
The Schottky problem and second order theta functions.Bert van GeemenDecember 6, 19991 IntroductionThe Schottky problem arose in the work of Riemann. To a Riemann surface of genus g one canassociate a period matrix, which is an element of a space Hg of dimension g(g+1)=2. Since theRiemann surfaces themselves depend on only 3g � 3 parameters if g � 2, the question arisesas to how one can characterize the set of period matrices of Riemann surfaces. This is theSchottky problem.There have been many approaches, and a few of them have been succesfull. All of themexploit a complex variety (a `ppav') and a subvariety, the theta divisor, which one can associateto a point in Hg. When the point is the period matrix of a Riemann surface, this variety isknown as the Jacobian of the Riemann surface. A careful study of the geometry and thefunctions on these varieties reveals that Jacobians and their theta divisors have various curiousproperties. Now one attempts to show that such a property characterizes Jacobians. We referto [M2], Lectures III and IV for a nice exposition of four such methods, to [vdG], [B], [D2] foroverviews of later results and [V] for a newer approach.In these notes we discuss a particular approach to the Schottky problem which has itsorigin the work of Schottky and Jung (and unpublished work of Riemann). It uses the factthat to a genus g curve one can associate certain abelian varieties of dimension g�1, the Prymvarieties. In our presentation we emphasize an intrinsic line bundle on a ppav (principallypolarized abelian variety) and the action of a Heisenberg group on this bundle. A systematicstudy of the geometry associated to these leads in a natural way to Prym varieties. Moreover,one �nds several other remarkable properties of Jacobians which suggest geometrical solutionsof the Schottky problem.Acknowledgements. I thank the organizers of the conference `Variedas abelianas y func-tiones theta' for the oppertunity to present these lectures and for providing the pleasent workingconditions in Morelia.2 The Schottky problemIntroduction. We recall the basic results on period matrices of Riemann surfaces. Referencesare [ACGH], [C], [GH] and [CGV]. Then we brie
y discuss modular forms, a reference is [Ig1].1



December 6, 1999 22.1 Period matrices2.1.1 Let C be a Riemann surface of genus g (we consider only compact Riemann surfaces inthese lectures). On the homology groupH1(C;Z) �= Z2g there is an (alternating, nondegenerate)intersection form. A symplectic basis of H1(C;Z) is a basis f�1; : : : ; �g; �1; : : : ; �gg satisfying(�i; �j) = (�i; �j) = 0; (�i; �j) = �ij;with �ij Kronecker's delta (so �ii = 1; �ij = 0 if i 6= j).The complex vector space of holomorphic one forms on C is denoted, as usual, byH0(C;
C),it has dimension g. Given a path 
 in C and an ! 2 H0(C;
C) one can compute the integralR
 !. We will view R
 as a map H0(C;
C)! C, thus it is an element of H0(C;
C)�, the dualvector space of H0(C;
C). If 
 is a closed path, the integral only depends on the homologyclass of 
, which we denote by the same symbol: 
 2 H1(C;Z). Thus we get a map:H1(C;Z) �! H0(C;
C)�; 
 7�! Z
 :This map is injective, in fact much more is true:2.1.2 Theorem. Let f�i; �jg be a symplectic basis of H1(C;Z). Then there is a uniquebasis f!1; : : : ; !gg of H0(C;
C) such that:Z�i !j = �ij:Thus the elements R�i 2 H0(C;
C)� form the dual basis of the basis f!jg of H0(C;
C).2.1.3 A symplectic basis of H1(C;Z) thus determines a basis of H1(C;
C). For this we onlyuse the �i. We now use the �j to de�ne a complex g � g matrix:2.1.4 De�nition. The period matrix of C (with respect to the symplectic basis �i; �j ofH1(C;Z)) is the matrix � = (�ij) 2Mg(C) with �ij := Z�i !jand !j 2 H0(C;
C) as in Theorem 2.1.2.2.1.5 Remark. The period matrix determines the image of H1(C;Z) in H0(C;
C)�. In fact,using the basis R�i of H0(C;
C)�, we haveZ�i = �i1 Z�1 +�i2 Z�2 + : : :+ �ig Z�g ;since both sides give the same result when applied to the basis elements !j 2 H0(C;
C).



December 6, 1999 32.1.6 Torelli's theorem. Torelli's theorem asserts that one can recover the Riemann surfacefrom its period matrix. There are many proofs of this theorem, all of them use the Jacobianits theta divisor which are associated to a period matrix (see also 4.3.7).2.2 The Siegel upperhalf space2.2.1 The Schottky problem. The Schottky problem basically asks for equations whichdetermine the period matrices of Riemann surfaces among all g � g matrices. There are twowell known properties of period matrices: �ij = �ji (so period matrices are symmetric) andIm(�), the imaginary part of � , which is a symmetric, real, g � g matrix, de�nes a positivede�nite quadratic form on Rg: tx(Im�)x > 0 for all x 2 Rg. We write Im(�) > 0.This leads to the following de�nition and theorem.2.2.2 De�nition. The Siegel upperhalf space Hg is:Hg := f� 2Mg(C) : t� = �; Im(�) > 0 g:2.2.3 Theorem. Let � be the period matrix of a Riemann surface. Then � 2 Hg.2.2.4 The subset Hg of Mg(C) is actually complex manifold (with the complex structureinduced from that on Mg(C)). In fact, Hg is an open subset of the vector space of symmetricg � g matrices (if Im(�) > 0 then also Im(� + � 0) > 0 for any symmetric � 0 with su�cientlysmall coe�cients). The dimension of Hg is 12g(g + 1).We investigate Hg in more detail to see what kind of equations for period matrices oneshould expect.2.2.5 The symplectic group. To de�ne the period matrix of a Riemann surface, we hadto choose a symplectic basis. Any two symplectic bases are related by an element of�g := Sp(2g;Z) = fA 2M2g(Z) : tAE0A = E0 g with E0 = � 0 I�I 0� :One can show that �g acts on Hg as follows:�g �Hg �! Hg; (A; �) 7! A� := (a� + b)(c� + d)�1; A = � a bc d� ;where a; : : : ; d are g�g blocks of A. The period matrices of a Riemann surface X are a �g-orbitinHg. Thus, rather than study the period matrices of Riemann surfaces inHg, one could studytheir images under the quotient map� : Hg �! Ag := �gnHg:The action of �g on Hg is properly discontinuous (but not �xed points free) and Ag is complexvariety (with singularieties if g > 1). If g = 1, Ag �= C using the j-invariant for elliptic curves(=Riemann surfaces of genus 1).



December 6, 1999 42.2.6 Moduli spaces. Let Mg be the moduli space of Riemann surfaces of genus g. It is avariety whose points correspond to isomorphism classes of Riemann surfaces. Then we have awell de�ned holomorphic map: j : Mg �! Ag; [X] 7�! �g�where � is a period matrix of X. Torelli's theorem implies that j is injective.The Schottky problem can now be reformulated as the problem of �nding equations for theimage of j.2.2.7 De�nition. Let J0g � Hg be the set of period matrices of Riemann surfaces. Its imagein Ag is j(Mg) = Image(J0g �! Ag = �gnHg):The subvarieties J0g and j(Mg) are not closed, see 2.2.8. We de�ne the Jacobi locus Jg to bethe closure of J0g in Hg: Jg := J0g (� Hg):2.2.8 Decomposable matrices. A � 2 Hg will be called decomposable if � lies in the �gorbit of matrices in diagonal block form (the diagonal blocks being matrices in upper half planesof lower dimension). The set Jg � J0g in Hg consists of decomposable matrices, the diagonalblocks being period matrices of Riemann surfaces of lower genus. This follows from a result ofHoyt.2.2.9 Modular forms. From Teichm�uller theory one knows that the subset Jg is actuallyan irreducible subvariety of Hg of dimension 3g � 3 for g > 1, if g = 1 one has H1 = J1 = J01 .Since Jg is a complex subvariety of Hg, it is natural to ask for holomorphic functions fi onHg such that fi(�) = 0 for all i implies � 2 Jg. The fact that Jg is invariant under �g suggeststhat we could try to �nd such fi which are �g-invariant. It is known that a variant of this ideawill work.A Siegel modular form of weight k is a holomorphic function on Hg which transforms in thefollowing way under �g:f : Hg �! C; f(A�) = det(c� + d)kf(�); A = � a bc d� 2 �g;in case g = 1 one has to add a certain growth condition on f(�) for � ! i1. The modularforms of weight k form a complex vector space which has �nite dimension. For suitable, large,k, a basis f0; : : : ; fN of this vector space gives an everywhere de�ned map:~�k : Hg �! PN ; � 7�! (f0(�) : : : : : fN(�)):Since fi(A�) = det(c� + d)kfi(�) for each i, we have ~�k(A�) = ~�k(�) and thus the map ~�kfactors over Ag = �gnHg. In this way we get a map:�k : Ag = �gnHg �! PN :



December 6, 1999 5A fundamental result is that for suitable k the map �k embeds Ag (so Ag �= �k(Ag)). Theimage of �k (and thus Ag itself) is a quasi projective variety, that is, a Zariski open subset of aprojective variety. For this projective variety one can take the Satake compacti�cation of Ag,which has the following nice set-theoretic description as a disjoint union:Ag �= Ag :[ Ag�1 :[ : : : :[ A0;here A0 is de�ned to be a point. Actually the maps �k extend to maps Ag and for suitable kone has �k(Ag) �= Ag �= �k(Ag).The closure of �k(j(Mg)) is a projective subvariety of PN . Thus it is de�ned by a (�nite) setof homogeneous polynomials. Determining these polynomials as well as the modular forms ofweight k gives a solution to the Schottky problem. The `best type' of equations for the Jacobilocus Jg are thus homogeneous polynomials in modular forms.Note that if F 2 C[X0; : : : ; XN ] is a homogeneous polynomial of degree d and f0; : : : ; fN isa basis of M(�g; k) then � 7! F (f0(�); : : : ; fN(�)) is a modular form of weight kd. Thus theequations for Jg we look for will be modular forms.2.2.10 Algebraic geometry. We just explained that the nicest equations for the periodmatrices are modular forms. These modular forms are obtained from homogeneous polynomialswhich de�ne the (closure in PN of) the image of the compositionMg j�! Ag = �gnHg ��! PN :The map � is given by modular forms on Hg. To �nd the image of point [C] (2 Mg), onehas determine a period matrix � 2 Hg of C and then evaluate the modular forms at � . Inpractice these two `transcendental' steps cannot be made explicit, except for very special cases,for instance when the Riemann surface C has many automorphisms.However, any Riemann surface is an algebraic curve and can thus be de�ned by a polynomialF 2 C[X; Y ] in two variables. Using the algebraic geometrical approach one �nds that thecoordinates of �(j[C]) are given by polynomials in the coe�cients of F . For example, if thecurve is hyperelliptic (and F = �Y 2 +Q(X � ai)) Tomae's formulas essentially compute thesecoordinates (cf. [M3]). In the classical literature one �nds several other partial results for moregeneral curves.2.2.11 Table. We conclude this section with a table. It shows that the Schottky problem istrivial for g � 3 and that for g = 4 one equation might be su�cient.g dimAg dimJg codimAgJg2 3 3 03 6 6 04 10 9 15 15 12 3g 12g(g + 1) 3g � 3 12(g � 2)(g � 3)



