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1 Introduction

In this paper we study moduli spaces of principally polarized abelian varieties
(ppav’s) with a polarizaton preserving automorphism. In fact we concentrate on
the case in which the automorphism has order 3 or 4. These moduli spaces are
quotients of the symmetric domain

Hp,q := U(p, q)/(U(p) × U(q)) →֒ Sg,

(with Sg, g = p + q, the Siegel upper half space) by a discrete subgroup. These
‘modular’ embeddings of Hp,q in Sg, and generalizations, were studied by Shimura
and Satake, [Sat]. In the case of a level-2 subgroup and small genus, we find
explicit projective varieties which are isomorphic to the satake compactification
of these quotients. The spaces Hp,1 are in fact complex balls of dimension p and
so we obtain projective models for (non-compact) ball quotients.

In most of the cases we consider, the abelian varieties are in fact Jacobians of
curves (with an automorphism). A nice example is the case of the 2-dimensional
family of genus 3 curves y3 = f4(x) which have an isomorphism of order 3. It was
already observed by Picard that these curves are parametrized by (a quotient)
of H2,1. The name Picard modular variety in the title thus refers to the obvious
generalization of this quotient of H2,1. This family of curves was also investigated
by Holzapfel [Ho].

The satake compactification of H2,1/ΓM(2) (for notations see the text) was
already investigated by Hunt and Weintraub [HW] who proved that it is isomor-
phic to the complement of a set of 9 points in P 2. These 9 points are in fact the
base points of the Hesse pencil

X3 + Y 3 + Z3 + λXY Z.

The singular curves of this pencil also have a natural moduli interpretation
(see thm 8.5). Their method of proof involves the Chern-inequalities for Ball-
quotients. Our method instead uses second order theta functions, and can also
be applied to Picard modular varieties which are not Ball-quotients (see prop.
10.11 for example).

Also in the case of the 3-dimensional family of genus 4 curves y3 = f6(x)
we recover a result from [HW]: the satake compactification is the Burkhardt
quartic threefold B in P 4 (see thm 8.6). It is the unique quartic threefold whose
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singular locus consists of 45 nodes [JVSB]. The projective dual of this threefold
is isomorphic to the satake compactification of S2/Γ2(3), the moduli space of
2-dimensional abelian varieties with a level-3 structure. In section 9 we give a
moduli-theoretic description of this birational isomorphism of moduli spaces.

Most of the varieties we find are actually rational. Using the theory of theta
functions, it is however not hard to obtain projective models for finite covers,
which are also Picard modular varieties, but which in general will not be ra-
tional. In a later paper we hope to study these covers, both geometrically and
arithmetically.

The results of Hunt and Weintraub [HW] were the main motivation for study-
ing these varieties. I am indebted to B.Hunt for several stimulating discussions.
I would like to thank D. van Straten for his help with the computer program
‘macaulay’.

2 Characteristics

References for this section are [M1], §2 and [I], V.6.
Let X be an abelian variety and let L be an ample line bundle on X with

dim H0(X,L) = 1. The pair (X,L) is called a principally polarized abelian
variety (ppav). One may replace L by any of its translates, that is, only the
algebraic equivalence class of L is important for the definition of ppav.

Using the inversion
ι : X −→ X, x 7→ −x

one can pick out special bundles among the translates of L. A symmetric line
bundle L is a line bundle satisfying:

ι∗L ∼= L.

Any line bundle is algebraically equivalent to 22g symmetric line bundles. In
case L is a symmetric line bundle defining a principal polarization, the other
symmetric line bundles algebraically equivalent to L are obtained by translating
L by a point of order two.

2.1 Let L be a symmetric line bundle defining a principal polarization and
choose an isomorphism:

φ : L −→ ι∗L, with φ(0) = 1 : L(0) → ι∗L(0) = L(0),

here 0 ∈ X is the origin of X, L(x) is the fiber of L over x ∈ X and φ(x) ∈ C∗

is the restriction of φ to the fiber L(x). Since the two-torsion points are fixed by
ι and since ι∗φ ◦ φ = idL, we can define a map:

eL : X[2] −→ {±1}, eL(x) := φ(x).

This map is not a homomorphism, instead it satisfies ([M1], § 2, Cor.1):

eL(x + y) = eL(x) · eL(y) · e2(x, y),(2.1.1)
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where e2(x, y) is the weil-pairing on the two-torsion points, in particular e2 is
a non-degenerate, bilinear, alternating (i.e. e2(x, x) = +1) form with values in
{±1}. One should thus think of eL as a quadratic form on X[2], with associated
bilinear form e2.

With respect to a suitable (=symplectic) basis of X[2], the weil-pairing is
given by:

e2(x, y) = (−1)
∑g

i=1
xiyg+i+xg+iyi .

A straight forward computation shows that any map q : X[2] −→ {±1} satisfying
relation 2.1.1, with q := eL, is given by:

q(x) = (−1)
∑g

i=1
ǫixi+ǫ′

i
xi+g+xixi+g , ǫ, ǫ′ ∈ {0, 1}g.

We will call ǫ, ǫ′ the characteristics of q, or of L if q = eL (w.r.t. this basis of
X[2]).

In particular there are exactly 22g q’s associated with e2. Since

eT ∗

x L(y) = eL(y) · e2(x, y) (x, y ∈ X[2]),

with T ∗
xL the pull-back of L by Tx : X → X, y 7→ x + y, it follows easily that

the map M 7→ eM , from symmetric line bundles algebraically equivalent to L to
quadratic forms associated with e2 is a bijection.

From the classification theory of quadratic forms one knows that there are two
classes of q’s. We call q even if

∑

i ǫiǫ
′
i = 0mod 2 and odd otherwise. The even q’s

are characterised by the fact that they are trivial on a subspace of dimension g
of the F 2-vector space X[2]. Another way to distinguish the even and odd forms
is by counting the number of x ∈ X[2] with q(x) = 1. When q is even there are
e(g) and for q odd there are o(g) such points, with

e(g) := 2g−1(2g + 1), o(g) := 2g−1(2g − 1).

The number of even/odd q′s is also equal to e(g) and o(g) resp., in fact if for
x ∈ X[2] one easily verifies:

eT ∗

x L has the same parity as eL iff eL(x) = +1.

The group Sp(2g, F 2) of linear maps on the F 2 -vector space X[2] which
preserve the weil-pairing e2, acts transitively on the even and on the odd quadratic
forms associated with e2.

Since dim H0(X,L) = 1, we can write L = OX(ΘL), with ΘL an effective
symmetric divisor. Writing m(x) for the multiplicity of ΘL in x ∈ X we have the
relation ([M1], §2, prop.2):

eL(x) = (−1)m(x)−m(0) (x ∈ X[2]).

2.2 We relate the general theory above to the case of Jacobians of curves, which
have a natural principal polarization. For a curve C, let Picd(C) be the algebraic
variety parametrizing divisor classes of degree d on C. Inside Picg−1(C) there is
a natural divisor:

Θ := {x ∈ Picg−1(C) : h0(x) := dim H0(C,OC(x)) > 0}.
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For any α ∈ Picg−1 one obtains a divisor Θα in the abelian variety Pic0(C) =
J(C) by:

Θα := {x ∈ Pic0(C) : x + α ∈ Θ}.
The corresponding line bundle

Lα := OJ(C)(Θα)

defines a principal polarization on J(C).
Using Riemann-Roch it is easy to see that i∗Θα = ΘK−α, with K the canonical

class of C (indeed, x ∈ i∗Θα iff h0(−x + α) > 0, but since deg(−x + α) = g − 1,
this is equivalent with h0(x + (K − α)) > 0). In particular, Θα is symmetric iff
2α = K, divisor classes satisfying this condition are called theta characteristics
(cf [M2]). A theta characteristic is called even/odd if eLα is even/odd.

From Riemann’s theorem: mx(Θ) = h0(x) (with x ∈ Picg−1(C)), it follows
that for a theta characteristic α we have:

eLα(x) = (−1)m(x)−m(0) = (−1)h0(α+x)−h0(α) (x ∈ J(C)[2]).

Moreover, one has that eLα is an even quadratic form iff h0(α) is an even integer.

2.3 We recall the main results on even theta characteristics on curves of genus
≤ 4. Note that by the Riemann-Kempf theorem, the effective divisors in a linear
system α, with deg(α) = g − 1 and h0(α) > 1 are cut out on the canonical curve
by linear subspaces in the tangent cone to Θ at α.

In case g ≤ 2 we have h0(L) = 0 for all even theta characteristics. In case
g = 3, we also have h0(L) = 0 for all even theta charateristics on C, except when
C is hyperelliptic. On a hyperelliptic curve there is one (even) theta characteristic
h with h0(h) > 0. One has h0(h) = 2 and h defines the 2 : 1 map C → P 1.

In case g = 4, there are either 0, 1 or 10 even theta characteristics with h0 6= 0,
and h0 = 2 for these. In case there are 10, the curve is hyperelliptic and the 10
theta characteristics are 3Pi, where the 10 Pi are the 10 weierstrass points. In
case C is not hyperelliptic, its canonical image lies on a unique quadric. If this
quadric is a cone, then the curve has one theta characteristic α with h0(α) = 2.
The linear system |α| is cut out by the lines on the cone. In case the quadric is
smooth, C doesn’t have an even theta characteristic α with h0(α) > 0.

3 Theta functions

3.1 We now study the ppav X = Xτ , with τ ∈ Sg, the Siegel upper half plane:

Xτ := Cg/Λτ , Λτ := Zg + τZg,

Sg := {τ ∈ Mg(C) : tτ = τ, Im τ > 0}.
A symmetric line bundle L := Lτ defining the principal polarization on Xτ is:

Lτ := (Cg × C)/Λτ , with (m + τn) · (z, t) := (z + m + τn, e−πi(tnτn+2tnz)t)

the action of Λτ on Cg × C.
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3.2 The global sections of the bundles T ∗
xL, with x = (1/2)(τǫ + ǫ′), are given

by the classical theta functions:

θ[ǫǫ′ ](τ, z) :=
∑

k∈Zg

exp(πit(m + ǫ/2)τ(m + ǫ/2) + 2t(m + ǫ/2)(z + ǫ′/2)),

here ǫ = (ǫ1, . . . , ǫg), ǫ′ = (ǫ′, . . . , ǫ′g) and ǫi, ǫ′i ∈ {0, 1} are the characteristics

of the bundle T ∗
xL. In fact, one has θ[ǫǫ′ ](τ,−z) = (−1)

tǫǫ′θ[ǫǫ′ ](τ, z) and the
functions θ[ǫǫ′ ](τ, z + (1/2)(m + τn) and θ[ǫ+n

ǫ′+m](τ, z) define sections of isomorphic
line bundles, so:

eT ∗

x L(y) = (−1)
tǫǫ′ (−1)

t(ǫ+n)(ǫ′+m) = (−1)
tnm+tǫm+tǫ′n (y = (1/2)(m+τn) ∈ Xτ [2]).

