinsically, any element in an
eigenspace of U(a) is fixed by U(a).

The eigenspaces of U(a) have dimension 297" — 1 (they are projectivizations of linear spaces
of dimension 297" = 229). The action of H = H, on V induces an action of a similar group
H,_; on the spaces V.*. As in Theorem 3.5.4 and section 4.1.3 this allows us to define for
m € H,_; and the corresponding theta structure a, : H(L,) — H,—; maps (and similar ones
with a — sign):

ot X, — PV, O“:H,, — PV, 0" :=020).
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5.1.3 Boundary components. The images of H,_; in the eigenspaces nicely fit in the
'holes’ of the image of H, in PV, in fact we have disjoint union:

O(H,) = O(H,) U (Usen/cr—0y0*F (H,_1) U 6~ (H,_,))

(the various ©%*(H, ;) may still intersect). The ©2*(H,_;) are images the 2(2% —1) boundary
components of the Satake compactification of A,4(2,4). It is known that ([vG]):

6+ (H, ;) = O(H,) N PV,

5.1.4 Intersection. Let again a € H/C* — {0} and the corresponding a, € X,[2]. We
consider

0,(X,;) NPV’ (C PV),

the intersection of a Kummer variety with an eigenspace of U(a). Since p € PV,;"F UPV,™ iff
U(a)(p) = p, and since U(a)O,(r) = O-(x + a,) we get:

O,(z) e PV, UPV, < O.(z+a,) =O,().
Now assume that 7 is indecomposable, then 0,(X,;) =2 K, = X,/ + 1. Thus
O,(z) e PV,FUPV, < (z+a, =z or x+a, =—x).

The first condition is impossible, but the second gives 2x = a,, so x is a point of order 4. The
number of points z with 2z = a is 2?9 (the difference of any two such is a point of order two).
These map to 1229 = 2%9~1 points in the Kummer variety K, and each eigenspace PV * gets
12291 = 229~ points.

We conclude that ©,(X,) N PV,* is a set of 229~1 points for indecomposable 7’s. Each
of these sets is an orbit of the group H, ;. Since each eigenspace also contains a boundary
component of ©(H,), we introduce the following definition:

5.1.5 Definition of Schottky-Jung relations. A pair (X, z) with z € X, [2]—{0} satisfies
the Schottky-Jung relations if for some y € X, with 2y = = we have:

O:(y) € O (H, )  (CPV),

here a = a-(z) and PV, is the eigenspace which contains ©,(y).

This condition depends only on the point x € X = X, not on the choice of 7 or y. In fact
PVt is one of the two eigenspaces of translation by x on PV (cf. 3.5.5). The Heisenberg group
permutes the y’s while it stabilizes ©2+(H,_;) (or maps it to ©2~(H,_)).

5.2 Examples

5.2.1 We inspect the Schottky-Jung relations for low genus. In the cases ¢ = 1, 2, 3 the
answer is easy. In case ¢ = 4 we find a more interesting situation however.



December 6, 1999 25

5.2.2 g = 1. The abelian variety X, = C/(Z + 7Z) is an elliptic curve. The line bundle
L, 2 O(20) with O € X, the origin. The Schrodinger representation of H(2) = C* x (Z/2)?
(as sets) on V' is given by (see 3.5.3)

(t,l,O)»—><3 é) (t,0,1)1—><(t) _0t> (t,l,l)i—><_0t é)

the matrices are with respect to the basis of §-functions. The eigenspaces PV of these elements
are points in PV = P!, they are respectively:

(1:1), (1:-1), (1:0), (0:1), (1:4), (1—1)

with 2 = —1.
If we denote the image of the origin by (a : b):

0,: X, — PV, (a:0b):=0,(0),
then, using the equivariance of ©, for the action of X.[2] and H/C* we find that
O,(5+70) = 0.(0+ (5 +70)) = (£,1,0) - ©,(0) = (b : a),
and similarly the images of the other two-torsion points can be determined:
O-(0+73) = (a:—b), O-(2 +75) = (b: —a).

Since O,(X,) = X,/ £ 1, the image of X[2] consists of 4 distinct points. Therefore a and b
are non-zero. Then we can write these image points as:

(A1), (A1), (=, 1), (=A1t:1)  (A=a/b).