December 6, 1999 63 Abelian Varieties3.1 Complex tori and polarizations3.1.1 We return to the problem of �nding the modular forms which solve the Schottky prob-lem. It turns out that `nature' has already done most of the hard work. To explain this weintroduce abelian varieties and show how they are related to Hg and its quotient Ag = �gnHg.In a sense, we take the longest possible route. However, it is an interesting one where wesee various important geometrical objects and constructions. At the end we get, for free, anexplicit map � : Ag(2; 4) := �g(2; 4)nHg �! P2g�1which we will introduce and study in detail in the next chapter since it appears to be of greatimportance for the Schottky problem. The variety Ag(2; 4) is a �nite covering of Ag.The intrinsic approach which we sketch here is due to Mumford, but is implicit in theclassical literature on theta functions. Readers already familiar with theta functions will �ndthe classical results in the corresponding notation in the next chapter (and might want to skipthis chapter).We study line bundles on complex tori and we recall thatAg is the moduli space of principallypolarized abelian varieties. Then we introduce the Heisenberg group and give some applications.3.1.2 Complex tori. As a �rst step we will associate a geometric object, a complex torusto a � 2 Hg. Then we characterize the tori obtained in this way in Theorem 3.1.4.Since Im(�) > 0, the matrix Im(�) is invertible. The image of Z2g in Cg under the g � 2gmatrix (I �) is then a lattice �� in Cg:�� := Zg + �Zg ,! Cg:The quotient of Cg by this lattice is denoted byX� := Cg=�� ;it is a (compact) complex variety, a torus. In case � 2 J0g is the period matrix of a Riemannsurface C this torus is J(C), the Jacobian of C. Using notation from the previous lecture wehave: J(C) := H0(C;
C)�=H1(C;Z):3.1.3 The polarization. Let V be a complex g-dimensional vector space and let X = V=�be a complex torus. Then we can choose a basis B = fa1; : : : ; ag; b1; : : : ; bgg for the lattice �in such a way that fa1; : : : ; agg is a C-basis of V . The matrix �B = �X;B 2 Mg(C) de�ned bybi = Pj(�B)ijaj then has an invertible imaginary part, but Im(�B) need not be positive de�nitenor is �B necessarily symmetric.We should recall however that the period matrix of a Riemann surface was de�ned withrespect to a symplectic basis (w.r.t. the intersection form). The formulation of the following



December 6, 1999 7theorem is not so elegant since various conventions are not compatible. Note that if B is asymplectic basis for an alternating form E on � and we de�neB0 := fa1; : : : ; ag;�b1; : : : ;�bgg (with B = fa1; : : : ; ag; b1; : : : ; bgg)then B0 is a symplectic basis for the form �E.3.1.4 Theorem. A complex torus X = V=� has a basis B for which �B 2 Hg i� there is analternating form E : �� �! Z such that1. B is symplectic basis for �E,2. The R-linear extension of E to Cg = �
Z R satis�es the two conditions:E(iv; iw) = E(v; w); E(v; iv) > 0 (v; w 2 Cg)and v 6= 0 in the second condition.In case � 2 Hg, the basis B = fe1; : : : ; eg; �e1 : : : ; �egg of �� (with ei the i-th standard basisvector ofCg) and the alternating form E de�ned by the matrix�E0 satisfy these two conditions.Proof. Let B and E satisfy the conditions of the theorem and let B0 be as above. Then B0 is asymplectic basis of � and E is given by the matrix E0 on the basis B0. Let [i] : V ! V; x 7! ixbe multipication by i (i2 = �1) and let J� be the 2g � 2g matrix of [i] w.r.t. the R-basis B0 ofV . The conditions in 2 translate in the following matrix identities:tJ�E0J� = E0; E0J� > 0 with E0 = � 0 1�1 0� :To determine J� we de�ne W = Ra1 + : : :+Rag (�= Rg) andR : W �W �! V; (u; v) 7�! u+ iv:Since [i](u + vi) = �v + ui we have [i]R(u; v) = RJ(u; v) where J : W 2 ! W 2 is given by thematrix: J := R�1[i]R = � 0 �11 0 � :By de�nition of �B, the map 
� := (I � �B) : W 2 �! Vmaps (u; v) to u1a1 + : : : ugag + v1(�b1) + : : :+ vg(�bg). ThusJ� = 
�1� [i]
� = (
�1� R)(R�1[i]R)(R�1
� ):Let � = X + iY and X; Y 2 Mg(R), then 
� (v1; v2) = v1 � �v2 = (v1 � Xv2) + i(�Y v2) =R(v1 �Xv2;�Y v2), so we haveR�1
� = � 1 �X0 �Y � ; (R�1
� )�1 = � 1 �XY �10 �Y �1 � J� = ��XY �1 Y +XY �1X�Y �1 Y �1X � :



December 6, 1999 8The matrix tJ�E0J� is then:� tY �1(tX �X)Y �1 tY �1Y + tY �1(X � tX)Y �1X�tY Y �1 + tX tY �1(X � tX)Y �1 �tX tY �1Y + tY Y �1X + tX tY �1(tX �X)Y �1X � :The condition tJ�E0J� = E0 is equivalent to tX = X; tY = Y (since Y is invertible, X = tXi� we have a zero in the upper left corner, then we have a I upper right i� tY Y �1 = I (i.e.Y = tY ), the rest follows).The condition EJ� > 0 is:� Y �1 �Y �1X�XY �1 Y +XY �1X � > 0 equivalently; � 1 0�X 1��Y �1 00 Y �1 �� 1 �X0 1 � > 0:Since a matrix A is positive de�nite i� tSAS is positive de�nite (where S is invertible) i�tA�1 = t(A�1)AA�1 is positive de�nite, this condition is equivalent to Y > 0. 23.2 Line bundles.3.2.1 To understand the signi�cance of an alternating form with properties as in Theorem3.1.4 we recall the basic facts on line bundles. Line bundles on a complex variety X areimportant in the study of maps from X to a projective space PN . There is a natural linebundle, usually denoted by O(1) on PN . Given a holomorphic map � : X ! PN the pull-backof O(1) to X is a line bundle L := ��O(1) on X. Moreover, the map � is given by globalsections of L. Thus a knowledge of line bundles and their sections allows one to determine allembeddings (if any) of X in a projective space. We restrict ourselves to a discussion of linebundles on a torus. References for line bundles on tori are [M1], Chapter 1 and [LB], Chapter2.3.2.2 Cocycles. To construct a map� : X = V=� �! PNone could use holomorphic functions fi : V �! C (0 � i � N) satisfying the transformationrules: fi(z + �) = c�(z)fi(z); (� 2 �; z 2 V )with c� independent of i and c�(z) 6= 0 for all z 2 V . Then (: : : : fi(z + �) : : : :) = (: : : : fi(z) :: : :) and the map V ! PN , z 7! (: : : : fi(z) : : : :) factors over X = V=�. The transformationlaw implies that c�+�(z) = c�(z + �)c�(z)(replace z by z + � in the transformation rule). This is the cocycle rule and fc�g�2� is calleda cocycle for �.



December 6, 1999 93.2.3 Line bundles. Given a cocycle fc�g one can construct a complex variety L of dimen-sion 1 + dimX as follows. Let � act on V �C by the rule:� � (z; t) := (z + �; c�(z)t);that (� + �) � (z; t) = � � (� � (z; t)) follows from the cocycle condition. The orbit space L :=(V �C)=� is a complex manifold and has a holomorphic map �L : L! X induced by (z; t) 7! z.The triple (L; �;X) is a line bundle. Any line bundle on a torus can be de�ned by a cocycle.3.2.4 Global sections and theta functions. A holomorphic function f : V ! C satisfyingthe rule f(z + �) = c�(z)f(z) de�nes a map~s : V �! V �C; z 7! (z; f(z)) and � � ~s(z) = ~s(z + �);hence ~s gives a well-de�ned holomorphic map s : X ! L which obviously satis�es (�Ls)(z) = zfor all z 2 V . Such maps s : X ! L are called (holomorphic) sections of the line bundle L andsuch functions are called theta functions. Any section is obtained from a theta function. Theglobal sections form a �nite dimensional C-vector space denoted by �(X;L).3.3 Classi�cation of Line bundles3.3.1 Isomorphism of bundles. Given a torus X = V=� we now want to determine allline bundles on X as well as the vector spaces �(X;L).Two line bundles L; L0 on X are isomorphic if there is a bi-holomorphic, �bre preservingmap L ��! L0�L??y ??y�L0X idX�! X �L0� = �Lwhich is linear on the �bers. Let c�, c0� be the cocycles de�ning L and L0. Then � correspondsto a bi-holomorphic map� : V �C �! V �C; (z; t) 7�! (z + �; ~�(z)t)which intertwines the actions of � given by the two cocycles, so:(z + �; c�(z)~�(z)t) = (z + �; ~�(z + �)c0�(z)t)for all z; t; �.3.3.2 The Picard group. The set of line bundles on the torus X modulo isomorphism isan abelian group with tensor product as group law, equivalently, product fz 7! c�(z)c0�(z)g�of cocycles. This group is called the Picard group of X, Pic(X). It can be identi�ed with thesheaf cohomology group H1(X;O�X). From the exponential sequence:0 �! Z �! OX e�! O�X �! 0; e(f) := e2�if