A basis of H0(X,L⊗2) is given by the 2g second order thetafunctions:

θ[σ0 ](2τ, 2z), (σ ∈ {0, 1}g).

3.3 For x ∈ X[2], the line bundles T ∗
xL are also symmetric and one has (T ∗

xL)⊗
(T ∗

xL) ∼= L⊗2 (by the theorem of the square: (T ∗
p L) ⊗ (T ∗

q L) ∼= (T ∗
p+qL) ⊗ L for

any line bundle L and p, q ∈ X). For each x ∈ X[2] we thus have a multiplication
map:

H0(X,T ∗
xL) ⊗ H0(X,T ∗

xL) −→ H0(X,L⊗2).(3.3.1)

The multiplication map 3.3.1 is given by the theta relation ([I], IV.1):

θ[ǫǫ′ ](τ, z)2 =
∑

σ

(−1)
t(ǫ+σ)ǫ′θ[σ0 ](2τ, 0)θ[ǫ+σ

0 ](2τ, 2z),(3.3.2)

here σ runs over {0, 1}g.

3.4 Putting z = 0 in the theta functions we obtain the theta constants which
are used to map quotients of Sg to a projective space. The map

Θ : Sg −→ P 2g−1, τ 7→ (. . . : θ[σ0 ](2τ) : . . .)

factors over the congruence subgroup Γ(2, 4) :=
{(

I + 2A 2B
2C I + 2D

)

∈ Sp(2g, Z) : diag(AtB) ≡ diag(CtD) ≡ 0 mod 2

}

.

The induced map Θ : Ag(2, 4) := Sg/Γ(2, 4) → P 2g−1 is known to be injective
on tangent spaces, but for g ≥ 4 it is not known if it is an injection

3.5 For even characteristics m = [ǫǫ′ ] we define quadrics Qm ⊂ P 2g−1 by:

Qm :=

{

x = (. . . : xσ : . . .) ∈ P 2g−1 :
∑

σ

(−1)
tσǫxσxσ+ǫ = 0

}

.(3.5.1)

The e(g) = 2g−1(2g+1) quadrics obtained in this way are a basis of H0(P 2g−1,O(2)).
Comparing the defining equation of Qm with the formula for the multiplication
map 3.3.2 (and using tǫǫ′ = 0 mod 2) we find:

Θ(τ) ∈ Qm ⇐⇒ θm(τ) = 0 ⇐⇒ m0(Θm) ≥ 2,

i.e. iff the divisor Θm of the theta function θm vanishes with (even) multiplicity
at O ∈ Xτ .
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3.6 In case Xτ is the product of two ppav’s, the period matrix for Xτ can be
chosen as

τ =

(

τ1 0
0 τ2

)

, and then θ[ǫǫ′ ](τ, z) = θ[ǫ1ǫ′
1

](τ1, z1)θ[
ǫ2
ǫ′
2

](τ2, z2),

where τ1 ∈ Sk, τ2 ∈ Sg−k and ǫ = (ǫ1, ǫ2) ∈ {0, 1}k × {0, 1}g−k etc. Since
θ[ǫǫ′ ](τ,−z) = (−1)

tǫǫ′θ[ǫǫ′ ](τ, z), we see that if m = (m1,m2) is even, but m1 and
m2 are odd, then θ[ǫǫ′ ](τ, 0) = 0. The image Θ(τ) of such a period matrix thus
lies on at least 2k−1(2k − 1) · 2g−k−1(2g−k − 1) quadrics Qm.

3.7 The map Θ can be extended to the satake compactification Ag(2, 4)sat of
Ag(2, 4) and we denote the extension by the same symbol. The boundary compo-
nents are copies of Ak(2, 4) for 0 ≤ k ≤ g−1. A point in Ak(2, 4) corresponds to a
product of (C∗)g−k with an abelian variety of dimension k (since we are working
with the satake compactification, extension data are ‘forgotten’). Modulo the
action of Sp(2g, Z), any point in the boundary can be obtained as a limit:

Θ(τk) := lim
t→∞

Θ(τ(t)), with τ(t) :=

(

itIg−k 0
0 τk

)

.

Using the series defining the theta fuctions, one easily verifies:

lim
t→∞

θ[
ǫg−k ǫk

ǫ′
g−k

ǫ′
k
](τ) =

{

θ[ǫk

ǫ′
k
](τk) if ǫg−k = 0,

0 if ǫg−k 6= 0.

Thus at a point Θ(τg−1) there vanish at least 2g−2(2g−1+1) + 2g−2(2g−1−1) =
22g−2 characteristics (the two contributions come from the characteristics with
(ǫ1, ǫ

′
1) = (1, 0) and (1, 1) respectively).

The next lemma collects the facts on the vanishing of the even theta nulls
that we will need for our study of the Picard modular varieties.

3.8 Lemma. The following tables list the exact number of theta constants van-
ishing on the ppav’s, or their limits, listed for g = 2 and g = 3 respectively.

#vanishing Qm moduli point

0 J(C), C a smooth curve

1 E1 × E2, Ei elliptic curves

4 C∗ × E, E elliptic curve

6 (C∗)2
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#vanishing Qm moduli point

0 J(C), C smooth non-HE curve

1 J(C), C smooth HE curve

6 E × J(C ′), E an elliptic curve, C ′ smooth g = 2 curve

9 E1 × E2 × E3, Ei elliptic curves

24 (C∗)2 × E, E an elliptic curve

Proof. In case g=2, a ppav is either the Jacobian of a smooth genus 2 curve or
the product of two elliptic curves (with the product polarization). Since a genus
2 curve cannot have an even theta characteristics with h0 > 1, none of the theta
constants vanishes at such a point. On a product of two elliptic curves exactly
one theta constant is zero, if the period matrix is in the standard form it is θ[1111].
In the boundary one finds the points corresponding to the other two varieties
listed. Using the results stated above, the number of vanishing theta constants
is easily found.

In case g=3, a ppav is either the Jacobian of a curve or a product of these.
The number of vanishing theta constants for these and for the boundary points
is then easily deduced from the results stated above. 2

4 Theta transformations and relations

4.1 Since Γ(2, 4) is a normal subgroup of Γg := Sp(2g, Z), the finite group
Γg/Γg(2, 4) acts on Ag(2, 4) = Sg/Γg(2, 4) and also on its satake compactification
Ag(2, 4)sat. The transformation theory of theta function (cf. [I], ) shows that
there is a (projective) representation

R : Γg/Γg(2, 4) −→ Aut(P 2g−1)

such that the map Θ : Ag(2, 4) → P 2g−1 is Γg/Γg(2, 4)-equivariant:

Ag(2, 4)
Θ−→ P 2g−1

M


y



yR(M)

Ag(2, 4)
Θ−→ P 2g−1

(M ∈ Γg).

(The group R(Γg) ⊂ Aut(P 2g−1) is the normalizer of the Heisenberg group H
acting on P 2g−1, in fact the action of H coincides with the action of Γg(2)/Γg(2, 4);
[G] §3.)

4.2 We explain how compute R(M) explicitly for some particular M ’s. Let
e1, . . . , e2g be a basis of Z2g for which the symplectic form E is given by:

E =

(

0 I
−I 0

)

.
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We define a homomorphism SL(2, Z)g → Sp(2g, Z) by:

(M1,M2, . . . ,Mg) 7→ M := M1 ⊕ M2 ⊕ . . . ⊕ Mg,

with M ∈ Sp(2g, Z) the matrix:

Mkk := (Mk)11, Mk,g+k := (Mk)12, Mg+k,k := (Mk)21, Mg+k,g+k := (Mk)22,

for 1 ≤ k ≤ g and with Mij = 0 else.
Note that the map (C2)⊗g → C2g

:

(x
(1)
0 , x

(1)
1 ) ⊗ . . . ⊗ (x

(g)
0 , x

(g)
1 ) 7→ (. . . , xσ, . . .) with xσ := x(1)

σ1
· . . . · x(g)

σg

(σ ∈ {0, 1}g) induces an isomorphism: P ((C2)⊗g) ∼= P 2g−1.
For Ui ∈ Aut(P 1) (1 ≤ i ≤ g) we denote by

U1 ⊗ U2 . . . ⊗ Ug ∈ Aut(P 2g−1)

the map obtained from the Ui’s via the isomorphism of projective spaces.

4.3 Proposition. 1. For the generators S, T of SL(2, Z):

S =

(

0 1
−1 0

)

, T =

(

1 1
0 1

)

,

the projective transformations R(S), R(T ) ∈ Aut(P 1) are given by:

R(S) =

(

1 1
1 −1

)

, R(T ) =

(

1 0
0 i

)

.

2. For M = M1 ⊕ M2 ⊕ . . . ⊕ Mg ∈ Sp(2g, Z), with Mi ∈ SL(2, Z), we have:

R(M) = R(M1) ⊗ R(M2) ⊗ . . . ⊗ R(Mg).

Proof. A direct easy computation shows that (σ ∈ {0, 1}, τ ∈ S1):

θ[σ0 ](2(τ + 1)) = iσθ[σ0 ](2τ), thus R(T ) =

(

1 0
0 i

)

.

To find the matrix for S, we use the transformation formula (essentially the
poisson summation formula):

θ[σ0 ](−2/τ) =
√

τ/2i · θ[0σ](τ/2).

To get back to the 2τ ’s, we use the identities:

θ[0σ](τ/2) = θ[00](2τ) + (−1)σθ[10](2τ).

Therefore:

R(S) =
√

τ/2i ·
(

1 1
1 −1

)

.

Since we deal with projective transformations, we can omit the factor
√

τ/2i.