The elliptic curve X, can be recovered as the 2:1 cover of P! ramified in these 4 points, thus
an affine equation for X is:

X, : =2t — (N A2 1.

Given any point (A : 1) € PV which is not one of the six eigenspaces, we get in this way an
elliptic curve which is isomorphic to an X, and ©,(0) = (A : 1).
By definition, O(7) = ©,(0) so we get:

O(H,) = P' — {6 eigenspaces}.

In fact, in this case A;(2,4) & A,(4) = O(H;). The 6 eigenspaces PV.* correspond to to the
boundary components so, formally, each is a ©%(Hy).

We recall that we have shown that the inverse image under ©, of a point PV.* € PV is a
point of order four in X, for any 7 € H,. Thus as 7 moves in H;, the images of these points
remain fixed! Since the image of any point of of order 4 is a boundary component, all pairs
(X,, z) satisfy the Schottky-Jung relations.
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5.2.3 g = 2. Let 7 € Hy be indecomposable. Then ©, maps X, onto its Kummer surface K,
in PV:
0,: X, — K, c PV =P

The surface K, has degree 4 and its singular consists of 16 points, the images of the two-torsion
points.

Each eigenspace PV," = P! is now a projective line, we get 2-15 = 30 such lines in P?. These
lines can be found easily (as in the g = 1 case) and they form a quite interesting, symmetric,
configuration. We just observe that each line is a copy of ©(H;) and thus has 6 marked points
on it. Through each such point there pass 2 other lines (and the lines only intersect in such
points).

Since the Kummer surface has degree 4, it will meet each eigenline in 4 points, which are
the images of points of order 4. This shows that any pair (X,,z) with 7 € Hj satisfies the
Schottky-Jung relations.

In case 7 is decomposable, X, =2 X, x X for some m, 7' € H;. Then ©,(X,) = K, x K =
P! x P!, which is embedded as a smooth quadric in P3. There are 10 quadrics which arise as
image of a decomposable X (one can recover the pair 7, 7’ from the image of the origin of X,
in P! x P!). Any two of these 10 quadrics intersect in 4 lines, these are eigenlines.

Asin the g = 1 case, the image of Hj is the complement of the eigenspaces and is isomorphic
to the moduli space:

A, (2,4) = O(Hy) := PV — {30 eigenspaces}.

The space PV is isomorphic to the Satake compactification of A4,4(2,4). The image in PV of
the locus of the period matrices of Riemann surfaces is

My(2,4) := O(J)) = PV — {10 quadrics}

(these 10 quadrics are the images of decomposable abelian varieties). It can be shown that the
universal cover of Ms(2,4) is the Teichmiiller space Ts.

The finite group G := I'y/T'5(2,4) is the symmetry of the configuration of 30 lines and 10
quadrics, it sits in an exact sequence:

0 — (Z/2Z)" — G — Sy — 0,

where Sg is the symmetric group (the 6 is related to the 6 Weierstrass points on a genus two
curve). The action of the subgroup (Z/2Z)* on PV coincides with the action of H(2)/C* on PV.
This subgroup fixes the 10 quadrics and fixes the pairs of eigenlines (but can permute PV and
PV,"). The group S permutes the 15 pairs of lines like it permutes the 15 (unordered) subsets
with two elements {7, j} C {1,...,6}, it permutes the 10 quadrics like the 10 (unordered)
pairs of complementary (unordered) subsets with three elements { {i,j, k}, {l,n,m}} with

{i,j,k} U {l,n,m} ={1,...,6}.
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5.2.4 g = 3. In this case each eigenspace PV," 2 P3 is a linear subspace of PV = P7. We
know that for indecomposable 7 € Hj, the threefold ©,(X ) intersects PV," in 16 points. From
the g = 2 example we know that PVt = ©%+(H;). Since any point of order 4 maps to an
eigenspace, its image lies in a boundary component ©¢+(H,). Thus again we get (‘for free’)
that for all 7 € H3 and = € X, of order two, the pair (X,,z) satisfies the Schottky-Jung
relations.

The 6-fold ©(H3) (C P7) has degree 16, its defining equation is given in [GG].

5.2.5 g =4. Now a point y of order 4 maps to an eigenspace PV, of dimension 7, and may
or may not lie on the 6-fold ©4+(Hj). We will discuss this situation in the next lectures.