December 6, 1999 10one obtains an exact sequence:0 �! Pic0(X) �! Pic(X) c�! NS(X) �! 0;here NS(X) is the N�eron-Severi group of X (which is the subgroup H2(X;Z) \ H1;1(X) ofH2(X;Z) �= Zg(2g�1)) and Pic0(X) (�= H1(X;O)=H1(X;Z)) is a complex torus. The map c isthe �rst Chern class of a line bundle. For X = V=� the group NS(X) is canonically isomorphicto the group of Z-valued alternating bilinear forms E on � with E(ix; iy) = E(x; y):NS(X) = fE 2 Hom(�� �;Z); E(x; y) = �E(y; x); E(ix; iy) = E(x; y) g:The group Pic0(X) is canonically isomorphic to:Pic0(X) = Hom(�; U(1)); with U(1) = fz 2 C : jzj = 1 g;we do not discuss the complex structure on Pic0(X).Given � 2 Hom(�; U(1)) the corresponding line bundle L� is de�ned by the cocyclefc�(z) := �(�)g�, thus the cocycle does not depend on z. Actually any homomorphism
 : � �! C� de�nes a cocycle in this way, but the bundle L
 is isomorphic to a uniqueL�.3.3.3 Appell-Humbert data. Given a � 2 Hom(�; U(1)) and an E 2 NS(X) it is notpossible in general to de�ne canonically a line bundle on X. However, one can write downcocycles which exactly parametrize Pic(X). These cocycles are determined by Appell-Humbertdata which are de�ned as follows. For E 2 NS(X) de�ne a (Hermitian) formH = HE : V � V �! C; H(v; w) := E(v; iw) + iE(v; w)(that H is Hermitian follows from E(ix; iy) = E(x; y) = �E(y; x)). Next one considers maps� (not homomorphisms in general):� : � �! U(1); �(�+ �) = �(�)�(�)(�1)E(�;�):Note that if �; �0 are such maps then �0��1 is a homomorphism � ! U(1). A pair (�;H) iscalled Appell-Humbert data (for the torus X) and it de�nes a cocycle by:c�(z) := �(�)e�2H(�;�)+�H(�;z):Let L(�;H) be the line bundle on X de�ned by this cocycle.3.3.4 Theorem. (Appell-Humbert) Let X be a complex torus. Then each line bundle on Xis isomorphic to a L(�;H) for uniquely determined Appell-Humbert data (�;H).



December 6, 1999 113.3.5 Very ample line bundles It is now an interesting problem to determine the vectorspaces �(X;L(�;H)) and to see for which bundles the global sections de�ne an embedding ofX ina projective space. Such line bundles are called very ample. The precise results are not so easyto state but the following result, due to Lefschetz, is classical. We recall that an Hermitian formH on a complex vector space V is called positive de�nite (and one writes H > 0) if H(v; v) > 0for all v 2 V � f0g. In terms of E (= Im(H)), the condition H > 0 is obviously:E(v; iv) > 0 8v 2 V � f0g:3.3.6 Theorem. (Lefschetz) Let (�;H) be Appell-Humbert data on a torus X.If H > 0 then the line bundle L(�n;nH) is very ample for any n � 3 (the bundle L(�;H) isthen called ample). Conversely, if L(�;H) is very ample then H > 0.3.3.7 De�nition. A complex torus is called an abelian variety if it has a very ample linebundle, equivalently, if it has an embedding � : X ! PN . (In that case, Chow's theorem impliesthat the image �(X) is a projective variety, that is, is de�ned by homogeneous polynomials.)3.3.8 Riemann-Roch. The reader now recognises the two conditions on the polarizationwe met in 3.1.4. The �rst garantees that E 2 NS(X), the second that there exist very ampleline bundles on X.One can determine the dimension of �(X;L(�;H)) in terms of � and H. To state a weakversion of this result, we recall that if E : � � � ! Z is an alternating form then there is a(generalized symplectic) basis fa1; : : : ; ag; b1; : : : ; bgg of � such thatE(aj; ak) = 0 = E(bj; bk); E(aj; bk) = ej�jk;with �jk = 0 if j 6= k, �jj = 1, and ej 2 Z�0 with ej dividing ej+1 (we adopt the conventionthat any ei divides 0). These ej are uniquely determined by E and are called the elementarydivisors of E. In case E(v; iv) > 0 for all v 6= 0 we have of course ej 6= 0 for all j.3.3.9 Theorem. Let L(�;H) be an ample line bundle on X (so H > 0) and let e1; : : : ; eg bethe elementary divisors of E = Im(H). Thendim�(X;L(�;H)) = e1e2 : : : eg:3.4 Principally polarized abelian varieties.3.4.1 The tori which interest us particularly are the Jacobians of curves and more generally,those de�ned by a � 2 Hg. Theorem 3.1.4 and the general results above show that such a torusX = X� comes with a given element E 2 NS(X) which de�nes ample line bundles L(�;H) (withH = HE) and E has elementary divisors e1 = : : : = eg = 1 (so dim�(X;L(�;H)) = 1). Notethat H > 0 implies all ej 6= 0 and thus: dim�(X;L(�;H)) = 1 i� ej = 1 for all j.



December 6, 1999 123.4.2 Translates of ample bundles For any a 2 X we have an isomorphismTa : X �! X; x 7�! x+ a;the translation by a. One can pull-back line bundles along a translation. This gives a mapT �a : Pic(X)! Pic(X) which preserves the Chern class c(T �aL) = c(L). The map�L : X �! Pic0(X) = Hom(�; U(1)); a 7�! T �aL
 L�1is a homomorphism which is determined by E = c(L) in the following way:�L(a) = [� 7�! e2�iE(~a;�)]; (� 2 �)where ~a 2 V maps to a 2 X = V=� (since E(�;�) � Z this does not depend on the choice of~a). In case det(E) 6= 0, this map is surjective with kernelker(�L) = (Z=e1Z)2 � : : :� (Z=egZ)2:In particular, if two ample line bundles L; L0 have the same Chern class (c(L) = c(L0) ) thenL0 
 L�1 2 Pic0(X) = �L(X) is isomorphic to T �aL 
 L�1 for some a 2 X and thus L and L0are translates of each other: L0 �= T �aL.If L is ample, det(E) 6= 0 so the map �L induces an isomorphism on the tangent spaces atthe origins. Since Pic0(X) = H1(X;OX)=H1(X;Z) its tangent space at 0 is H1(X;OX) andwe get T0X �= H1(X;OX).3.4.3 De�nition. A principally polarized abelian variety (ppav for short) is a pair (X;E)with X a complex torus and E 2 NS(X) satisfyingHE > 0; dim�(X;L(�;HE)) = 1:Equivalently, a ppav is a pair (X;L) with X a complex torus and L an ample line bundle withdim�(X;L) = 1, but ppavs (X;L), (X;L0) will be identi�ed if c(L) = c(L0), that is, if L andL0 are translates. The dimension of a ppav (X;E) is de�ned to be dimX.Two ppav's (X;E); (X 0; E 0) are isomorphic, we write (X;E) �= (X 0; E 0), if there is anisomorphism � : X ! X 0 with ��E 0 = E, where �� : H2(X 0;Z) ! H2(X;Z) is the mapinduced by �.3.4.4 Moduli of ppav's. With these de�nitions one can verify that Ag = �gnHg is themoduli space of g-dimensional ppav's, roughly speaking:Ag = f(X;E)g= �= :



December 6, 1999 133.4.5 The theta divisor of a ppav. Given a ppav (X;E) of dimension g, any two linebundles L; L0 with c(L) = c(L0) = E are translates and they have, upto scalar multiple, aunique non-zero global section. Thus the zero locus of such a section is a variety � = �(X;E)of dimension g � 1 which depends only on (X;E) and is called the theta divisor of (X;E).In case (X;E) = JC (with E the intersection form), Riemann proved that the divisor �JC isisomorphic to the image of an Abel-Jacobi map:�JC = Image(C(g�1) �! JC):This divisor thus carries interesting geometrical information on the Riemann surface.It is known that the dimension of the singular locus of �JC is at least g� 4. This propertyhas been used to study the Schottky problem.3.4.6 Symmetric line bundles. Given a ppav (X = V=�; E) there is no canonical way to�nd a line bundle L on X with c(L) = E. However, one can consider Appell-Humbert data(�;HE) with � : � �! f�1g (� U(1)). The corresponding bundles have the property thatthey are symmetric: [�1]�L �= L where for n 2 Z:[n] : X �! X; x 7�! nx:There are 22g such � and thus 22g such bundles, in fact if � de�nes a symmetric bundle, thenso does �� where � : �! f�1g is a homomorphism.To see that such � indeed exist, let B := fa1; : : : ; ag; b1; : : : ; bgg be a symplectic basis of �.We de�ne �B : � �= Zg � Zg �! U(1); �B((m;n)) := (�1)tm�nwhere (m;n) 2 Zg � Zg corresponds to m1a1 + : : : + mgag + n1b1 + : : : + ngbg 2 � andtm � n = m1n1 + : : : +mgng. It is easy to check that (�B; HE) are Appell-Humbert data andthus de�ne a symmetric line bundle MB on X and (X� ;MB) is a ppav.3.4.7 An intrinsic line bundle. Although it is impossible to de�ne intrisically a line bundleL on a ppav (X;E) with c(L) = E, one can de�ne such a line bundle with c(L) = 2E. In fact,since (�1)2E(�;�) = +1, we have the line bundleL := L(�;H); Im(H) = 2E; �(�) = 1 (8� 2 �)on X. This bundle is isomorphic to M
2 for any symmetric line bundle with Chern classc(M) = E. Since the elementary divisors of 2E are 2ei = 2, we get:dimH0(X;L) = 2g:This bundle will be very important in the remainder of these notes.