For the second point, we observe that R(M) ∈ Aut(P 2g−1) does not depend
on τ . Specializing the period matrix to τ = diag(τ1, τ2, . . . , τg) with τi ∈ S1, we
get: θ[σ0 ](τ) =

∏
θ[σi

0 ](τi) and θ[σ0 ](Mτ) =
∏

θ[σi

0 ](Miτi). 2
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4.4 To study the Picard modular varieties in case g = 4 we will need some
equations for the (closure of the) image Θ(A4(2, 4)) in P 15. We recall some of
the facts (see [RF] and [G], §4 for proofs).

Three even characteristics m1,m2,m3 are called asyzygeous if m1 + m2 + m3

is an odd characteristic. A 4-tuple of characteristics is called asyzygeous if any
three of the four are asyzygeous. For example,

[1100], [0110], [0100], [1111] and [0000], [0001], [0100], [1111]

are asyzygeous 4-tuples. For an asyzygeous 4-tuple m1, . . . m4 of g = 2 charac-
teristics, one has the relation:

θ4
m1

(τ2) ± θ4
m2

(τ2) ± θ4
m3

(τ2) ± θ4
m4

(τ2) = 0 (∀τ2 ∈ S2).

The signs won’t be of importance for us, the relation can in fact be checked by
substituting the quadratic relations above for θ2

mi
, the result should be identically

zero as polynomial in the four θ[σ0 ](2τ2)’s.
To get relation for g = 4, we take two non-zero, even, g = 2 characteristics

n1 = (x1, y1) and n2 = (x2, y2) with tx1y2 + tx2y1 = 0 mod 2. For an even genus
2 characteristic mi = (ǫ, ǫ′) we define four even g = 4 characteristics by:

mi1 := [00 ǫ
00 ǫ′ ], mi2 := [00 ǫ

1 1 ǫ′ ], mi3 := [1 1 ǫ
00 ǫ′ ], mi4 := [11 ǫ

11 ǫ′ ].

Then, for an asyzygeous 4-tuple mi of even g = 2 characteristics, we have the
following relation (obtained by applying a suitable M ∈ Γg to the relations in
[RF] and [G]):

3∏

i=0

θm1i
(τ4) ±

3∏

i=0

θm2i
(τ4) ±

3∏

i=0

θm3i
(τ4) ±

3∏

i=0

θm4i
(τ4) = 0 (∀τ4 ∈ S4).

To get a relation between the θ[σ0 ](2τ4)’s, one multiplies eight expressions as above,
with distinct signs. The relation obtained is a polynomial in the θ2

mij
(τ4). One

can thus substitute the quadratic relations to obtain a polynomial of degree 32 in
the θ[σ0 ](2τ4)’s (which in general is not identically zero). Note that if PV ⊂ P 15

is a subspace contained in Qm44
, then the restriction of this polynomial to PV is

the square of a polynomial of degree 16.

5 Abelian varieties with an automorphism

Let φ be an automorphism of the principally polarized abelian variety (X,L), that
is: φ : X → X is an automorphism (with φ(O) = O) and φ∗L is algebraically
equivalent to L. For completeness sake, we recall the following well known lemmas
and proposition.

5.1 Lemma. Let Aut(Xτ ), τ ∈ Sg, be the automorphism group of the ppav
Xτ . Then:

Aut(Xτ ) ∼= {M ∈ Sp(2g, Z) : M · τ = τ}.
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Proof. We use that Sg
∼= Sp(2g,R)/U(g) also parametrizes the complex

structures J on VR := Z2g⊗R which are symplectic w.r.t. to a (fixed) form E and
which are positive, that is E(x, Jx) > 0 for all non-zero x ∈ VR. The action of
Sp(2g,R) on these complex structures is given by conjugation M : J 7→ MJM−1.
The period matrix τ determines in fact an isomorphism H1(Xτ , Z) with Z2g,
the complex stucture is the one on the tangent space at O ∈ X and E is the
polarization.

For φ ∈ Aut(Xτ ), let φ∗ be the map induced by φ on H1(Xτ , Z). Then
φ∗ ∈ Sp(E) = Sp(2g, Z) since φ preserves the polarization. Moreover, since φ
is a holomorphic map, φ∗ commutes with Jτ and thus φ∗ fixes τ . The other
inclusion is easy. 2

5.2 Lemma. Let τ0 be a fixed point of M ∈ Sp(2g, Z). Then the fixed point
locus of M ,

SM
g := {τ ∈ Sg : M · τ = τ}

is a connected, smooth, complex submanifold of Sg.

Proof. We follow [F], Hilfssatz III, 5.14, p.196. There is an isomorphism of
complex manifolds

Sg

∼=−→ Eg := {W ∈ Mn(C) : tW = W, I −t WW > 0},
which maps τ to 0 and the image of SM

g is defined by the equations, linear in wij:

wijζiζj = wji, where the ζi are eigenvalues of M . For W in the image of SM
g , the

matrices tW , with 0 ≤ t ≤ 1, then also lie in the image and connect 0 to W . 2

The following easy lemma will be used to find the projective models of the
moduli spaces of the abelian varieties with automorphisms.

5.3 Lemma. Let M ∈ Sp(2g, Z) be an element of finite order. Let H ⊂ Sg be
the fixed point set of M .

Then Θ(H) is contained in an eigenspace of R(M).

Proof. For τ ∈ H we have Mτ = τ and thus Θg(τ) = Θg(Mτ) ∈ P 2g−1.
Since Θ is equivariant for the action of Sp(2g, Z), we must have R(M)Θ(τ) =
λ(τ)Θ(τ) in C2g

for some λ(τ) ∈ C. Since H is connected and R(M) has only a
finite number of eigenvalues, λ(τ) is constant. 2

5.4 We will be particularly interested in the case that φ has order three or
four and that dφ ∈ End(T0X) has no eigenvalues equal to ±1. Then dφ has p
eigenvalues λ and q eigenvalues λ̄ with p + q = g:

dφ ∼ diag(λ, . . . , λ
︸ ︷︷ ︸

p

, λ̄, . . . , λ̄
︸ ︷︷ ︸

q

) ∈ End(T0X),

and we will call φ an isomorphism of type (p, q).
For such a pair (Xτ0 , φ) we define H(φ∗) ⊂ Sg to be the set of period matrices

τ for which φ∗ induces an automorphism of type (p, q) on Xτ . The following
(well-known) proposition shows that H(φ∗) depends indeed only on φ∗ and that
it is an Hermitian symmetric domain.
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5.5 Proposition. Let φ be an automorphism of type (p, q) of the ppav (Xτ0 , L)
and let M := φ∗ ∈ Sp(2g, Z). Then:

1.

H(M) = SM
g , with SM

g := {τ ∈ Sg : M · τ = τ },

the fixed point set of M in Sg.

2. The centralizer of M in the group Sp(2g,R) is isomorphic to U(p, q), the
unitary group of a hermitian form of signature (p, q).

3. There is an isomorphism of complex manifolds:

H(M) ∼= Hp,q := U(p, q)/(U(p) × U(q)),

where U(p) × U(q) is a maximal compact subgroup of U(p, q).

Proof. Lemma 5.2 shows that H(M) ⊂ SM
g . Conversely, if τ ∈ SM

g then

M defines an automorphism φτ on Xτ . Since SM
g is connected and the type of

M = φτ0 on Xτ0 is (p, q), the type of φτ is also (p, q).
We now prove the last point. Let Xτ be a ppav on which M induces and

automorphism of type (p, q). We will denote the complex vector space T0Xτ by
(VR, Jτ ), so VR = H1(Xτ , R) and Jτ is the complex structure (J2

τ = −I).
The map M defines also a complex structure (VR, JM) on VR by:

JM : VR −→ VR, with JM :=

{

M if M4 = I
1√
3
(I + 2M) if M3 = I.

Since MJτ = JτM (the automorphism defined by M is holomorphic) and M
is symplectic, we find:

JτJM = JMJτ and E(JMx, JMy) = E(x, y) (∀x, y ∈ VR).

The map JM is thus C-linear on (VR, Jτ ). On the complex vector space (VR, Jτ ),
Jτ acts by definition as scalar multiplication by i. Since this complex space is T0X
and M has type (p, q), JM has two eigenspaces V±(τ) in (VR, Jτ ) of dimension p
and q and with eigenvalue i and −i respectively:

VR := V+(τ) ⊕ V−(τ).

Since JM and Jτ commute, these spaces can also be considered as complex sub-
spaces of (VR, JM). Moreover Jτ can be recovered from the V±(τ) ⊂ VR by
defining:

Jτ := JM on V+(τ), Jτ := −JM on V−(τ).(5.5.1)

We will now determine which decompositions of (VR, JM) correspond to τ ∈
H(M). Since the polarization on Xτ is given by E, the hermitian form

Hτ (x, y) := E(x, Jτy) + iE(x, y)

11



on the complex vector space (VR, Jτ ) is positive definite (since E(x, Jτx) > 0 for
all non-zero x ∈ VR). Using that JM is symplectic and that MJM = JMM , one
easily verifies that:

HM(x, y) := E(x, JMy) + iE(x, y)

is a hermitian form on the complex vector space (VR, JM) (in particular: HM(x, y) =
HM(y, x) and HM(x, JMy) = iHM(x, y)). From the equations 5.5.1 and the pos-
itive definiteness of Hτ it follows that:

{

HM(x, x) = Hτ (x, x) > 0 ∀x ∈ V+(τ) − {0}
HM(y, y) = −Hτ (y, y) < 0 ∀y ∈ V−(τ) − {0}

Moreover, if x ∈ V+(τ) and y ∈ V−τ , then, since JM and Jτ commute and Jτ , JM

are symplectic, we get:

HM(x, y) = HM(Jτx, Jτy) = HM(JMx,−JMy) = HM(x,−y) = −HM(x, y),

so V+(τ) and V−(τ) are perpendicular in VR w.r.t. HM . In particular, HM is a
hermitian form of signature (p, q).

Conversely, let VR = V+ ⊕ V− be a decomposition into two JM -complex sub-
spaces of dimension p and q respectively, which are perpendicular for HM and on
which HM |V± is ±-definite. Define J by J = ±JM on V±, then we obtain a com-
plex structure on VR, with a symplectic J , a positive definite E(·, J ·), JM = MJ
and M defines an automorphism of type (p, q).