5.2.6 Remark. For g < 3 the indeomposable abelian varieties are all Jacobians. For a

Jacobian X, (of any dimension g) we know from 4.2.3 that ©(X;) N ©(H,) contains a surface
and that this surface contains all the points of order 4 (these are (1)0). Since 7 is indecoposable,

O,(X;) NPV," consists of images of points of order 4. As O(H,) N PVt = ©++(H,_,) it is
clear that, for any choice of period matrix 7 for the Jacobian and any = € X[2] — {0}, the pair

(X,,x) satisfies the Schottky-Jung relations. We sketch another proof in 5.3.3.

5.3 Schottky Loci

5.3.1 We define two loci (algebraic subsets of the quasi projective variety A,) of importance
for the study of the Schottky-Jung (SJ) relations. These were introduced by Donagi who showed
that there is an interesting difference between them when g = 5. The first one is:

S ={[r] € Ag=T,\H, : 3z € X.[2] — {0}s.t. (X, ) satisfies the SJ relations }.

For a given ppav X, we ask for at least one point of order two a such that (X, a) satisfies the
Schottky-Jung relations. We can also ask for the ppav’s X such that for all a € X[2] — {0} we
have the Schottky-Jung relations:

S;m“” = {[r] € A, =T, \H, : (X;,z) satisfies the SJ relations Vz € X;[2] — {0} }.

The Schottky locus S, as defined in [vG] coincides with S5/,
We already observed the following result in 5.2.6, other proofs were given by Schottky and
Jung, Rauch and Farkas, Fay, and Mumford.

5.3.2 Theorem. Let j(M,) C A, be the closure of the locus of Jacobians j(M,) in A,.
Then:

i(My) C Sgmelt - (c sh).
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5.3.3 Scketch of proof of Theorem 5.3.2. Since S;m‘l” is closed, it suffices to show
j(Mg) C S;™". Let C be a Riemann surface of genus g, choose a 7 € Hy with X, = Jac(C) =
H(C,Q)*/H\(C,Z) and let x € X,[2] — {0}. We will construct a ppav P, of dimension g — 1
such that there exists a 7 € H,_; with P, =2 X and, with a = a-(2),

0 () € ©,(X,) NPV,

which implies the Schottky-Jung relations (if one of the 2292 points on the right is in O+ (H,_;)
then all of them are). To construct P, one constructs first an unramified double cover of the
Riemann surface.

The point of order two x € J(C') = Pic®°(C)) corresponds to a line bundle L on C' with
L®L=0. Asin 4.2.5, we get a curve C, C L, the ‘square root of 1’. The bundle projection
L — C restricts to an unramified 2:1 map 7, : C;, — C. Thus the genus of C, is 29 — 1. The
Prym variety of the covering m, is defined to be ker(Nm : J(C,) — J(C))° with Nm the map
induced by 7, and ° stands for connected component of the origin (in this case ker(Nm) has
two components).

Another way to construct the unramified cover m, : C'; — C'is to use the theory of covering
spaces and fundamental groups. Note that

X,[2] 2 LH\(C,Z)/H\(C, Z) = H,\(C,Z)/2H,(C, Z).

1
2
Using the intersection form (x.x) on Hy(C,Z), the point x defines a codimension one subspace
x! in this Fy-vector space:

vt :={be X,;[2]: (x.b) =0 mod 2}.

The (surjective) Hurewich map 7, (C') — m,(C)% = H,(C, Z) composed with the ‘mod 2’ map
gives a surjection ¢ : m(C) — X,[2]. Then G, := ¢ '(x1) is a subgroup of index two of
m(C). The quotient of the universal cover of C' by G, is a 2:1 unramified cover of C' and this
is C, (moreover, G, = m1(C})). Now P, is defined as above.

Next one studies the theta functions on the Jacobian of C, and restricts them to the image
of J(C) in J(C,) and to P,. The main result is the Schottky-Jung proportionalities, which
for suitable period matrices 7 of J(C') and 7 of P, state that ©,(z/2) € PV coincides with
©,(0) e PV,F C PV.