December 6, 1999 143.5 Heisenberg groups3.5.1 Introduction. We now recall an interesting aspect of line bundles on an abelianvariety. It permits one to �nd an intrinsic basis of the vector spaces H0(X;M) for any linebundle M on X. More precisely, one �nds a �nite set of such basis, and each such basis isde�ned up to multiplication by a constant. For the sake of simplicity we restrict ourselves tothe case of the intrinsic bundle L on a ppav. References for this section are [Ig1], [LB], Chapter6 and [K].3.5.2 Let (X;E) be a ppav and let L be the intrinsic line bundle on X. Since c(L) = 2E weget from 3.4.2 thatT �aL �= L () �L(a) = 0 () a 2 X[2] := ker([2] : X �! X):Given a 2 X[2] there is no intrinsic isomorphism T �aL! L. If L is given by a cocycle fc�(z)g,then T �aL is given by the cocycle fc�(z + a)g but since c�(z) 6= c�(z + a), one has to choose amap ~� as in 3.3.1 to get an isomorphism. This forces us to consider the Heisenberg group ofL. Its elements are couples of a 2-torsion point and an isomorphism of bundles:H(L) := f(�; a) : a 2 X[2]; � : T �aL �=�! Lg:With the natural group law, the Heisenberg group turns out to be non-abelian (!), in 3.5.3 wegive a concrete description of H(L). There is an exact sequence:1 �! C� �! H(L) �! X[2] �! 0:The �rst non trivial map is t 7! (t; 0), the second is (�; a) 7! �. In fact, the map H(L)! X[2]is obviously surjective and the only isomorphisms of (any) line bundle on a compact complexvariety with itself are scalar multiples of the identity. The subgroup C� is the center of H(L).The group H(L) acts on the vector space of global sections �(X;L) �= C2g as follows:(�; a)s := �(T �a s):A basic fact is that this action is irreducible (the only invariant subspaces are f0g and the spaceitself).3.5.3 A concrete description of the Heisenberg group H(L) and its action on H0(X;L) isobtained as follows. We de�ne a groupH = Hg := C� � (Z=2Z)g �HomZ((Z=2Z)g;C�)with product (the term m(u) makes it non-abelian):(t; u; l)(s; v;m) = (tsm(u); u+ v; l +m):Note that the image of �1 2 Z=2Z by a homomorphism f to C� must be 2-torsion, so f(�1) =(�1)n for a unique n 2 Z=2Z. The map f 7! n gives an isomorphismHom(Z=2Z;C�)! Z=2Z.



December 6, 1999 15The Heisenberg group H(L) is isomorphic to the group H. An isomorphism which is theidentity on the subgroups C� is called a theta structure:� : H(L) �=�! H; �jC� = idC�:There are only a �nite number of theta structures: the elements (1; u; l) 2 H have order atmost 4 and, together with C�, generate H, moreover there are only a �nite number of elementsof order at most 4 in H (and thus in H(L)) so a theta structure is determined by the map itinduces from the �nite set of order at most 4 in H(L) to the corresponding �nite set in H.The group H has a natural representation (the Schr�odinger representation) on the vectorspace V := Functions((Z=2Z)g;C) (�= C2g) as follows:((t; u; l)f) (u0) = tl(u0)f(u+ u0) (t; u; l) 2 H; u0 2 (Z=2Z)g:The vector space V has a natural basis of `delta functions' f��g�2(Z=2Z)g with�� : (Z=2Z)g �! C; u 7�! ( 0 if u 6= �1 if u = �:The main result on Heisenberg groups asserts that this representation of H on V coincides withthe action of H(L) on H0(X;L). The irreducibility of the representations and Schur's lemmaimply that, given a theta structure � : H(L)! H, there is an essentially unique isomorphismH0(X;L) �= V which intertwines the representations. The basis of delta functions in V thengives a canonical basis of the vector space H0(X;L). The consequences of this remarkable factare discussed in the next chapter. We summarize the results in the theorem below.3.5.4 Theorem. Given a theta structure � : H(L) ! H, there is a unique (up to scalarmultiple) isomorphism: T (�) : H0(X;L) �! Vwhich satis�es:T (�) �(�; a)s � = �(�; a) (T (�)s) H0(X;L) T (�)�! PV(�; a)??y ??y�(�; a)H0(X;L) T (�)�! PVIn particular, the elements T (�)�1(��) are a basis of H0(X;L) and in these sections give a map�� : X �! P2g�1 = PV;where the coordinates of PV are parametrized by (Z=2Z)g.



December 6, 1999 163.5.5 We need one more fact. Since (t; 0; 0) 2 H acts by scalar multiplication on V , it actstrivially on PV and thus the Schr�odinger representation induces a representation of H=C� �=(Z=2Z)2g on PV . Let ~a = (t; u; l) 2 H map to a 2 H=C�, then we writeU(a) : PV �! PVfor the projective linear map induced by the action of ~a on V .For x 2 X[2] any two elements (�; x); (�0; x) 2 H(L) are related by �0 = t� for some t 2 C�and thus a theta structure induces an isomorphism (a level two structure), which we also denoteby � (with some abuse of notation):� : X[2] �= H(L)=C� �=�! (Z=2Z)2g = H=C�:With this notation, the following diagram is commutative:X ���! PVT��1(a)??y ??yU(a)X ���! PV:so the translation by two-torsion points on X is given by projective transformations on PV .4 Geometry of second order theta functions4.0.6 Introduction. We work out the consequences of the theory of the previous chapterand show that we recover some classical results from theta function theory. In particular, we�nd intrinsically de�ned maps �� : X� ! PV and � : Hg ! PV .In section 4.2 we consider the intersection of the images of these maps. Somewhat surpris-ingly we �nd that if X� is a Jacobian the intersection is rather large. This is the �rst hint thatsecond order theta functions are rather e�cient at detecting Jacobians.Next we consider the intersection of a tangent space of �(Hg) with �(X� ), again theJacobians behave in a peculiar manner. This led Izadi to a geometrical solution of the Schottkyproblem in the case g = 4.4.1 Classical theta functions4.1.1 Classical notation. We return to the upper half plane and the compex tori X� :=Cg=�� .The standard basis of Z2g gives a symplectic basis B of �� = Z + �Zg, the correspondingsymmetric line bundle MB will be denoted by M� (cf. 3.4.6). Thus (X� ;M� ) is a ppav. Thisbundle can thus be de�ned by a cocycle fc�g as in 3.3.3 but Riemann's original cocycle fe�gis more convenient for various purposes (for example, Riemann's cocycle is holomorphic asfunction of � but the c� are not, since H is not holomorphic in �). The explicit formula forRiemann's cocycle is: e�(�; z) := e��i(tk�k+2tkz); (� = l + �k 2 �� ):



December 6, 1999 17The global section of M� is called Riemann's theta function. In general, the global sections ofa line bundle M on X� with Chern class c(M) = kc(M� ) for k 2 Z>0 are called theta functionsof level k.The intrinsic bundle L (c.f. 3.4.7) over X� will be denoted by L� . Its de�ning cocycle isfe2�g (since �2B = 1).4.1.2 Canonical basis. For applications of Theorem 3.5.4, which gives bases of �(X� ; L� ),it is important to know that given � 2 Hg, the intrinsic line bundle L� on X� has a naturaltheta structure �� : H(L� ) �! H:It has the property: �� : (�; (a + �b)=2) 7�! (t�; �a;�b) for some t� 2 C� and �b 2 (Z=2Z)g �=Hom((Z=2Z)g;C�). The corresponding canonical basis of H0(X� ; L� ) is given by the secondorder theta functions: ��(�; z) = Xn2Zg e2�i(t(n+�2 )�(n+�2 )+2t(n+�2 )z)where � 2 (Z=2Z)g (and one may take representatives � with components �i 2 f0; 1g). Thatis, the isomorphism T (�� ) de�ned by the theta structure �� satis�es:T (�� ) : H0(X� ; L� ) �=�! V; �� 7�! ��:4.1.3 Maps. As a consequence of the previous results we now have, for any � 2 Hg, thenatural map: �� := ��� : X� �! PV; z 7�! (: : : : ��(�; z) : : : :):We see that the maps �� for various � glue together, in fact the theta functions �� are holomor-phic in both z and � . Thus we get a map fromHg�Cg to the projective space PV . These thetafunctions and these maps were well known classically, but the approach with the Heisenberggroup emphasizes that the construction is a canonical one.4.1.4 Theta constants. Since an abelian variety X = V=� has a `canonical' point, theorigin, any theta structure � de�nes a canonical point ��(0) 2 PV . Thus we get a map �from the moduli space of pairs ((X;E); �) of ppav's with theta structure to PV , de�ned by:�((X;E); �) := ��(0).In the classical picture, this gives the map� : Hg �! PV; � 7�! �� (0) = (: : : : ��(�; 0) : : : :):the coordinates are called theta constants (but they are not constant in � (!)). Since there ismore than one theta structure, one should not expect that this map factors over Ag = �gnHg.However this is `almost' true.For an even, positive, integer k we de�ne (normal) subgroups (of �nite index) of �g =Sp(2g;Z) by: �g(k) := fA 2 �g : A � I mod k g ;
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�g(k; 2k) := �A 2 �g(k) : A = I + k � a0 b0c0 d0 � and diag(b0) � diag(c0) � 0 mod 2k� :We denote by A(H) the subgroup of automor�sms of H which are the identity on C� � H.If �; �0 : H(L) ! H are theta structures, the map �0��1 : H ! H is in A(H) and for� 2 A(H) the map �� : H(L)! H is a theta structure. In this way the set of theta structuresis a principal homogeneous space under A(H). There is an isomorphism of �nite groups:A(H) �= �g=�g(2; 4);and the space Ag(2; 4) := �g(2; 4)nHg is the moduli space of ppav's with a theta structure. Thegroup A(H) is the Galois group of the covering Ag(2; 4)! Ag.4.1.5 Theorem. (Igusa) The map � factors over the quasi-projective variety Ag(2; 4) :=�g(2; 4)nHg. The induced map, denoted by the same symbol,� : Ag(2; 4) �! PVhas degree 1 on its image and its di�erential is injective at any point of Ag(2; 4). (It is notknown if � is an embedding.) The closure �(Hg) of the image of � is a projective variety ofdimension g(g + 1)=2 in PV .4.1.6 Modular forms. Thus we have a very explicit map � of a �nite cover of Ag to aprojective space. The coordinate functions ��(�; 0) of the map � are modular forms of `weight1=2' (so basically transform with qdet(a� + b) but the sign of the root has to be speci�ed).Taking the second Veronese image of this map (given by all products ����) one gets a mapwhose coordinate functions are modular forms of weight 1. The theory of automorphisms ofthe Heisenberg group, or equivalently, the classical transformation laws for theta constants,imply that the �nite group �g=�g(2; 4) acts on PV in such a way that � is an equivariant map:�(A�) = A ��(�) (A 2 �g):Thus one can obtain modular forms for �g by taking all homogeneous polynomials on PV whichare invariant under the action �g=�g(2; 4) and substituting the �� for the variables.4.1.7 Kummer varieties. We consider now the map �� : X� ! PV . According toLefschetz' Theorem, for n � 3 the map given by global sections of the bundle M
3� on the theppav (X� ;M� ) embed X� in a projective space. We are interested in the bundle L� = M
2�however.The map �� given by the global sections of L is not injective. In case � is indecomposable,the variety �(X� ) is isomorphic to the quotient of X� by the involution x 7! �x (second order