Therefore we can identify H(M) with the set of p-dimensional complex sub-
spaces V+ of (VR, JM) on which HM is positive definite (then V− = V ⊥

+ w.r.t.
HM). The group U(HM) ∼= U(p, q) acts transitively on the V+’s, and stabilizer
of a given V+ is U(p)×U(q) (stabilizing V means also stabilizing V ⊥

+ and HM is
definite on V+ and V ⊥

+ ). Thus we get H(M) ∼= U(p, q)/(U(p) × U(q)).
For the second point we observe that, since Im(HM) = E, we have U(HM) ⊂

Sp(2g,R). Since A ∈ U(HM) is C-linear on (VR, JM) it commutes with JM and
thus with M , so U(p, q) ⊂ CSp(M). Conversely, if A commutes with M it is C-
linear on (VR, JM), and E(Ax,Ay) = E(x, y), MA = AM imply HM(Ax,Ay) =
HM(x, y). 2

5.6 Remark. Note that a hermitian form of signature (p, 1) is given, w.r.t. a
suitable basis, by: |z1|2 + . . . + |zp|2 − |zp+1|2. Each subspace of Cp+1 on which
it is negative definite, is spanned by a (unique) (z1, . . . , zp, 1) with

∑p
i=1 |zi|2 < 1.

The domains Hp,1 are thus isomorphic to p-dimensional complex balls:

Hp,1
∼= {z ∈ Cp :

p
∑

i=1

|zi|2 < 1}.

In general we have:
dim Hp,q = pq.
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6 Discrete subgroups of SU(p, q)

6.1 On an eigenspace PV ⊂ P 2g−1 of R(M) there acts a subgroup of the finite
group Γg/Γg(2, 4). We will use this group to study the geometry of the Picard
modular varieties.

In this section we will only consider the case that M corresponds to an auto-
morphism of order 3 of type (p, q) (the results in this section are in fact indepen-
dent of p, q). Then M satisfies M2 + M + I = 0. For any τ ∈ SM

g , the lattice Λτ

becomes a Z[ω]-module by defining:

ω · λ := Mλ (λ ∈ Λτ ).

Since the class number of Z[ω] is one and Sg is simply connected, we can identify
the Λτ ’s with a fixed Λ and Λ ∼= Z[ω]g.

Similarly, the action of M on the group Xτ [2] defines the structure of an
F 4 = F 2(ρ) vector space on Xτ [2] by defining ρ · v := Mv, since both satisfy
x2 + x + 1 = 0.

6.2 Lemma. Let M ∈ Sp(2g, Z) satisfy M2 + M + I = 0. Then:

1. The map HM : Λ × Λ → Z[ω] defined by:

HM(x, y) := E(x,My) − ωE(x, y)

defines a non-degerate hermitian form on Z[ω]g.

2. For any commutative Z-algebra A we define a group by:

U(HM)(A) := {N ∈ Sp(2g, A) : HM(Nx,Ny) = HM(x, y) ∀x, y ∈ Λ ⊗Z A} .

Then:

U(HM)(Z) = Sp(2g, Z) ∩ U(HM)(R) and U(HM)(R) = CSp(2g,R)(M).

3. For all primes p ≡ 2 mod 3 we have Z[ω] ⊗ F p
∼= F p2 . The form HM

defines a non-degenerate hermitian form on F g

p2 , the group U(p, q)(F p) is
isomorphic to U(g, F p2), and there is a surjective reduction map

ΓM := U(HM)(Z) −→ U(g, F p2).

Proof. We refer to the proof of prop. 5.5 for most these statements, since HM

is equivalent to the form considered there. For the notation we observe that for
a quadratic extension F q ⊂ F q2 any two non-degenerate hermitian forms are
equivalent (there is no such thing as signature there), and the unitairy group of
such a form is denoted here by U(g, F q2). The non-degeneracy of the reduction of
HM follows from Im(HM) = E. The surjectivity of the reduction map is known
as the strong approximation theorem. 2
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6.3 We apply the lemma to study the restriction of the projective represen-
tation R to ΓM := U(HM)(Z) ⊂ Sp(2g, Z) = Γg. Somewhat surprisingly, the
representation factors in fact over

ΓM(2) := ΓM ∩ Γg(2), with ΓM := U(HM)(Z).

6.4 Proposition. Let M ∈ Sp(2g, Z) satisfy M2 + M + I = 0. Let V ⊂ C2g

be an eigenspace of (a lift to GL(2g, C) of) R(M).

1. Then PV is stable under action of ΓM and the action factors to give a
projective representation:

R : ΓM/ΓM(2) ∼= U(g, F 4) −→ PV.

This representation factors over the center < M >⊂ U(g, F 4) to give a
projective representation of PU(g, F g

4).

2. The map Θ : Sg/Γg(2, 4) → P 2g−1 restricts to give a map:

Θ : H(M)/ΓM(2) −→ PV

with V a certain eigenspace of R(M) and Θ is equivariant for the action of
ΓM/ΓM(2) ∼= U(g, F 4).

Proof. Since ΓM is contained in the centralizer of M , we get R(M)R(g) =
λgR(g)R(M) in GL(2g, C) and we may assume that the eigenvalues of R(M) are
cube roots of unity. Then also λg must be a cube root of unity. If λg 6= 1, then
R(g) would permute the 3 eigenspaces of R(M) cyclically. These spaces would
thus have the same dimension, but 2g is not divisible by 3. Therefore λg = 1 for
all g ∈ ΓM and ΓM stabilizes each PV .

The center of U(g, F 4) consists of the scalar multiples of the identity. Since
M acts by the scalar ρ ∈ F 4, the center is just < M > which indeed acts trivially
on each projectivized eigenspace of M .

The representation R factors over the subgroup ΓM ∩ Γg(2, 4). Since ΓM =
CSp(2g,Z)(M) and U(g, F 4) ∼= ΓM/ΓM(2) ∼= CSp(2g,F 2)(M) (the last iso is proven as
in (2) of prop.5.5), it suffices to show that CG(M) ∼= CSp(2g,F 2)(M), with CH(M)
the centralizer of M in the group H.

The exact sequence, with F 2g
2 = Γg(2)/Γg(2, 4):

0 −→ F 2g
2 −→ G −→ Sp(2g, F 2) −→ 1

defines, by conjugation, an action of Sp(2g, F 2) on F 2g
2 which is just the standard

action. So if x ∈ F 2g
2 is represented by Ax ∈ Γg(2), we have:

BAx = ABxB ∈ Γg(2)/Γg(2, 4) (∀B ∈ Γg).

Let B ∈ Γg and suppose that BM = MB in Γg/Γg(2). Then BM = AxMB in
Γg/Γg(2, 4), for an x ∈ F 2g

2 . For y ∈ F 2g
2 define By := AyB ∈ Γg. Then, in G, we

get:
ByM = AyBM

= AyAxMB
= Ax+yMAy(AyB)
= Ax+y+MyMBy.
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Since M satisfies the equation M2 + M + I = 0, we see that there is a unique y
such that By commutes with M in G: y = Mx.

We conclude that the canonical homomorphism CG(M) → CSp(2g,F 2)(M) (in-
duced by G = Γ/Γ(2, 4) → Γ/Γ(2)) is indeed an isomorphism.

The last statement follows from the previous results. 2

6.5 We study the action of the group U(g, F 4) = U(HM)(F 2) ⊂ Sp(2g, F 2) =
Sp(X[2], e2) on the quadratic forms associated with the weil-pairing. In the next
section we will give a geometrical interpretation for some of the results.

6.6 Proposition. The map:

qM : X[2] −→ {±1}, qM(x) := e(x,Mx) = (−1)HM (x,x),

is a quadratic form associated with e2. It is even iff g is even.
The group U(g, F 4) acts transitively on the even quadratic forms if g is odd.

If g is even, it has two orbits on this set and one orbit consists of {qM}. The
same is true for the odd quadratic forms after changing the parity of g.

The unique U(g, F 4)-invariant quadric is also the unique M -invariant quadric.

Proof. Since M is symplectic and E(x, y) = E(y, x)(∈ F 2) we have: E(x,My) =
E(Mx,M2y) = E(Mx, y) + E(Mx,My) = E(y,Mx) + E(x, y). Therefore:

E(x + y,M(x + y)) = E(x,Mx) + E(y,My) + E(x,My) + E(y,Mx)
= E(x,Mx) + E(y,My) + E(x, y),

so qM is associated with e2. Since qM(x) = E(x,Mx) = E(Mx,M2x) = qM(Mx),
and 0 is the only point invariant under M , the number of x ∈ X[2] with qM(x) =
+1 is congruent to 1 mod. 3 and qM is the only M -invariant quadric. Since
e(g) ≡ 1 mod. 3 iff g is even, and o(g) ≡ 1 mod. 3 iff g is odd, we get that qM is
even iff g is even.

The form qM is obviously fixed by U(g, F 4) = U(HM)(F 2). In case g is even,
the other even forms are x 7→ qM(x)e2(x, y) with y ∈ X[2] satisfying qM(y) =
(−1)HM (y,y) = +1. Similarly, the odd forms are given by the y with qM(y) =
(−1)HM (y,y) = −1. Since the unitary group acts transitively on the set of non-
zero vectors with a fixed length, it also acts transitively on the set of odd quadratic
forms and on the complement of {qM} in the set even forms. The proof for g is
odd is similar. 2

7 Curves with automorphism of type (p, q)

7.1 In this section we study the curves with an automorphism φ such that
φ∗ : JC → JC is of type (p, q), the results are in the lemmas 7.2 and 7.6
respectively. In lemma 7.9 we determine the map φ∗ on H1(JC,Z).

7.2 Lemma. Let φ : C → C be an automorphism of order 3 of a smooth genus
g-curve such that φ∗ : JC → JC has type (p, q).
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Then C is a 3 : 1 cyclic cover of P 1 and can be defined by an equation:

y3 = fk(x)g2
l (x), and k + 2l ≡ 0 mod 3,

with fk and gl polynomials of degree k and l respectively, relatively prime and
without multiple roots, where

p = (1/3)(k + 2l) − 1, q = (1/3)(2k + l) − 1

and φ is defined by (x, y) 7→ (x, ωy), with ω3 = 1, ω 6= 1.
The only cases in which pq, the dimension of the space Sφ∗

g , is equal to k+l−3,
the dimension of the family of covers, is (up to permutation) for:

(k, l) ∈ {(3, 0), (2, 2), (1, 4), (0, 6)}.