These proportionalities are derived in [C], 6.4, p. 173, with z = %(1, 0,...,0) eC CY. Then
y = %:c € CY corresponds to a point in X, with 2y = x and thus maps to an eigenspace of
U(a,(x)). Explicit computations and elementary manipulations show:

- 0,02,...,04
O-(y)=(..:0s(r,9)...)  with { 00.02100) (T y) = 0[0,777"](0,27)
(1,02,...,09)(Tay =0
were we mix our notation on the left with Clemens’ notation on the right, and we took p = ¢
in Clemens’ formula. That formula, the Schottky-Jung proportionalities, shows:

!

(...: 9[?:(6](0, 27):..) = (... 0[57(0,27) : ...
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where the index ¢’ runs over (Z/2Z)? . In our notation, we have:
0, (m,0) = 0[5](0, 2).

To get our geometrical interpretation of the Schottky-Jung proportionalities, note that the
eigenspace PV, which contains O, (y) is defined by: X, = 0if oy = 1. The natural coordinates
on this eigenspace are the Xz which are induced by the X3 on PV. Thus the natural map

0" :H, , — PV," (C PV)
is given by

) Oos....c0)(m, 0 ifo, =0
T (i co(T) 1 )oe(z)22)9 with cg(ﬂ):{ (o2100) ()) ifaizl.

Thus we see that ©,(y) = 0" (1) where 7 € H,_, is a period matrix of the Prym variety P,. O

5.4 Results

5.4.1 Here are the three main results on the Schottky loci. The first shows that the Schottky
problem is solved in genus 4. For essentially trivial reasons, for ¢ > 5 the big Schottky locus
is really bigger than the small Schottky locus, and thus cannot coincide with the Jacobi locus.
The second, surprising, result is of Donagi who shows that there is in g = 5 also an interesting
difference between the big and small Schottky locus. Finally one can show that for any g the
Schottky locus is "locally’ equal to j(A,).

We observe that for g > 4 it is not known if j(M,) and S, coincide. (For example, we do
not even know if they coincide for ¢ = 5, Donagi’s example shows that this may not be so easy
to decide).

5.4.2 Theorem. (Schottky, Igusa, Freitag) We have:
Szmall — Si)zg

and this locus is defined by one (explicitly known) modular form (of weight 8) for I'y = Sp(8, Z).
Moreover ([Ig2], [Fr]):
JOL) = st

5.4.3 Theorem. For g > 5 we have S;m“” # Sgig.
Proof. Let 7 € Hy — Jy and let 7 € J;_4. Then (the isomorphism class of) X := X, x X in

Ay is not in S5 but it is in S)'9. (For a = (a',0) € X[2] the pair (X, a) does not satisfy the
Schottky-Jung relations, but any pair (X, (0,a")) will satisfy the Schottky-Jung relations). O
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5.4.4 Theorem. (Donagi [D1]) Let Y C P? be a smooth cubic threefold. Let J(Y) :=
H>'(Y')*/H;5(Y, Z) be its intermediate Jacobian, J(Y) is a ppav of dimension 5. Then J(Y) ¢
Js, J(Y) is not decomposable (i.e. is not a product of lower dimensional ppav’s) but J(Y) € S2.
Proof. The theta divisor of J(Y) has just one singular point [B3]. Since the theta divisor
of a Jacobian has a singular locus of dimension > ¢ — 4 = 1 and a decomposable ppav has
dim Sing(©) = g — 2 = 3, we get the first two statements. For the most interesting result,
[J(Y)] € S2 one uses the following relation, discovered by Donagi.

Let C be Riemann surface and let a, b € J(C)[2] — 0 with E(a,b) = 0 where E : J(C)[2] x
J(C)[2] — Z/2Z is the Weil pairing which induced by the polarization. Let P, = X,
P, = X, be the corresponding Pryms. One can prove that P,[2] 2 a'/ < a > with a* as in
the proof of 5.3.2, and we have a similar result for . Thus we get points b € P,[2] and a € P,[2].
Donagi proves that one can choose points v € P, with 2u = b and v € P, with 2v = @ such
that: )

O, (u) =0%,  (ePV,F NPV,  CPV)

(strictly speaking, we should write PVat(a) etc.)

The space PV,;" N PV,;t = P¥ °~! is an eigenspace b € H,_;, the Heisenberg group acting
on PV, (and also for an @ in the copy of H,_; acting on PV;"). Then we have the natural map

e+ . H, , — PV," N PV;".