December 6, 1999 19theta functions are even: ��(�;�z) = ��(�; z), as one veri�es from the Fourier series in 4.1.1).This quotient variety is called the Kummer variety of X� and will be denoted byK� := X�=� 1:The Kummer variety has 22g singular points, corresponding to the two-torsion points X� [2](these are the �xed points of the involution).�� (X� ) �= K� := X�=f�1g; Sing(K� ) = X� [2]:In case � is decomposable, the ppav X� is isomorphic to a product of lower dimensional ppav'sand the �2;�(X� ) is isomorphic to the product of their Kummer varieties ([K], Chapter 10).4.2 Intersections4.2.1 We face the obvious question: what is the intersection�(Hg) \ �� (X� ) (� PV )between the moduli space and the Kummer variety? This question was raised in [GG], in viewof the dimensions of the spaces involved, one wouldn't expect any intersection at all for g > 3.From the de�nition of � it is however obvious that at least �� (0), the origin of K� , lies in theintersection.We consider the pre-image of this intersection in X� and call it Y� , soY� := ��1� ��(Hg) \ �� (X� )� :In case � is the period matrix of a Riemann surface, a relation between theta functions discov-ered by Fay implies that Y� has dimension at least two!4.2.2 Recall that J(C) = H0(C;
C)�=H1(C;Z). For any p; q 2 C we can de�ne an elementin this space, simply denoted by p � q, as follows. Take any path 
 in C starting in q andending in p, then we get a map R
 : H0(C;
C)! C. If we choose another path, R
 will changeto R
 + R� where � is a closed path, so � gives an element of H1(C;Z). Therefore the class ofR
 in J(C) depends only on p and q and this is the desired p� q 2 J(C).For g > 1 one then obtains a surface in J(C):C � C := fp� q 2 J(C) : p; q 2 C g :With this notation Fay's result is:4.2.3 Theorem. Let � be the period matrix of a Riemann surface C. Then:fx 2 J(C) : 4x 2 C � C g ,! Y� :



December 6, 1999 204.2.4 Remarks. In case g = 3 one has Y� = (1=4)(C � C). It would be interseting to knowfor which � one has dimY� > 0 but I don't know of any results beyond g = 3.We will consider an `in�nitesimal' version of this condition in 4.3.5 where we replace themoduli space by its tangent space.One should note that the points of order 4 of J(C) = X� are contained in Y� (since 0 =p� p 2 C � C). A further study of these points, which we carry out in section 5.5, does leadto rather explicit Siegel modular forms (related to the classical Schottky-Jung relations) whichgive non-trivial equations for the period matrices of Riemann surfaces.4.2.5 Sketch of proof of Theorem 4.2.3 Let x 2 J(C) with 4x = p � q, let D := 2x,then 2(D + q) � p + q (linear equivalence of divisors). Interpreting J(C) as Pic0(C), thevariety of line bundles of degree 0 on C, this implies that OC(D + q)
2 �= O(p + q). Let sbe the global section of O(p + q) which is zero in p and q. Inside the global space of the linebundle OC(D+ q) we can now consider the subvariety CD of points � satisfying �
 � 2 s. Thesubvariety CD is an irreducible curve (provided p 6= q) and the bundle projection induces a 2:1map � : CD ! C which rami�es only over p and q. Thus the genus of CD is 2g. The pull-backmap �� : H0(C;
C)! H0(CD;
CD) induces a `Norm' map Nm : J(CD) ! J(C). The kernelof Nm is an abelian variety of dimension g and has a principal polarization induced by the oneon J(CD). This ppav is called the Prym variety of the cover �.Thus ker(Nm) �= X� for some � 2 Hg. Fay [Fa] proves that, for a suitable pair of �; � 2 Hgwith J(C) �= X� and ker(Nm) �= X� one has:�� (x) = ��(0) (= �(�) 2 �(Hg)):Therefore x 2 Y� . The case p = q follows by taking the limit p! q. In that case the cover willbecome singular (and in fact the Prym variety in that case is best seen as a ppav of dimensiong � 1).4.3 Local intersections4.3.1 Tangent spaces. Let � 2 Hg be indecomposable. Then the image of �� : X� ! PVis isomorphic to the Kummer variety K� := X�=� 1. The point �� (0) = (: : : : ��(�; 0) : : : :) issingular on K� . Lett0 := �� (0) = (: : : : ��(�; 0) : : : :); tkl := (: : : : @2��@zk@zl (�; 0) : : : :)�2f0;1gg (2 PV ):(The second order theta functions z 7! ��(�; z) are all even, thus the �rst order deriviativesvanish.) The embedded tangent space of �� (X� ) at �� (0) is the span of these points:TK� ;0 := ht0; : : : ; tkl; : : :i1�k�l�g; dimTK� ;0 = 12g(g + 1):The classical Heat equations for second order theta functions:@2��@zk@zl (�; z) = 4�i(1 + �kl) @��@�kl (�; z)



December 6, 1999 21for all � 2 Hg; z 2 Cg and i2 = �1, these are easy to verify from the series de�nition of the ��in 4.1.2. Therefore we also have:tkl = 4�i(1 + �kl)(: : : : @��@�kl (�; 0) : : : :)�:The vectors on the righthand side of the equation above and t0 together obviously span theembedded tangent space T�(Hg);�(�) to �(Hg) at t0 = �(�). Thus this space coincides withTK� ;0, we denote it by T� : T� := TK� ;0 = T�(Hg);�(�):4.3.2 Remark. This may be seen as a geometric version of an intrinsic isomorphism. TheKummer variety K� is singular, but its tangent space is still de�ned by (m=m2)� where m �OK� ;0 is the maximal ideal in the local ring at 0 2 K� . This local ring is the ring of invariants(under z 7! �z) of the local ring OX� ;0 �= OCg;0. Thus OK� ;0 may be identi�ed with the ring ofeven, convergent power series in g variables. Any f 2 OK� ;0 has a Taylor series expansion:f(z) = f(0) +Xij aijzizj +H:O:T:We obviously have:f 2m () f(0) = 0; and f 2m2 () (f(0) = 0; aij = 0 8i; j):Thus (m=m2)� is spanned by the monials zizj. Each zi is an element of T �X� ;0, thus we �nd:TK� ;0 �= S2TX� ;0 �= S2H1(X� ;O);the last isomorphism comes from the principal polarization on X� as in 3.4.2.On the other hand, the �rst order deformations of an algebraic variety X are parametrizedby H1(X; TX). Since the tangent bundle of X� is trivial, TX� �= TX� ;0 
 OX� and thusH1(X� ; TX� ) �= H1(X� ;O) 
 H1(X� ;O). The deformations of X� parametrized by Hg pre-serve the polarization. This gives an identi�cation:THg);� = S2H1(X� ;O); and so THg);� �= TK� ;0:4.3.3 �00. The (linear) projective subvariety T� � PV of dimension 12g(g+ 1) is de�ned by(2g � 1)� 12g(g + 1) linear equations. We identify these equations in the following way.Let H = P� a�X� be the equation of a hyperplane in PV . Then we can pull-back H to X�along the map �� : X� ! PV . This pull-back is the theta function �H := P� a���(�; z):��� : H0(PV;O(1)) �! H0(X� ; L� ); H 7�! �H :Then we �nd that t0 = �� (0) lies in H i� �H(0) = 0 and similarly, tij 2 H i� @2=@zi@zj�H(0) =0. Therefore the de�ning equations for T� are the elements of the vector space:�00 := n� 2 H0(X� ; L� ) : m0(�) � 4 o ;where m0 stands for multiplicty at zero (since these theta functions are even, the multplicityis also even). That is, T� � H () �H 2 �00:



December 6, 1999 224.3.4 Explicit equations. We will need the following observation later. Let P 2C[: : : ; X�; : : :] be a homogeneous polynomial which is zero on the projective variety �(Hg) (�PV ). Then HP :=X� @P@X� (a)X�; with a = �(�) = (: : : ; ��(�; 0) : : : :)is a linear form on PV which is zero on the tangent space T� at a to �(Hg). Thus its restrictionto �(X� ) gives a section in �00. In case a is a smooth point of �(Hg), these linear forms cutout T� (� PV ) and the corresponding sections span �00.4.3.5 The local intersection. We will now investigate an in�nitesimal version of theintersection �� (X� ) \ �(Hg) (see 4.2.3). That is, we replace �(Hg) by T� , its embeddedtangent space at �(�).We de�ne: F� := fx 2 X� : �(x) = 0 8� 2 �00g:Then by the previous discussion F� is the pre-image of this intersection:�� (F� ) = �� (X� ) \ (\�H2�00H) = �� (X� ) \T� :For period matrices of Riemann surfaces this intersection is again large (and it is related in asomewhat surprising way with the intersection �� (X� ) \ �(Hg)).The incusion � in the following theorem was observed by Fay, Gunning, van Geemen andvan der Geer, the inclusion � is due to Welters.4.3.6 Theorem. Let X� = J(C), the Jacobian of a Riemann surface C. Then:F� = C � C except ifwe are in the case that g = 4 and that C has two distinct line bundles of degee 3 with dimH0 = 2(this is the case for the generic curve of genus 4). In that case we write the points in Pic3(C)corresponding to these bundles by g13 and h13 and we have F� = C � C [ f�(g13 � h13)g.4.3.7 The surface C � C � J(C) is singular at the origin 0 2 J(C). Its tangent cone there(viewed as subvariety of PTJ(C);0) is the canonically embedded embedded curve. Thus if C isnon hyperelliptic, Theorem 4.3.6 gives a proof of Torelli's theorem (it can also be used to proveTorelli for HE curves with a little bit of extra work).4.3.8 For dimension reasons, one does not expect that dimF� > 0 for a � 2 Hg. This leadsto the following conjecture, which was proved in case g = 4 by Izadi [Iz]. For g = 4 we thushave a geometrical solution to the Schottky problem. More re�ned versions of the conjectureand variants are discussed in [GG], [BD] and [D1].4.3.9 Conjecture. Let � 2 Hg be indecomposable, then dimF� > 0 ?() � 2 Jg.