These correspond to curves with genus 1, 2, 3, 4 resp. with types (1,0), (1,1),
(2,1), (3,1) respectively.

Proof. Since there are no holomorphic differentials on C which are invariant
under φ, we have 3 : 1 map C → C/ < φ >∼= P 1. Assuming that ∞ is not
a ramification point, we get the desired equation with the condition on k + 2l.
Since there are k + l branch points, the genus of C is k + l − 2.

To find the type of the map induced by a covering automorphism, we use the
holomorphic Lefschetz trace formula. The local contrubitions from a ramification
point over a zero of fk is 1

1−ω
= 1

3
(2+ω) and over a zero of gl it is 1

1−ω2 = 1
3
(1−ω).

The trace formula [GH] then gives:

1 − (pω + qω2) =
1

3
(k(2 + ω) + l(1 − ω)) ,

and since ω2 = −1 − ω this gives the stated formula.
Finally we observe that k+ l−3 = p+q−1 is equal to pq iff (p−1)(q−1) = 0.

The values for k and l are then easily determined. 2

7.3 In case g = 2 these curves can be defined by:

Y 3 = (X − a)(X − b)(X − c)2(X − d)2, or by V 2 = (U3 + 1)(U3 + λ),

where the first equation emphasizes the 3 : 1 covering and the second emphasizes
the fact that the curves are hyperelliptic. A basis for the holomorphic one forms
for the first curve is given by dX

Y
, (X − c)(X − d)dX

Y
. The φ-invariant even theta

characteristic is given by D3 − K, where D3 is the sum of the three ramification
points over U3 + 1 = 0 and K is the canonical class.

7.4 In case g = 3, so (k, l) = (4, 1), we can move the branch point which
is the zero of g1 to infinity. The equation for C can then be homogenized to
give y3z = f4(x, z), which defines a smooth quartic curve in P 2, the canonical
curve. Note C has a hyperflex l defined by z = 0, so a canonical divisor is
l · C = 4P, P = (0 : 1 : 0). The φ-invariant odd theta characteristic is given by
2P .
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7.5 In the g = 4, (3, 1) case, the curve is given by y3 = f6(x). A basis for
H0(C4, Ω

1
C4

) is given by:

ω, xω, x2ω, yω, with ω = y−2dx,

and thus the canonical embedding C4 →֒ PH0(C4, Ω
1
C4

) is given by: (x, y) 7→
(x0 : x1 : x2 : x3) = (1 : x : x2 : y). Note that C lies on the cone defined by
x0x2 = x2

1 and that the rulings of the cone correspond to the global sections of
an effective, even theta characteristic. This is the even theta characteristic fixed
by φ.

7.6 Lemma. Let φ : C → C be an automorphism of order 4 of a smooth genus
g-curve such that φ∗ : JC → JC has type (p, q) (p + q = g).

Then C is a hyperelliptic curve and can be defined by an equation:

y2 = xfg(x
2); φ : (x, y) 7→ (−x, iy),

(with fg a polynomial of degree g) and

(p, q) = (g/2, g/2) is g is even, (p, q) = ((g + 1)/2, (g − 1)/2) if g is odd.

The only cases in which pq, the dimension of the space Sφ∗

g , is equal to g− 1, the
dimension of the family of covers, is (up to permutation) for:

g = 1, 2, 3 and (p, q) = (1, 0), (1, 1), (2, 1) respectively.

Proof. In case C is a curve with an automorphism φ of order 4 of type (p, q),
then φ2 acts as −1 on H0(C, Ω1

C) and thus C/ < φ2 >∼= P 1. Therefore C is a
hyperelliptic curve with HE-involution φ2.

Since φ and φ2 commute, the map φ induces an involution on P 1 which can
be put in the normal form x 7→ −x. The set of branch points is thus invariant
under this map. Since the eigenvalues of φ∗ on H1,0 are i and −i, the trace of φ∗

on H1(C,Q) is g(i − i) = 0. The Lefschetz trace formula (for φ∗ on H i(C,Q))
then shows that case φ has two fixed points, which thus map to the fixed points
0, ∞ of φ2 on P 1 and these are branch points. The equation for C then has the
desired form, and the automorphism φ is a lift of the map x 7→ −x on P 1.

A basis for the holomorphic one-forms is given by the XldX
Y

with 0 ≤ l ≤ g−1,
thus the endomorphism is of the type stated. 2

7.7 Remark. In case g = 3 these curves were also studied by Shimura ([Sh])
and K. Matsumoto ([Ma]), in fact they consider the genus 3 curves C defined by:

w4 := z2(z − 1)2(z − λ)(z − µ),

the automorphism of order 4 on these curves is given by (v, w) 7→ (v, iw).
The 2:1 map of C to P 1 is given by (z, w) 7→ u := w2

z(z−1)(z−µ)
([Ma], prop.1.1).

Therefore we get (∗) w2 = uz(z− 1)(z−µ). Using the equation for C one finds
u2 = z−λ

z−µ
and thus z = u2−λ

u2−µ
. Substituting this in (∗) and normalizing the result

one obtains an equation as in lemma 7.6.
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7.8 The following proposition shows that the map φ∗ ∈ Sp(2g, Z) induced by
an automorphism of type (p, q) on a curve C is completely determined (up to
conjugation and inversion) by (p, q) and the order of φ.

7.9 Proposition. Let Ag = Sg/Γg be the moduli space of ppav’s of dimension
g. Let Nk,(p,q) ⊂ Ag be the closure in Ag of the (irreducible) set of jacobians of
curves with an automorphism φk of order k (k = 3, 4) and type (p, q). Then:

1. there is a point in Nk,(p,q) corresponding to the ppav (with product polar-
ization) Eg

k , with

E3 := C/(Z + ωZ), E4 := C/(Z + iZ), and φk∗ = M⊕p ⊕ (Mk−1)⊕q,

where M ∈ SL(2, Z) induces the automorphism of order k on Ek.

2. In case g = 2, 3 a point in Nk,(p,q) ⊂ Ag, which is in the boundary of Ag,
corresponds to (C∗)2 and Ek × (C∗)2 respectively.

Proof. The irreducibility of Nk,(p,q) follows from the previous lemmas. One can
degenerate the curves till they become trees of the elliptic curves Ek and φk will
map each of the Ek to itself, so φk∗ = M⊕p ⊕ (Mk−1)⊕q.

More explicitly, let first k = 3. Consider the one parameter family of genus
g ≥ 2 curves defined by Y 3 = (X2− t6)g(X), with X, g, X2− t6 relatively prime.
Letting t → 0 and normalizing the singular curve obtained, one finds a curve
C of genus g − 1 whith an automorphism of order three. The other component
appears after blowing up the point (X,Y, t) = (0, 0, 0). Substituting Y := t2Y
and X = t3X one finds, upon t → 0, the curve Y 3 = X2 − 1, i. e. the elliptic
curve E3. The Jacobian of the special fiber is thus the product of this elliptic
curve and J(C), and the automorphism on E3 is induced by (X,Y ) 7→ (X,ωY )
on J(C). Proceeding in this way, one will obtain Eg

3 and the automorphism as
stated.

In case k = 4, write fg(x
2) = (x2 + a1) . . . (x2 + ag) and let ag → 0, then the

stable reduction gives a curve with two components, one isomorphic to E4, the
other isomorphic to a similar curve of genus g − 1. Therefore the curve Eg

4 is in
the (closure of) the locus defined by these curves.

Since the ring Z[ω] resp. Z[i] will act on the character group of the torus part
of a semi-stable abelian variety in the limit, this torus part must have an even
dimension. Since this ring also acts on the abelian part, we get the result for
g = 2, 3.

More explicitly, if k = 4, let ag → ag−1 (for g ≥ 2). The corresponding
stable curve is a curve with two nodes (permuted by the automorphism), whose
normalization is a curve of the same type of genus g−2. In particular, if g = 2, 3
the normalization is a P 1 or the curve E4 respectively. The boundary of (the
image of) H1,g−1 in the Satake compactification of Ag then consists of one point
in the Ag−2-stratum. 2
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8 Automorphism of order three

8.1 In this section we determine the image of SM
g under the Θ-map. The matrix

M corresponds to an automorphism of type (g − 1, 1), g =2, 3, 4 and moreover
M is obtained from an automorphism of a curve of genus g.

8.2 Let M0 := TS ∈ Sp(2, Z) = SL(2, Z), then M0 has order 3,

M0 :=

(

0 −1
1 −1

)

,

and any element of order 3 in SL(2, Z) is conjugate with M0 or M2
0 . The point

τ0 := 1
2
(1+i

√
3) ∈ S1 is the unique fixed point of M and M0 induces an automor-

phism, also denoted by M0, of order three on the elliptic curve E3 := C/(Z+τ0Z).
On the tangent space at O ∈ E3, M0 will act via a primitive 3-rd root of unity ω.

Let Mp,g−p be the matrix with p blocks equal to M0 and g − p diagonal equal
to M2

0 (in particular, M0 = M1,0):

Mp,g−p := M⊕p
0 ⊕ (M2

0 )⊕g−p ∈ Sp(2g, Z).

Then Mp,g−p induces an automorphism of order three of type (p, q) on the prin-
cipally polarized abelian variety Eg

3 .
If M = Mp,q, the hermitian form HM as defined in lemma 6.2, is given by:

HM(z, z) =
∑p

i=1 |zi|2 −
∑q

j=1 |zp+j|2.

8.3 Lemma. 1. The projective transformation R(M0) is given by:

R(M0) = (−1 + i)−1

(

1 1
i −i

)

.

Eigenvectors of R(M0) are:

v± :=

(

1
µ±

)

, µ± :=
(1 + i)(−1 ±

√
3)

2
,

with eigenvalues 1
2
(−1 ±

√
−3).

2. For g ≥ 2, R(Mp,g−p) has three eigenvalues λ = 1, ω and ω2 resp. and
corresponding eigenspaces Vλ ⊂ C2g

. We have:

dim V1 = 1
3
(2g − (−1)g−12), dim Vω = dim Vω2 = 1

3
(2g + (−1)g−1).