Donagi’s relation implies: if (P,, b) satisfies the Schottky-Jung relations then also ( Py, @) satisifes
them (because ©2f, (u) € O35+ (H, ) implies OF,) € O¥>+(H, ,)).

Next Donagi chooses a genus 6 curve C' (a plane quintic) and a, b in such a way that
P, = J(D) for some genus 5 curve D and P, is the intermediate Jacobian of a cubic threefold.
Thus (P,,b) obviously satisfies the Schottky-Jung relations and one concludes that so does
(P, a). O

5.4.5 The locus S5 is an algebraic subset of Ay, and thus it is a finite union of irreducible
components. One would like to show that it has only one component and that this component
is j(M,). The next theorem shows that is the case. The proof which we sketch in 5.5.2 doesn’t
give much information on the existence of other components.

5.4.6 Theorem. (van Geemen) The variety j(M,) is an irreducible component of S;m“”.

5.5 Equations for the Schottky loci

5.5.1 We show how one expresses the Schottky-Jung relations in terms of modular forms,
these are used in the proof of 5.4.6.

For a € H/C* we can represent a, := a;'(a) € X, by 5(n + 7m) € C? for some n, m €
{0,1}9. Let b, = X(n + 7m), then b represents a point b, € X, with 2b, = a,. We have
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seen that ©.(b,;) lies in an eigenspace of a, let’s call that one PV;". Then (X, a,) satisfies the
Schottky-Jung relations iff

0,(b,) € O(H, ;) (C PV

The ideal of the projective variety ©(H,) (C PV) will be denoted by I,, so I, (C
Cl..., X,, .. Joeqo,139) contains all the homogeous polynomials which are zero on that va-
riety. Using the Heisenberg group actions, I, ; can be identified with the ideal Igfl of
©+(H, ;) C PV," for any a € H/C*. Then (X,,a,) satisfies the Schottky-Jung relations
if and only if

0o(P)(7) := P(©,(b;)) =0 (VP € I, P homogeneous).

g—1

For every a € H/C* and every homogeneous P € I, ; we get a holomorphic function
0.(P) : H; — C. Since the coordinate functions of 7 — ©.(b;) are modular forms of ‘half
integral’ weight, the holomorphic functions o,(P) are also modular forms. So we see that the
Schottky loci can be defined by modular forms and that

S;m“” ={[rle A4, =T, \H, : 0,(P)(1) =0Va € H/C*—{0} and all homogeneous P € I, ; }.

In general we know very little about I,. In the first non-trivial case, g = 3, we know that I3
is generated by one polynomial F' of degree 16. This implies that in genus 4 we get a modular
form o,(F) of weight 8 for each a € H/C*. Schottky already proved that all these modular
forms are the same and that they are not identically zero. Much later Igusa and Freitag proved
that the zero locus of this modular form is exactly .Jy. It is known that I, contains elements of
degree 32.

5.5.2 Proof of Theorem 5.4.6. We give a rough sketch of the proof of Theorem 5.4.6. In
fact, to simplify matters we will assume that we have an universal family of abelian varieties
over A, and this family as well as A, are smooth(!). To justify the arguments given here one has
to use level structures. We will also make some other simplifying assumptions but we believe
that we still convey the main idea of the proof.

Since S ;ma” is a quasi-projective variety, it is a finite union of irreducible components:

Semilt = 2y U Zy U .. U Zy.

For simplicity we write

Jg = j(M,) (C A).
As J, C S;m‘l” and J, is irreducible (it is the closure of the image of the Teichmiiller space) it
must be contained in at least one of the Z;, let’s say J, C Z;. If dim Z, = 3g—3 (= dim J,), then,
since both are irreducible, J; = Z;. So the theorem follows if we prove that dim Z; = 3¢g — 3.
We will use induction on g to prove this, the case ¢ = 2 (or g = 3) being trivial.
We recall that the Satake compactication A, is the disjoint union of A, and A, ;. It is
well-known that J,, the closure of J, in A4,, intersects A,_; in J,_;. It is not hard to show that
something similar happens with the small Schottky locus:

JgNAg =Ty,  Symalln A,y C Sgmell,
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Let Z} := Zy N Ag_y, then Z] C Simpll. Since J, C Zy we get J,_y C Z{ C Sgm. The
induction hypothesis that J, ; is an irreducible component of S;T{l” implies that J,_; is an
irreducible component of Z;. Unfortunately, the codimension of A4, ; in A, is very large (it is
29(g+1) — 3(g — 1)g = g). Therefore we cannot get a good estimate of dim Z; from this fact.
5.5.3 Igusa’s compactification. We consider another compactification of A,, introduced
by Igusa. Let

g
ﬁ:flg—>zg

be the blow up of A, along its boundary A, ;. The inverse image 3 '(A,_1) of A,_ is a
divisor on flg. Let Z; be the closure of Z; in Ag and let Z! be an irreducible component of
Zi N B7'(A,_1) mapping onto the irreducible component J, ; of Z;.