December 6, 1999 234.3.10 Example. The case g = 3 is easy to understand. Fix an indecomposable � 2 H3 andlet T = T� . Then dimT = 6 so T is a hyperplane in PV . The corresponding section �T spans�00 and its zero locus must be C � C. One can also verify directly that C � C 2 j2�j, thelinear system de�ned by L
2� . We have m0(�T) = 4 and if �T(z) = F4(z) +H:O:T is the Taylorseries of �T, then the quartic polynomial F4 is the de�ning equation for the canonical curve Cif X� = J(C) with C non hyperelliptic. In case C is hyperelliptic one has F4 = F 22 and C � Cis the surface C(2) � g12, counted with multiplicity two; its tangent cone is the rational normalcurve of degree g � 1 (counted with multiplicity two).5 Schottky-Jung relationsIntroduction. We consider the eigenspaces of the linear maps U(a) : PV ! PV for a 2(Z=2Z)2g = H=C�, and, of course(!), the intersection of these eigenspaces with both the modulispace �(Hg) (in 5.1.3) and with the Kummer varieties �� (X� ) in PV (in 5.1.4).This leads us to a geometrical picture of the classical Schottky-Jung relations. We showhow these relations can be used to construct to modular forms which are zero on the locus ofperiod matrices of Riemann surfaces. Next we recall the known results.5.1 Eigenspaces of Heisenberg group elements5.1.1 Let a 2 H=C� be a point of order two, let and let U(a) : PV ! PV be the projectivetransformation de�ned in 3.5.5. We denote by a� 2 X� [2] the point for which the followingdiagram commutes: X� ���! PVTa�??y ??yU(a)X� ���! PV a� := ��1� (a)here �� is the canonical theta structure which induces an isomorphism�� : X[2] �=�! H=C�:5.1.2 Going down. Since U(a)2 = idPV , any lift of U(a) to a linear map ~U(a) : V ! V ,satis�es ~U(a)2 = �I for a non-zero � 2 C. The map ~U(a) gives the action of an element(t; u; l) 2 H on V . The explicit formula for the action of H on V (see 3.5.3), shows that ifa 6= 0, the map ~U(a) has two eigenspaces V �a in V . Their projectivizations PV +a and PV �a willbe called the eigenspaces of U(a). The signs are not de�ned intrinsically, any element in aneigenspace of U(a) is �xed by U(a).The eigenspaces of U(a) have dimension 2g�1�1 (they are projectivizations of linear spacesof dimension 2g�1 = 122g). The action of H = Hg on V induces an action of a similar groupHg�1 on the spaces V �a . As in Theorem 3.5.4 and section 4.1.3 this allows us to de�ne for� 2 Hg�1 and the corresponding theta structure �� : H(L�) ! Hg�1 maps (and similar oneswith a � sign):�a+� : X� �! PV +a ; �a+ : Hg�1 �! PV +a ; �a+(�) := �a+� (0):



December 6, 1999 245.1.3 Boundary components. The images of Hg�1 in the eigenspaces nicely �t in the'holes' of the image of Hg in PV , in fact we have disjoint union:�(Hg) = �(Hg) :[ �[a2H=C��f0g�a+(Hg�1) [ �a�(Hg�1)�(the various �a�(Hg�1) may still intersect). The �a�(Hg�1) are images the 2(22g�1) boundarycomponents of the Satake compacti�cation of Ag(2; 4). It is known that ([vG]):�a+(Hg�1) = �(Hg) \PV +a :5.1.4 Intersection. Let again a 2 H=C� � f0g and the corresponding a� 2 X� [2]. Weconsider �� (X� ) \PV +a (� PV );the intersection of a Kummer variety with an eigenspace of U(a). Since p 2 PV +a [ PV �a i�U(a)(p) = p, and since U(a)�� (x) = �� (x + a� ) we get:�� (x) 2 PV +a [PV �a () �� (x + a� ) = �� (x):Now assume that � is indecomposable, then �� (X� ) �= K� = X�=� 1. Thus�� (x) 2 PV +a [PV �a () (x + a� = x or x+ a� = �x):The �rst condition is impossible, but the second gives 2x = a� , so x is a point of order 4. Thenumber of points x with 2x = a is 22g (the di�erence of any two such is a point of order two).These map to 1222g = 22g�1 points in the Kummer variety K� and each eigenspace PV �a gets1222g�1 = 22(g�1) points.We conclude that �� (X� ) \ PV +a is a set of 22(g�1) points for indecomposable � 's. Eachof these sets is an orbit of the group Hg�1. Since each eigenspace also contains a boundarycomponent of �(Hg), we introduce the following de�nition:5.1.5 De�nition of Schottky-Jung relations. A pair (X� ; x) with x 2 X� [2]�f0g satis�esthe Schottky-Jung relations if for some y 2 X� with 2y = x we have:�� (y) 2 �a+(Hg�1) (� PV +a );here a = �� (x) and PV +a is the eigenspace which contains �� (y).This condition depends only on the point x 2 X = X� , not on the choice of � or y. In factPV +a is one of the two eigenspaces of translation by x on PV (cf. 3.5.5). The Heisenberg grouppermutes the y's while it stabilizes �a+(Hg�1) (or maps it to �a�(Hg�1)).5.2 Examples5.2.1 We inspect the Schottky-Jung relations for low genus. In the cases g = 1; 2; 3 theanswer is easy. In case g = 4 we �nd a more interesting situation however.



December 6, 1999 255.2.2 g = 1: The abelian variety X� = C=(Z + �Z) is an elliptic curve. The line bundleL� �= O(2O) with O 2 X� the origin. The Schr�odinger representation of H(2) = C� � (Z=2)2(as sets) on V is given by (see 3.5.3)(t; 1; 0) 7! � 0 tt 0� ; (t; 0; 1) 7! � t 00 �t� ; (t; 1; 1) 7! � 0 t�t 0� ;the matrices are with respect to the basis of �-functions. The eigenspaces PV � of these elementsare points in PV �= P1, they are respectively:(1 : 1); (1 : �1); (1 : 0); (0 : 1); (1 : i); (1� i)with i2 = �1.If we denote the image of the origin by (a : b):�� : X� �! PV; (a : b) := �� (0);then, using the equivariance of �� for the action of X� [2] and H=C� we �nd that�� (12 + �0) = �� (0 + (12 + �0)) = (t; 1; 0) ��� (0) = (b : a);and similarly the images of the other two-torsion points can be determined:�� (0 + � 12) = (a : �b); �� (12 + � 12) = (b : �a):Since �� (X� ) �= X�=� 1, the image of X[2] consists of 4 distinct points. Therefore a and bare non-zero. Then we can write these image points as:(� : 1); (��1 : 1); (��; 1); (���1 : 1) (� = a=b):The elliptic curve X� can be recovered as the 2:1 cover of P1 rami�ed in these 4 points, thusan a�ne equation for X� is: X� : y2 = x4 � (�2 + ��2)x2 + 1:Given any point (� : 1) 2 PV which is not one of the six eigenspaces, we get in this way anelliptic curve which is isomorphic to an X� , and �� (0) = (� : 1).By de�nition, �(�) = �� (0) so we get:�(H1) = P1 � f6 eigenspacesg:In fact, in this case A1(2; 4) �= A1(4) �= �(H1). The 6 eigenspaces PV �a correspond to to theboundary components so, formally, each is a �a�(H0).We recall that we have shown that the inverse image under �� of a point PV �a 2 PV is apoint of order four in X� for any � 2 Hg. Thus as � moves in H1, the images of these pointsremain �xed! Since the image of any point of of order 4 is a boundary component, all pairs(X� ; x) satisfy the Schottky-Jung relations.



December 6, 1999 265.2.3 g = 2: Let � 2 H2 be indecomposable. Then �� maps X� onto its Kummer surface K�in PV : �� : X� �! K� � PV �= P3:The surface K� has degree 4 and its singular consists of 16 points, the images of the two-torsionpoints.Each eigenspace PV +a = P1 is now a projective line, we get 2�15 = 30 such lines inP3. Theselines can be found easily (as in the g = 1 case) and they form a quite interesting, symmetric,con�guration. We just observe that each line is a copy of �(H1) and thus has 6 marked pointson it. Through each such point there pass 2 other lines (and the lines only intersect in suchpoints).Since the Kummer surface has degree 4, it will meet each eigenline in 4 points, which arethe images of points of order 4. This shows that any pair (X� ; x) with � 2 H2 satis�es theSchottky-Jung relations.In case � is decomposable, X� �= X��X�0 for some �; �0 2 H1. Then �� (X� ) �= K��K�0 �=P1 �P1, which is embedded as a smooth quadric in P3. There are 10 quadrics which arise asimage of a decomposable X� (one can recover the pair �; �0 from the image of the origin of X�in P1 �P1). Any two of these 10 quadrics intersect in 4 lines, these are eigenlines.As in the g = 1 case, the image ofH2 is the complement of the eigenspaces and is isomorphicto the moduli space: Ag(2; 4) �= �(H2) := PV � f30 eigenspacesg:The space PV is isomorphic to the Satake compacti�cation of Ag(2; 4). The image in PV ofthe locus of the period matrices of Riemann surfaces isM2(2; 4) := �(J02 ) = PV � f10 quadricsg(these 10 quadrics are the images of decomposable abelian varieties). It can be shown that theuniversal cover of M2(2; 4) is the Teichm�uller space T2.The �nite group G := �2=�2(2; 4) is the symmetry of the con�guration of 30 lines and 10quadrics, it sits in an exact sequence:0 �! (Z=2Z)4 �! G �! S6 �! 0;where S6 is the symmetric group (the 6 is related to the 6 Weierstrass points on a genus twocurve). The action of the subgroup (Z=2Z)4 onPV coincides with the action ofH(2)=C� onPV .This subgroup �xes the 10 quadrics and �xes the pairs of eigenlines (but can permute PV +a andPV �a ). The group S6 permutes the 15 pairs of lines like it permutes the 15 (unordered) subsetswith two elements fi; jg � f1; : : : ; 6g, it permutes the 10 quadrics like the 10 (unordered)pairs of complementary (unordered) subsets with three elements f fi; j; kg; fl; n;mg g withfi; j; kg [ fl; n;mg = f1; : : : ; 6g.