3. The only characteristic fixed by Mp,g−p is [11...1
11...1], it is even iff g is even.

Proof. Since M0 = TS, we have R(M0) = R(T )R(S), the factor in front is
chosen so that R(M0), as element of GL(2, C), has order 3.

Write Mp,g−p = M1,0 ⊕ Mp−1,g−p, the case p = 0 can be handled analogously.

Let V ′
ωk ⊂ C2g−1

be the eigenspace of R(Mp−1,g−p) with eigenvalue ωk, k = 0, 1, 2.
Then

V1 = v− ⊗ V ′
ω ⊕ v+ ⊗ V ′

ω2 , Vω = v+ ⊗ V ′
1 ⊕ v− ⊗ V ′

ω2 .
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Thus: mg := dim V1 = 2ng−1, ng := dim Vω = mg−1 + ng−1, with ng−1 =
dim V ′

ω = dim V ′
ω2 . From these relations the formulas easily follow. The block-

form of Mp,q and the fact for g = 1 the only characteristic fixed by M0 is [11] imply
the last statement. 2

8.4 Theorem. Let PV ⊂ P 3 be the eigenspace of R(M1,1) which contains
Θ(E2

3). Let M := M1,1 and let B1 := H(M) ⊂ S2. Then:

1. The satake compactification of B1/ΓM(2) is isomorphic to P 1 and

(B1/ΓM(2))sat ∼= Θ(B1) ∼= PV ∼= P 1.

2. the general point of B1 corresponds to the g=2 curve y2 = f2(x
3).

3. B1/ΓM(2) ∼= Θ(B1) is the complement in P 1 of a set of 3 points.

4. There are precisely two points in Θ(B1) which correspond to a product of
two elliptic curves, each of these points in fact corresponds to E2

3 (with a
certain level-two structure).

Proof. Since R(M1,1)(v+ ⊗ v+) = ω · ω2(v+ ⊗ v+), the eigenspace V of R(M)
which contains v+ ⊗ v+ is V1 and thus has dimension 2. (It also contains v−⊗ v−,
the other two eigenspaces of R(M) are one dimensional and are spanned by
v+ ⊗ v− and v− ⊗ v+ respectively.) Since dim B1 = 1 we get: Θ(B1) = PV , this
projective line in P 3 will be denoted by L.

The map Θ : S2/Γ2(2, 4) → P 3 induces an isomorphism (S2/Γ2(2, 4))sat ∼= P 3

(cf. [GN]). Thus Θ(B1/ΓM(2)) ∼= (B1/ΓM(2))sat and Θ(B1/ΓM(2)) ∼= B1/ΓM(2).
The quadric Qm with m = [1111] is fixed under the U(2, F 4)-action, and cuts L

in the points (1 : 0) and (0 : 1) (where (x : y) corresponds to xv+ ⊗ v+ + yv− ⊗
v−). These two points correspond to E3 × E3. (This can be shown by explicit
computation, but one can also use that the points of L parametrize the Jacobians
of cyclic 3 : 1 covers of P 1, (cf. prop. 7.9), and thus there is no theta constant
which vanishes identically on B1. Since Qm contains all points of the form v ⊗w
(which correspond to products of elliptic curves) it contains the points v+ ⊗ v+

and v−⊗ v−. Thus the quadric Qm doesn’t contain L, and so meets L in at most
two points.)

The nine remaining quadrics come in three trios (=orbits) under the action
of R(M), they are:

{[0000], [1001], [0011]}, {[1100], [0010], [0001]}, {[0011], [0100], [1000]}.

Since L is an eigenspace of M , each tquadric from a trio intersects L in the same
set. Since at least three quadrics vanish in a point of this set, the point must be
a cusp, and thus either 4 or 6 Qm’s vanish there. As the number of vanishing
Qm’s is a multiple of 3, there are 6 vanishing Qm’s and the point corresponds
to (C∗)2. Using that U(2, F 4) acts transitively on the 9 non-invariant Qm’s, we
conclude that there are three cusps, and that each Qm intersects L in two distinct
points. 2
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8.5 Theorem. Let PV ⊂ P 7 be the eigenspace of R(M), with M := M2,1,
which contains Θ(E3

3). Let B2 := SM
3 ⊂ S3, so B2 is a complex 2-ball. Then:

(B2/ΓM(2))sat ∼= Θ(B2) ∼= PV ∼= P 2.

Moreover,

1. the general point of B2 corresponds to the jacobian of the g=3 curve y3 =
f4(x).

2. B2/ΓM(2) ∼= Θ(B2) is the complement in P 2 of 9 points, the cusps, which
are the base locus of the Hesse pencil:

(X3 + Y 3 + Z3) + λXY Z

(so the 9 cusps are: (−1 : ǫ : 0), (−1 : 0 : ǫ) and (0 : −1 : ǫ) with ǫ3 = 1).

3. The 4 singular fibers of the Hesse pencil (for λ = ∞ and λ3 = −27) consist
of 3 lines each. The twelve lines parametrize ppav’s E3 ×A, where A is an
abelian surfaces.

4. Each Qm intersects PV in two lines from a singular fiber, the intersection
point of these two lines corresponds to E3

3 .

Proof. Let V be the eigenspace containing v+ ⊗ v+ ⊗ v+. It has dimension
three, v+ ⊗ v− ⊗ v−, v− ⊗ v+ ⊗ v− are also in V . Since dim B2=2, we conclude
that Θ(B2) = PV ⊂ Θ(A3(2, 4)).

For (1) see prop. 7.9. We denote by B1, B′
1 ⊂ B2 the following two copies of

S
M1,1

2 ⊂ S2:

B1 =












τ0 0 0
0 τ11 τ12

0 τ21 τ22












, B′
1 =












τ11 0 τ12

0 τ0 0
τ21 0 τ22












, τ2 :=

(

τ11 τ12

τ21 τ22

)

∈ S
M1,1

2 .

For τ ∈ B1 we have θ[σ0 ](2τ) = θ[σ1

0 ](2τ0)θ[
σ2σ3

0 0 ](2τ2) and a similar decomposi-
tion holds for τ ∈ B′

1. Therefore

l := Θ(B1) and l′ := Θ(B′
1)

are two lines in PV , each of which can be identified with L := PV from thm 8.4.
In particular, on each there are two points corresponding to E3

3 and there are
three cusps, corresponding to E3 × (C∗)2 while all the other points correspond to
E3 ×A2, where A2 is an abelian surface which is not a product of elliptic curves.

Note that l is the line connecting the points v+++ := v+ ⊗ (v+ ⊗ v+) =
Θ(diag(τ0, τ0, τ0)) and v+−− := v+ ⊗ (v−⊗ v−), whereas l′ is the line on v+++ and
v−+− := v−⊗ (v+)⊗ v−. Using the g = 2 result, we see that both v+−− and v−++

correspond to E3
3 .

Since B2 parametrizes Jacobians of y3 = f4(x), which are non-HE genus 3
curves, none of the Qm’s vanishes identically on PV . As θn(τ), with n = [110110],
vanishes on both B1 and B′

1, we conclude that the quadric Qn intersects PV in the
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lines l and l′. Note that the intersection point v+++ of l and l′ corresponds to E3
3 .

Since U(3, F 4) acts transitively on the quadrics, every quadric intersects P (V+)
in two (distinct) lines, and the intersection point of these two lines corresponds
to E3

3 . Since 6 quadrics vanish on a line, we find 12 such lines (36 · 2 = 6n).
In a general point of l there vanish exactly 6 = 2 · 3 quadrics Qm (those with

(even) m = [1ab
1cd]), whereas on l′ the 6 quadrics with m = [1a1

1b1 ] vanish. The trio
[11a
11b ] vanishes on both l and l′. Thus we found 9 quadrics vanishing in v+++, and
since that point corresponds to E3

3 there are no more quadrics vanishing there.
The set of these characteristics we denote by

S := {[110110], [111110], [110111], [101101], [111101], [101111], [011011], [111011], [011111]}.

Next we consider the quadrics vanishing in v+−− and v−+−. Since each point
corresponds to E3

3 , there are 9 quadrics vanishing in each point. In the point
v− ⊗ v− ∈ L the quadric with characteristic [1111] vanishes, so the quadrics with
characteristics m = [a11

b11 ] or m = [1ab
1cd] vanish in v+−−. Therefore the 9 quadrics

vanishing in v+−− are the same as those that vanish in v+++. A similar argument
on l′ shows that these 9 also vanish in v−+−.

A quadric Qm with m = [a11
b11 ] intersects PV in two lines, one of wich is l′, the

other will be denoted by l′′. Since l′ ∩ l′′ must correspond to E3
3 , and there only

two such points on l′, l′∩ l′′ must be either v+++ or v−+−. Since Qm also vanishes
in v+−− ∈ l, but Qm doesn’t vanish on l, we conclude that l ∩ l′′ = v−+−. Since
Qm also vanishes in v+−− ∈ l, the l′′ is the line connecting the points v+−− and
v−+−.

Thus on each line of the triangle TS := {l, l′, l′′} there vanish 6 of the 9
Qm with m ∈ S, and in each vertex there all 9 vanish. Since TS is completely
determined by any one of the 9 m ∈ S (intersect Qm with PV , that gives two
lines from TS, the third connects the points corresponding to E3

3 on each) and
since U(3, F 4) acts transitively on the m’s, we find that the 12 lines make up 4
triangles.

Consider again TS. The remaing 27 Qm’s (i.e. m 6∈ S) thus intersect PV in
9 lines (making 3 triangles like TS). Let m be such a line and let P = m ∩ l.
Since in P ∈ l there vanish at least 6 + 6 = 12 thetanull’s, and thus P is a cusp.
Therefore each of the 9 remaining lines intersects l in a cusp, which corresponds
to E3 × (C∗)2. In P there must then vanish 24 thetanull’s, so P lies on 4 lines
and we see that through each of the 3 cusps of l there pass 3 of the 9 remaining
lines. The same is of course true for any of the lines.

In particular, we find a configuration of 12 lines, meeting in 12 points (corre-
sponding to E3

3) in pairs and in the 9 points, the cusps, four of the lines meet. This
configuration is in fact uniquely determined up to projective equivalence and is
known as the Hesse-Configuration (see [BHH], 2.3A, p.71-75). This configuration
is formed by the 12 lines from the degenerate fibers of the Hesse pencil.