Assuming there are smooth points of fig in Z{, we get:

dim Z, = dim Z; = dim(Z}) + 1.

If we can show that the map .
ﬁ|21 : Z{ — Jg_1

has a fiber of dimension < 2, then it follows that dim Z} < (3(g—1) —3) +2 = 3¢g — 4 and thus
dimZ; =39 —4+1=3g — 3 as desired.

The inverse image of the open subset A, 1 C A,_; under the map (3 is the ‘universal family
of abelian varieties’ over A,_; (note we simplify here). Thus we may identify 5~ '([r]) = X,.

Since 7, C S9 ., the closure of the small Schotky locus in A,, it suffices to show that
dim(S? ., N X,) <2.

Recall that S§™" is defined by the modular forms o,(P) with P € I, ;. We need to know
the intersection of the (closure in A,) of the zero locus of o4 (P) with 3~!(r) = X;.

For this we consider a period matrix:

= <7r z) (e Hy), reH, , 2€C! 1 € Hy.
zZ T

(for any 7, z we can find r (with Imm >> 0) such that 7 € H,). This matrix 7 moves

to the boundary point m € A, ; if we let Imm — +oc (equivalently, ¢ := e*™™ — 0, here

m=3.14...). The modular form o,(P) has a g-expansion:

0.(P)(T) = > Pu(m, 2)¢".

TLEZZO

The functions z — P,(m, z) are theta functions on X,. The intersection of the zero locus of
0.(P) with X, is given by zero’s of Py(m, z) where k is the smallest integer for which P,(m, 2)
is not identically zero.

The coordinates 0, (7, b,) of ©,(b;) have the g-expansion:

0,(1,b;) = 05(m,0) + 05(m, 2)g + H.O.T. g=(01,...,041)
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when o = (0y,...,0,). Since P is a polynomial, we get the following formula:

5, (o 0o(m0), - )fo(m,2) + HOT.

0.(P)(1) = P(...,05(m,0),...) + qz
Since the polynomials P € I, ; are zero on the image of H,_; we have P(...,05(7,0),...) = 0.

We have seen in 4.3.4 that Y ;TP;(. ., 05(m,0),...)05(7, 2) is in Ty and moreover, if O(r) is a

smooth point on O(H,_;) then I'yy is spanned by these functions (where P runs over I, ).
Putting everything together we get:

Semalt B~ (m) C Fr ={2€ X,: 0(z) =0 V0 €Ty }.

Thus it suffices to show that for the period matrix m of a genus g — 1 curve we have
dim F; < 2. Fortunately, this was proved by Welters and thus the proof is complete.

5.5.4 Remark. One can ‘see’ why J,N3 ([J(C)])is C—C C J(C) (= 1 ([J(C)])). If one
degenerates a genus g curve to a curve with a node, the normalization C' of the nodal curve has
genus g — 1 and the inverse image of the node are two points p, ¢ on C'. Following the moduli
point of the genus g curve we arrive at the point [J(C)] € Ay in the Satake compactification
A, and at the point p — g € Fyey C J(C) = 7([J(C)]) in Igusa’s compactification A,.

5.5.5 Remark. Recall that in case ¢ = 5 the locus W of intermediate Jacobians of cubic
threefolds are contained in Sgig . Its closure W in the Satake compactification intersects the
boundary A, in j(M,). Consider now the closure W C (A;) of this locus in Igusa’s compactifi-
cation and the blow down map 3 : W — W. Let [JC] € j(M,) be a general Jacobian, then one
finds that 5~'([JC]) N W consists of the points (g3 — h}) which are exactly the exceptional

points in Fj¢, the subvariety defined by I'gy (see 4.3.6).
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