December 6, 1999 275.2.4 g = 3: In this case each eigenspace PV +a �= P3 is a linear subspace of PV �= P7. Weknow that for indecomposable � 2 H3, the threefold �� (X� ) intersects PV +a in 16 points. Fromthe g = 2 example we know that PV +a = �a+(H2). Since any point of order 4 maps to aneigenspace, its image lies in a boundary component �a+(H2). Thus again we get (`for free')that for all � 2 H3 and x 2 X� of order two, the pair (X� ; x) satis�es the Schottky-Jungrelations.The 6-fold �(H3) (� P7) has degree 16, its de�ning equation is given in [GG].5.2.5 g = 4: Now a point y of order 4 maps to an eigenspace PV +a of dimension 7, and mayor may not lie on the 6-fold �a+(H3). We will discuss this situation in the next lectures.5.2.6 Remark. For g � 3 the indeomposable abelian varieties are all Jacobians. For aJacobian X� (of any dimension g) we know from 4.2.3 that �(X� ) \ �(Hg) contains a surfaceand that this surface contains all the points of order 4 (these are (14)0). Since � is indecoposable,�� (X� ) \ PV +a consists of images of points of order 4. As �(Hg) \ PV +a = �a+(Hg�1) it isclear that, for any choice of period matrix � for the Jacobian and any x 2 X[2]�f0g, the pair(X� ; x) satis�es the Schottky-Jung relations. We sketch another proof in 5.3.3.5.3 Schottky Loci5.3.1 We de�ne two loci (algebraic subsets of the quasi projective variety Ag) of importancefor the study of the Schottky-Jung (SJ) relations. These were introduced by Donagi who showedthat there is an interesting di�erence between them when g = 5. The �rst one is:Sbigg = f[� ] 2 Ag = �gnHg : 9x 2 X� [2]� f0gs.t. (X� ; x) satis�es the SJ relations g :For a given ppav X, we ask for at least one point of order two a such that (X; a) satis�es theSchottky-Jung relations. We can also ask for the ppav's X such that for all a 2 X[2]� f0g wehave the Schottky-Jung relations:Ssmallg = f[� ] 2 Ag = �gnHg : (X� ; x) satis�es the SJ relations 8x 2 X� [2]� f0g g :The Schottky locus Sg as de�ned in [vG] coincides with Ssmallg .We already observed the following result in 5.2.6, other proofs were given by Schottky andJung, Rauch and Farkas, Fay, and Mumford.5.3.2 Theorem. Let j(Mg) � Ag be the closure of the locus of Jacobians j(Mg) in Ag.Then: j(Mg) � Ssmallg (� Sbigg ):



December 6, 1999 285.3.3 Scketch of proof of Theorem 5.3.2. Since Ssmallg is closed, it su�ces to showj(Mg) � Ssmallg . Let C be a Riemann surface of genus g, choose a � 2 Hg with X� = Jac(C) =H0(C;
)�=H1(C;Z) and let x 2 X� [2]� f0g. We will construct a ppav Px of dimension g � 1such that there exists a � 2 Hg�1 with Px �= X� and, with a = �� (x),�a+(�) 2 �� (X� ) \PV +a ;which implies the Schottky-Jung relations (if one of the 22g�2 points on the right is in �a+(Hg�1)then all of them are). To construct Px one constructs �rst an unrami�ed double cover of theRiemann surface.The point of order two x 2 J(C) �= Pic0(C) corresponds to a line bundle L on C withL
 L �= O. As in 4.2.5, we get a curve Cx � L, the `square root of 1'. The bundle projectionL ! C restricts to an unrami�ed 2:1 map �x : Cx ! C. Thus the genus of Cx is 2g � 1. ThePrym variety of the covering �x is de�ned to be ker(Nm : J(Cx)! J(C))0 with Nm the mapinduced by �x and 0 stands for connected component of the origin (in this case ker(Nm) hastwo components).Another way to construct the unrami�ed cover �x : Cx ! C is to use the theory of coveringspaces and fundamental groups. Note thatX� [2] �= 12H1(C;Z)=H1(C;Z) �= H1(C;Z)=2H1(C;Z):Using the intersection form (�:�) on H1(C;Z), the point x de�nes a codimension one subspacex? in this F2-vector space: x? := fb 2 X� [2] : (x:b) = 0 mod 2g :The (surjective) Hurewich map �1(C) �! �1(C)ab �= H1(C;Z) composed with the `mod 2' mapgives a surjection � : �1(C) �! X� [2]. Then Gx := ��1(x?) is a subgroup of index two of�1(C). The quotient of the universal cover of C by Gx is a 2:1 unrami�ed cover of C and thisis Cx (moreover, Gx = �1(Cx)). Now Px is de�ned as above.Next one studies the theta functions on the Jacobian of Cx and restricts them to the imageof J(C) in J(Cx) and to Px. The main result is the Schottky-Jung proportionalities, whichfor suitable period matrices � of J(C) and � of Px state that �� (x=2) 2 PV coincides with��(0) 2 PV +a � PV .These proportionalities are derived in [C], 6.4, p. 173, with x = 12(1; 0; : : : ; 0) 2� Cg. Theny = 12x 2 Cg corresponds to a point in X� with 2y = x and thus maps to an eigenspace ofU(�� (x)). Explicit computations and elementary manipulations show:�� (y) = (: : : : ��(�; y) : : :) with ( �(0;�2;:::;�g)(�; y) = �[0;�2;:::;�g1; 0; ::: ; 0 ](0; 2�)�(1;�2;:::;�g)(�; y) = 0were we mix our notation on the left with Clemens' notation on the right, and we took p = qin Clemens' formula. That formula, the Schottky-Jung proportionalities, shows:(: : : : �[0;�01; 0 ](0; 2�) : : : :) = (: : : : �[�00 ](0; 2�) : : : :)



December 6, 1999 29where the index �0 runs over (Z=2Z)g�1. In our notation, we have:��0(�; 0) = �[�00 ](0; 2�):To get our geometrical interpretation of the Schottky-Jung proportionalities, note that theeigenspace PV +a which contains �� (y) is de�ned by: X� = 0 if �1 = 1. The natural coordinateson this eigenspace are the X�� which are induced by the X(0;��) on PV . Thus the natural map�a+ : Hg�1 �! PV +a (� PV )is given by� 7�! (: : : : c�(�) : : : :)�2(Z=2Z)g ; with c�(�) = ( �(�2;:::;�g)(�; 0) if �1 = 00 if �1 = 1:Thus we see that �� (y) = �a+(�) where � 2 Hg�1 is a period matrix of the Prym variety Px. 25.4 Results5.4.1 Here are the three main results on the Schottky loci. The �rst shows that the Schottkyproblem is solved in genus 4. For essentially trivial reasons, for g � 5 the big Schottky locusis really bigger than the small Schottky locus, and thus cannot coincide with the Jacobi locus.The second, surprising, result is of Donagi who shows that there is in g = 5 also an interestingdi�erence between the big and small Schottky locus. Finally one can show that for any g theSchottky locus is 'locally' equal to j(Mg).We observe that for g > 4 it is not known if j(Mg) and Sg coincide. (For example, we donot even know if they coincide for g = 5, Donagi's example shows that this may not be so easyto decide).5.4.2 Theorem. (Schottky, Igusa, Freitag) We have:Ssmall4 = Sbig4and this locus is de�ned by one (explicitly known) modular form (of weight 8) for �4 = Sp(8;Z).Moreover ([Ig2], [Fr]): j(M4) = Ssmall4 :5.4.3 Theorem. For g � 5 we have Ssmallg 6= Sbigg .Proof. Let � 2 H4 � J4 and let � 2 Jg�4. Then (the isomorphism class of) X := X� �X� inAg is not in Ssmallg but it is in Sbigg . (For a = (a0; 0) 2 X[2] the pair (X; a) does not satisfy theSchottky-Jung relations, but any pair (X; (0; a00)) will satisfy the Schottky-Jung relations). 2



December 6, 1999 305.4.4 Theorem. (Donagi [D1]) Let Y � P4 be a smooth cubic threefold. Let J(Y ) :=H2;1(Y )�=H3(Y;Z) be its intermediate Jacobian, J(Y ) is a ppav of dimension 5. Then J(Y ) 62J5, J(Y ) is not decomposable (i.e. is not a product of lower dimensional ppav's) but J(Y ) 2 Sbig5 .Proof. The theta divisor of J(Y ) has just one singular point [B3]. Since the theta divisorof a Jacobian has a singular locus of dimension � g � 4 = 1 and a decomposable ppav hasdimSing(�) = g � 2 = 3, we get the �rst two statements. For the most interesting result,[J(Y )] 2 Sbig5 one uses the following relation, discovered by Donagi.Let C be Riemann surface and let a; b 2 J(C)[2]� 0 with E(a; b) = 0 where E : J(C)[2]�J(C)[2] ! Z=2Z is the Weil pairing which induced by the polarization. Let Pa �= X�(a),Pb �= X�(b) be the corresponding Pryms. One can prove that Pa[2] �= a?= < a > with a? as inthe proof of 5.3.2, and we have a similar result for b. Thus we get points �b 2 Pa[2] and �a 2 Pb[2].Donagi proves that one can choose points u 2 Pa with 2u = �b and v 2 Pb with 2v = �a suchthat: ��b+�(a)(u) = ��a+�(b) (2 PV +a \PV +b � PV )(strictly speaking, we should write PV +��(a) etc.)The space PV +a \ PV +b �= P2g�2�1 is an eigenspace �b 2 Hg�1, the Heisenberg group actingon PV +a (and also for an �a in the copy of Hg�1 acting on PV +b ). Then we have the natural map��a;�b;+ : Hg�2 �! PV +a \PV +b :Donagi's relation implies: if (Pa;�b) satis�es the Schottky-Jung relations then also (Pb; �a) satisifesthem (because ��b+�(a)(u) 2 ��a;�b;+(Hg�2) implies ��a+�(b) 2 ��a;�b;+(Hg�2)).Next Donagi chooses a genus 6 curve C (a plane quintic) and a; b in such a way thatPa = J(D) for some genus 5 curve D and Pb is the intermediate Jacobian of a cubic threefold.Thus (Pa;�b) obviously satis�es the Schottky-Jung relations and one concludes that so does(Pb; �a). 25.4.5 The locus Ssmallg is an algebraic subset of Ag, and thus it is a �nite union of irreduciblecomponents. One would like to show that it has only one component and that this componentis j(Mg). The next theorem shows that is the case. The proof which we sketch in 5.5.2 doesn'tgive much information on the existence of other components.5.4.6 Theorem. (van Geemen) The variety j(Mg) is an irreducible component of Ssmallg .5.5 Equations for the Schottky loci5.5.1 We show how one expresses the Schottky-Jung relations in terms of modular forms,these are used in the proof of 5.4.6.For a 2 H=C� we can represent a� := ��1� (a) 2 X� by 12(n + �m) 2 Cg for some n; m 2f0; 1gg. Let ~b� = 14(n + �m), then ~b represents a point b� 2 X� with 2b� = a� . We have