Using the action of ΓM/ΓM(2) on PV , we see that Θ : B2/ΓM(2) → PV
has degree one. Thus Θ gives a birational isomorphism of the normal varieties
(B2/ΓM(2))sat and P 2. Since Θ induces a bijection (use the description of the
Satake compactification in [HW]), it is in fact an isomorphism. 2
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8.6 Theorem. Let PV ⊂ P 15 be the eigenspace of R(M3,1) which contains
Θ(E4

3). We write B3 := H(M3,1), the complex 3-ball. Then:

(B3/ΓM(2))sat ∼= Θ(B3) ∼= B ⊂ PV ∼= P 4,

where B is the Burkhardt quartic threefold, defined by the equation:

Y 4
0 − Y0(Y

3
1 + Y 3

2 + Y 2
3 + Y 3

4 ) + 3Y1Y2Y3Y4.

Moreover:

1. the general point of B3 corresponds to the jacobian of a genus 4 curve
y3 = f6(x).

2. The singular locus of B consists of 45 nodes, these points correspond to the
cusps, thus B3/ΓM(2) ∼= Θ(B3) = Bsmooth .

3. There are precisely 40 (linear) P 2’s inside B, these parametrize products of
abelian threefolds with the elliptic curve E3.

4. The space PV is contained in the (invariant) quadric Qm, with m = [11111111].
The other 145 Qm form 45 orbits of 3 under the action of R(M3,1). Each of
these Qm’s intersects PV in a cone, i.e. a quadric with one singular point.
Each cone is the tangent cone to B at some cusp.

5. There is a natural bijection between the nodes of B and the 45 R(M3,1)-
orbits of quadrics given by associating to a node its tangent cone, and to
an obit of Qm’s the singular point of Qm ∩ PV .

Proof. By a direct computation, or by observing that there are no invariant
quadrics under the action of PU(4, F 4) on PV , one finds that the equation for Qn,
with n = [11111111], vanishes identically on PV . (Note that since B3 parametrizes
curves with a (unique) vanishing even theta null (see 7.5), it is clear that Qn

vanishes on the image of B3.)
To find the equation of the threefold Θ(B3) in P 4, we use the two equations,

of degree 32 in the coordinates of the P 15, for Θ(S4). Since the θn vanishes
on B3, the equations become squares when restricted to PV , and thus we have
to investigate two equations of degree 16 in the 5 variables of PV . Using the
computer program ‘macaulay’, we found that, over F 37, the common factor of
the two polynomials has degree 4 and is irreducible. From this we conclude that,
over C, the common factor F also has degree 4 and that Θ(B3) is defined by F .

The action of PU(4, F 4) on PV can be lifted to a linear representation of its
Schur multiplier (a 2:1 cover, see [A]) on V . This representation is irreducible (use
the restrictions of subgroups to the P 2’s below) and from the character table in
[A] one finds that the representation on V factors in fact over PU(4, F 4) and thus
coincides (upto conjugation) with the representation of PSp(4, F 3) ∼= PU(4, F 4)
studied by Burkhardt [Bu]. He proved that there is a unique invariant of degree
4 on PV whose zero locus is the Burkhardt quartic. Since Θ(B3) is invariant
under the action of the group PU(4, F 4) and is defined by a polynomial of degree
4, we conclude that Θ(B3) ∼= B.
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Inside of B3 = H(M3,1) one finds a copy of B2 = H(M2,1), by considering
only period matrices of the form:

(

τ0 0
0 τ3

)

, τ3 ∈ B2 = H(M2,1).

The restriction of the Θ-map for g = 4 to this copy of B2 is just the Θ-map for
g = 3 (use that the theta’s become products on this B2). The closure of the
image of this copy of B2 is thus isomorphic to Θ(B2) = P 2, and it lies in H.
Since there are exactly 40 P 2’s in B and U(4, F 4) acts transitively on them (cf.
[Ba]), we find (2).

A direct computation shows that that a Qm intersects PV in a cone (with
a unique singular point) and that this point is a cusp of Θ(B3). Since U(4, F 4)
acts transitively on the Qm’s and on the nodes of B, (3) and (4) follow.

The proof of the isomorphism (B3/ΓM(2))sat ∼= B is similar to the one in
theorem 8.5.

(It is not hard to show that Qm ∩ Θ(B3) must consist of 8 P 2’s, each P 2 ∼=
Θ(B2). So if one could prove directly that this intersection were transversal,
then it would follow that deg(Θ(B3)) = 4 and the argument with invariants
would show it to be isomorphic to B. In particular, the computer computations
could then be avoided.) 2

8.7 Remark. The fourfold Θ(H(M2,2)) ⊂ P 5 ∼= PW , an eigenspace of R(M2,2),
is related to the invarian theory of W (E6), the Weyl group of the rootsystem E6.
In fact, the group PU(4, F 4) is a subgroup of index 2 in W (E6), and W can be
identified with R(E6)⊗Z C. We hope to discuss this fourfold and its relation with
E6 in a later article.

9 An isomorphism of moduli spaces

9.1 The projective dual of the Burkhardt quartic B in P 4 is isomorphic to
the satake compactification of S2/Γ2(3) (see [SB], [HW]). We will show that
the Burkhardt is a compactification of the moduli space of of curves defined
by y3 = f6(x) with a certain type of level-2 structure. We then give a moduli
interpretation of the birational isomorphism of this moduli space with S2/Γ2(3).

9.2 Let J4 := J(C4) be the jacobian of a (smooth, projective) genus 4 curve C4

defined by an equation y3 = f6(x). On the group J4[2] of 2-torsion points there
is a natural structure of hermitian F 4-vector space, using the automorphism of
order 3 and HM . We define a hermitian level-2 structure to be an isomorphism
α of F 4-vector spaces:

α : J4[2]
∼=−→ F 4

4, such that HM(x, y) = H0(α(x), α(y)),

where the hermitian form H0 on F 4
4 is defined by:

H0(u, v) := tuH0v̄, H0 :=








1 0 ρ ρ
0 1 ρ 0
ρ2 ρ2 1 0
ρ2 0 0 1








,
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so H0 also denotes the matrix defining the hermitian form H0, and where F 4 =
F 2(ρ). (Since both HM and H0 are non-degerate hermitan forms on a 4- di-
mensional F 4-vector space, such isomorphisms exist, and they form a principally
homogeneous space under the action of U(H0) by A · α := A ◦ α (A ∈ U(H0)).
Note that α is determined by the four-tuple (also denoted by α)

α := (x1, . . . , x4) ∈ J4[2]4 with xi := α−1(ei),

where ei is the i-th basis vector of F 4
4. Fixing an isomorphism (of abelian groups)

F 4
4
∼= (Z/2Z)8 and noting that Im HM is the weil-pairing, one sees that a her-

mitian level-2 structure α gives a level-2 structure, also denoted by α.
Since each curve C4 has an automorphism φ of order 3, the (hermitian) level-

2 structures α and α ◦ φ∗ give rise to the same moduli point. In the projective
space P (J4[2]) ∼= P 3(F 4) = (F 4

4 − {0})/ < ρ > (so we consider J4[2] again as a
F 4 vector space) we consider the set:

S := {x̄ ∈ P (J4[2]) : x ∈ J4[2] − {0}, HM(x, x) = 1}

of anisotropic points. Since the points x with HM(x, x) = 1 correspond canon-
ically to the odd theta characteristics, the cardinality of S is 120/3 = 40. A
projective hermitian level-2 structure on J4 is defined to be an ordered four-tuple

αS(x̄1, . . . , x̄4) ∈ S4, with : HM(xi, xj) 6= 0 iff H0(ei, ej) 6= 0,

here xi ∈ J4[2] are lifts of the x̄i ∈ S.

9.3 Lemma. 1. The map: α = (x1, . . . , x4) 7→ αS = (x̄1, . . . , x̄4), induces a
bijection:

{

hermitian level-2
structures on J4[2]

}/

< φ∗ > −→
{

projective hermitian
level-2 structures on J4[2]

}

.

2. The moduli space of the jacobians of the curves y3 = f6(x) with a hermitian
level-2 structure is isomorphic to a Zariski open subset of (H3,1/ΓM3,1

(2))sat =
B, the Burkhardt quartic.

Proof. Let αS = (x̄1, . . . , x̄4) be a projective hermitian level-2 structure and
let x1 ∈ J4[2] be a lift of x̄1. Since for a hermitian level-2 structure we demand
that H0(α(x1), α(x3)) = H0(α(x1), α(x4)) = ρ, the lifts x3, x4 of x̄3 and x̄4

are uniquely determined. Also x2 is now determined by H0(x2, x3) = ρ. It
is straightforward to check that α := (x1, . . . , x4) is indeed a hermitian level-2
structure.

For the last point we observe that H3,1
∼= SM

4 parametrizes the jacobians
of these curves with a symplectic basis of the period lattice and for which φ∗
corresponds to the (fixed) element M = M3,1 ∈ Sp(8, Z). Fixing M mod ΓM(2)
is the same as fixing the hermitian form HM on J4[2], whence the result. The ∼=
was proved in thm. 8.6 2
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9.4 We now consider the jacobian J2 := J(C2) of a genus 2 curve defined by
an equation y2 = f6(x). Recall that a level-3 structure on J2 is a symplectic
isomorphism:

β : (J2[3], e3)
∼=−→ (F 4

3, E3), with e3(x, y) = ρE3(β(x),β(y)) ,

where e3 is the µ3-valued weil-pairing and E3 : F 4
3 × F 4

3 → F 3 is a (fixed)
symplectic form. We will take:

E3(u, v) = tuE3v, with E3 =








0 0 1 1
0 0 1 0
−1 −1 0 0
−1 0 0 0








.

We will identify the level-3 structure β with the 4-tuple β = (x1, . . . , x4) ∈ X2[3]4

with xi := β−1(fi), here fi is the i-th standard basis vector of F 4
3.

Since −1 ∈ Aut(J2), we define:

T = T (J2) := P (J2[3]) ∼= P (F 4
3) = P 3(F 3)

and we define a projective level-3 structure to be a 4-tuple

βT = (x̄1, . . . , x̄4) ∈ T 4 with e3(xi, xj) 6= 1 iff (E3)ij 6= 0.

As in lemma 9.3, the map:

β = (x1, . . . , x4) 7→ βT = (x̄1, . . . , x̄4),

induces a bijection:
{

level-3 structures
on J2

}/

{±1} −→
{

projective level-3
structures on J2

}

.