December 6, 1999 31seen that �� (b� ) lies in an eigenspace of a, let's call that one PV +a . Then (X� ; a� ) satis�es theSchottky-Jung relations i� �� (b� ) 2 �(Hg�1) (� PV +a ):The ideal of the projective variety �(Hg) (� PV ) will be denoted by Ig, so Ig (�C[: : : ; X�; : : :]�2f0; 1gg) contains all the homogeous polynomials which are zero on that va-riety. Using the Heisenberg group actions, Ig�1 can be identi�ed with the ideal Ia+g�1 of�a+(Hg�1) � PV +a for any a 2 H=C�. Then (X� ; a� ) satis�es the Schottky-Jung relationsif and only if �a(P )(�) := P (��(b� )) = 0 (8P 2 Ia+g�1; P homogeneous):For every a 2 H=C� and every homogeneous P 2 Ig�1 we get a holomorphic function�a(P ) : Hg �! C. Since the coordinate functions of � 7! �� (b� ) are modular forms of `halfintegral' weight, the holomorphic functions �a(P ) are also modular forms. So we see that theSchottky loci can be de�ned by modular forms and thatSsmallg = f[� ] 2 Ag = �gnHg : �a(P )(�) = 0 8a 2 H=C��f0g and all homogeneous P 2 Ig�1 g:In general we know very little about Ig. In the �rst non-trivial case, g = 3, we know that I3is generated by one polynomial F of degree 16. This implies that in genus 4 we get a modularform �a(F ) of weight 8 for each a 2 H=C�. Schottky already proved that all these modularforms are the same and that they are not identically zero. Much later Igusa and Freitag provedthat the zero locus of this modular form is exactly J4. It is known that I4 contains elements ofdegree 32.5.5.2 Proof of Theorem 5.4.6. We give a rough sketch of the proof of Theorem 5.4.6. Infact, to simplify matters we will assume that we have an universal family of abelian varietiesover Ag and this family as well as Ag are smooth(!). To justify the arguments given here one hasto use level structures. We will also make some other simplifying assumptions but we believethat we still convey the main idea of the proof.Since Ssmallg is a quasi-projective variety, it is a �nite union of irreducible components:Ssmallg = Z1 [ Z2 [ : : : [ Zn:For simplicity we write Jg := j(Mg) (� Ag):As Jg � Ssmallg and Jg is irreducible (it is the closure of the image of the Teichm�uller space) itmust be contained in at least one of the Zi, let's say Jg � Z1. If dimZ1 = 3g�3 (= dimJg), then,since both are irreducible, Jg = Z1. So the theorem follows if we prove that dimZ1 = 3g � 3.We will use induction on g to prove this, the case g = 2 (or g = 3) being trivial.We recall that the Satake compactication Ag is the disjoint union of Ag and Ag�1. It iswell-known that Jg, the closure of Jg in Ag, intersects Ag�1 in Jg�1. It is not hard to show thatsomething similar happens with the small Schottky locus:Jg \ Ag�1 = Jg�1; Ssmallg \ Ag�1 � Ssmallg�1 :



December 6, 1999 32Let Z 01 := Z1 \ Ag�1, then Z 01 � Ssmallg�1 . Since Jg � Z1 we get Jg�1 � Z 01 � Ssmallg�1 . Theinduction hypothesis that Jg�1 is an irreducible component of Ssmallg�1 implies that Jg�1 is anirreducible component of Z 01. Unfortunately, the codimension of Ag�1 in Ag is very large (it is12g(g + 1)� 12(g � 1)g = g). Therefore we cannot get a good estimate of dimZ1 from this fact.5.5.3 Igusa's compacti�cation. We consider another compacti�cation of Ag, introducedby Igusa. Let � : ~Ag �! Agbe the blow up of Ag along its boundary Ag�1. The inverse image ��1(Ag�1) of Ag�1 is adivisor on ~Ag. Let ~Z1 be the closure of Z1 in ~Ag and let ~Z 01 be an irreducible component of~Z1 \ ��1(Ag�1) mapping onto the irreducible component Jg�1 of Z 01.Assuming there are smooth points of ~Ag in ~Z 01, we get:dimZ1 = dim ~Z1 = dim( ~Z 01) + 1:If we can show that the map �j ~Z1 : ~Z 01 �! Jg�1has a �ber of dimension � 2, then it follows that dim ~Z 01 � (3(g� 1)� 3)+2 = 3g� 4 and thusdimZ1 = 3g � 4 + 1 = 3g � 3 as desired.The inverse image of the open subset Ag�1 � Ag�1 under the map � is the `universal familyof abelian varieties' over Ag�1 (note we simplify here). Thus we may identify ��1([�]) = X�.Since ~Z10 � ~Sgsmall, the closure of the small Schotky locus in ~Ag, it su�ces to show thatdim( ~Sgsmall \X�) � 2.Recall that Ssmallg is de�ned by the modular forms �a(P ) with P 2 Ig�1. We need to knowthe intersection of the (closure in ~Ag) of the zero locus of �a(P ) with ��1(�) = X�.For this we consider a period matrix:� = � � zz �1 � (2 Hg); � 2 Hg�1; z 2 Cg�1; �1 2 H1:(for any �; z we can �nd �1 (with Im�1 >> 0) such that � 2 Hg). This matrix � movesto the boundary point � 2 Ag�1 if we let Im�1 ! +1 (equivalently, q := e2�i�1 ! 0, here� = 3:14 : : :). The modular form �a(P ) has a q-expansion:�a(P )(�) = Xn2Z�0 Pn(�; z)qn:The functions z 7! Pn(�; z) are theta functions on X�. The intersection of the zero locus of�a(P ) with X� is given by zero's of Pk(�; z) where k is the smallest integer for which Pn(�; z)is not identically zero.The coordinates ��(�; b� ) of �� (b� ) have the q-expansion:��(�; b� ) = ���(�; 0) + ���(�; z)q +H:O:T: �� = (�1; : : : ; �g�1)



December 6, 1999 33when � = (�1; : : : ; �g). Since P is a polynomial, we get the following formula:�a(P )(�) = P (: : : ; ���(�; 0); : : :) + qX�� @P@X�� (: : : ; ���(�; 0); : : :)���(�; z) +H:O:T:Since the polynomials P 2 Ig�1 are zero on the image of Hg�1 we have P (: : : ; ���(�; 0); : : :) = 0.We have seen in 4.3.4 that P�� @P@X�� (: : : ; ���(�; 0); : : :)���(�; z) is in �00 and moreover, if �(�) is asmooth point on �(Hg�1) then �00 is spanned by these functions (where P runs over Ig�1).Putting everything together we get:~Ssmallg \ ��1(�) � F� = fz 2 X� : �(z) = 0 8� 2 �00 g:Thus it su�ces to show that for the period matrix � of a genus g � 1 curve we havedimF� � 2. Fortunately, this was proved by Welters and thus the proof is complete.5.5.4 Remark. One can `see' why Jg\��1([J(C)]) is C�C � J(C) (= ��1([J(C)])). If onedegenerates a genus g curve to a curve with a node, the normalization C of the nodal curve hasgenus g � 1 and the inverse image of the node are two points p; q on C. Following the modulipoint of the genus g curve we arrive at the point [J(C)] 2 Ag�1 in the Satake compacti�cationAg and at the point p� q 2 FJ(C) � J(C) = ��1([J(C)]) in Igusa's compacti�cation ~Ag.5.5.5 Remark. Recall that in case g = 5 the locus W of intermediate Jacobians of cubicthreefolds are contained in Sbig5 . Its closure W in the Satake compacti�cation intersects theboundary A4 in j(M4). Consider now the closure ~W � ( ~A5) of this locus in Igusa's compacti�-cation and the blow down map � : ~W !W . Let [JC] 2 j(M4) be a general Jacobian, then one�nds that ��1([JC]) \ ~W consists of the points �(g13 � h13) which are exactly the exceptionalpoints in FJC , the subvariety de�ned by �00 (see 4.3.6).References[ACGH] E. Arbarello, M. Cornalba, P. A. Gri�ths and J. Harris, Geometry of AlgebraicCurves, Vol. 1. Springer-Verlag (1985).[B3] A. Beauville, Les singularit�es du diviseur � de la jacobienne interm�ediaire de l'hyper-surface cubique dans P4. LNM 947, Springer Verlag (1982) 190{208.[B] A. Beauville, Le probl�eme de Schottky et la conjecture de Novikov., Exp. 675 du s�em.Bourbaki, Ast�erisque 152-153 (1988), 101{112.[BD] A. Beauville, O. Debarre, Sur les fonctions theta du second ordre., Proceedings: Arith-metic of Complex Manifolds, LNM 1399 (1989), 27{39.[C] C. H. Clemens, A Scrapbook of Complex Curve Theory. Plenum Press, New York andLondon (1980).
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