9.5 The finite (simple) groups PU(4, F 4) and PSp(4, F 3) are isomorphic (see
[A]) and the set of projective hermitian level-2 structures on J4 and the set of pro-
jective level-2 structures respectively are principal homogeneous spaces on these
groups. To get an explicit isomorphism of these principal homogeneous spaces, it
suffices to give an explicit isomorphism (of homogeneous spaces) between S and
T , since an isomorphism Φ : S → T will preserve H and e3, in the sense that (for
x, y ∈ J4[2], x 6= y, x̄, ȳ ∈ S):

H(x, y) = 0 iff e3(u, v) = 1, when ū = Φ(x̄), v̄ = Φ(ȳ).

(The existence of an isomorphism Φ : S → T is stated in [A], p.26, to get that
H(x, y) = 0 iff e3(u, v) = 1, it suffices to observe, since the forms are ’preserved’,
that for a non-degerate hermitian form H on F 4

4 and x ∈ S ⊂ F 4
4 − {0} (so

H(x, x) = 1), the subspace x⊥ has 43 = 64 = 1 + 3 · 21 elements and that 3 · 12
of these have H(y, y) = 1. Similarly the subspace < u >⊥ of u ∈ F 4

3 − {0} w.r.t.
a symplectic form has 33 = 27 = 3 + 2 × 12 elements.)

The desired birational isomorphism of moduli spaces now follows from the
following proposition.
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9.6 Proposition. Let C4, C2 be the (smooth, projective) curve of genus 4,
genus 2 respectively, defined by:

y3 = f6(x) y2 = f6(x).

Then there are natural bijections between the three sets:

S(J(C4)), T (J(C2)) P := {(f2(x), f3(x)) : f6 = f 2
3 − f 3

2}/ ∼,

where (f2, f3) ∼ (g2, g3) if f 3
2 = g3

2 and f 2
3 = g2

3.
Hence the varieties H3,1/ΓM3,1

(2) and S2/Γ2(3) are birationally isomorphic.

Proof. The set S(J4) is canonically isomorphic to the set of odd theta charac-
teristics of the curve C4 modulo the action of the automorphism φ of order three.
Since C4 is non-hyperelliptic, the effective divisors D with 2D = KC4

correspond
to planes HD ⊂ P 3 which are tangent to the canonical curve at each intersection
point. Recall that the canonical embedding C4 →֒ P (H0(C4, Ω

1
C4

) is given by (cf.
7.5): (x, y) 7→ (1 : x : x2 : y) and that C4 lies on the cone defined by x0x2 = x2

1.
The planes HD defining odd theta characteristics don’t pass through the

vertex (0 : 0 : 0 : 1) of the cone. Their equation may thus be written as:
x3 = ax0 + bx1 + cx2. Then HD · C4 is defined by the equations:

y3 = f6(x), y = −f2(x), with f2(x) = a + bx + cx2.

Therefore HD defines an odd theta characteristic iff f6(x) + f2(x)3 = f3(x)2 for
some f3. Since g(C4) = 4, we have h0(C4, α) = 1 for all odd theta characteristics
α, so for each α there is a unique HD as above. Since φ(x, y) = (x, ωy), the
theta characteristic φ∗D is defined by y = ω2f2. This shows the natural bijection
between S(J(C4)) and P .

We recall that the map from C(2), the second symmetric product of C2, to
J2 = J(C2) = Pic0(C2):

C(2) −→ J2, D 7→ D − h,

(where h is the divisor (class) with deg h = 2, h0(h) = 2) is surjective, and
is an isomorphism outside |h| ∼= P 1 ⊂ C(2) which is mapped to 0 ∈ J2. The
points of order three on J2 thus correspond to effective divisors of degree two,
D2 ∈ C(2), with h0(D2) = 1 and with 3D2 ≡ 3h. Since 1, x, x2, x3, y are a basis
of H0(C2, h

⊗3), the zero locus of the section s := f3(x) − y on C2 is given by:

y2 = f6(x), y = f3(x).

The divisors D2 corresponding to the points of order 3 thus correspond to the
polynomials f3 which satisfy −f6 + f 2

3 = f 3
2 for some f2. Since D2 + i∗D2 = 2h

(with i : C2 → C2 the HE involution, we see that −(D2 − h) = i∗(D2) − h is
cut out by the section i∗s = f3 + y. This gives the natural bijection between
T (J(C2)) and P . 2
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10 Automorphism of order 4

10.1 In the first part of this section we investigate Θ(SN
g ) with

N = Np,q = S⊕p ⊕ (S3)⊕q, S =

(

0 1
−1 0

)

∈ SL2(Z).

In the second part we study the case of a matrix M inducing an automorphism
of type (n, n) and we determine the image of SM

4 under the Θ-map.

10.2 Note that S defines an automorphism of order 4 on the elliptic curve

E4 := C/(Z + iZ).

In particular, diag(i, . . . , i) ∈ Sg lies in Θ(SNp,q

g ), for all p, q.

10.3 Lemma. 1. The element S ∈ SL(2, Z) of order four acts like:

R(S) =
√

2
−1
(

1 1
1 −1

)

, and v± :=

(

1
µ±

)

, µ± := −1 ±
√

2,

are two eigenvectors of R(S). The eigenvalues of U(N) are ±1.

2. For all (p, q) we have R(Np,q) = R(N⊕g). The map R(N⊕g) has two eigen-
values λ = ±1 and the corresponding eigenspaces are denoted by V± ⊂ C2g

.
We have:

dim V+ = dim V− = 2g−1.

3. Let B := T 2ST 2S ∈ SL(2, Z) = Γ1. Then B ∈ Γ1(2) and

R(B) =

(

0 1
−1 0

)

, and R(N)R(B) = −R(B)R(N).

Moreover R(B)v+ = v− and R(B)v− = v+.

Proof. Since T 2 ≡ I mod. 2 and S2 = −I ≡ I mod. 2, we get B ≡ I mod.
2 so B ∈ Γ1(2). Since Np,q · (N⊕g)−1 is a diagonal matrix with entries ±1, and
since all these matrices are in Γg(2, 4), we have R(Np,q) = R(N⊕g).

As R(S) and R(T ) have been determined and R is a projective representation,
the matrix R(B) is easy to compute and the other statements follow. 2

10.4 Theorem. Let N = N1,1 and let PV be the eigenspace of R(N) which
contains Θ(E2

4). Let B1 := SN
2 . Then:

1. the general point of B1 corresponds to the jacobian of a genus 2 curve
y2 = xf2(x

2).

2.

Θ(B1) ∼= PV = P 1.
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3. The complement of Θ(B1) in P 1 consists of two points, the cusps.

4. There are precisely 4 points in Θ(B1) which correspond to a product of two
elliptic curves, each of these points corresponds in fact to E2

4 .

Proof. The eigenspace L := PV is spanned by v++ := v+ ⊗ v+ = Θ(E2
3) and

v−− := v− ⊗ v−. Since a general point of L corresponds to the Jacobian of a
smooth genus two curve (prop. 7.9), none of the Qm vanishes identically on L.
Since Qm with m = [1111] vanishes on all points of the form v ⊗ v, we see that
Qm ∩ L consists of the two points v++ and v−− and since these correspond both
to E2

4 , Qm is the only quadric vanishing in these points.
The orbits of N on the even characteristics are:

[1111], [0000], {[1000], [0010]}, {[0100], [0001]}, {[1100], [0011]}, {[1001], [0110]}.

Let B2 := B ⊕ B, then R(B2) = R(B) ⊗ R(B) and since B2 ∈ Γ2(2), R(B2)
fixes the characteristics. One easily computes the action of B2 on the equations
of the quadrics:

R(B2)Q[ab
cd] = (−1)a+b+c+dQ[ab

cd].

Thus at both of the two fixed points of the involution R(B2) on L the four
quadrics [1000], [0010], [0100], [0001] vanish. These points are thus cusps, and there are 6
quadrics vanishing in each of the points. Since there are only 5 quadrics left, we
conclude that there are precisely two cusps.

Since L is an eigenspace for R(N), in an intersection point P of L and Qn

also QR·n vanishes. Thus if n = [1100], then also R · n = [0011] vanishes in P . Thus
P must be one of the two cusps. The same holds for m = [1001]. The only way in
which this can work out is that both n and R(N) ·n are tangent to L at one cusp
and m and R(N) · m are tangent at the other cusp.

Since m = [0000] is fixed by B2 but Qm cannot intersect L in the fixed points
of R(B2) on L (which are the cusps), we conclude that Qm intersects L in two
distinct points. 2

10.5 Remark. In the case g = 3 we have a surface S := Θ(B2) ⊂ PV = P 3,
here B2 := H(N2,1) ⊂ S3. Since B2 parametrizes hyperelliptic jacobians, see
7.9, there is one Qm which vanishes identically on S. This Qm is thus invariant
under R(N2,1) and a computation shows that none of the 4 R(N2,1)-invariant
Qm’s vanishes identically on PV . Therefore S = Qm ∩ PV , for one of these m’s
and it is in fact a smooth quadric in P 3. We hope to describe the cusps etc. of
this surface later.

10.6 We will now examine abelian varieties with an automorphism of order 4
of type (n, n), but where the automorphism is not given by Nn,n. Consider the
following 4n × 4n matrix M which is symplectic w.r.t to the standard form E:

M :=








0 I
−I 0

0 I
−I 0








, E =








I
I

−I
−I








.
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10.7 Proposition. 1. The fixed point set of M on S2n is:

SM
2n =

{

τ =

(

τ1 τ12

−τ12 τ1

)

∈ S2n : τ1 ∈ Sn,
tτ12 = −τ12

}

and dim SM
2n = n2 = 1

2
n(n + 1) + 1

2
n(n − 1).

2. For τ ∈ SM
2n = H(M) the abelian variety Xτ has an automorphism φ of

order 4 and type (n, n). Thus H(M) ∼= U(n, n)/(U(n) × U(n)).

3. Let ǫ1, ǫ2, ǫ′1, ǫ′2 ∈ (Z/2Z)n and let τ ∈ S2n. Then:

θ[ǫ1 ǫ2
ǫ′
1

ǫ′
2

](M · τ) = (−1)ǫt
2
ǫ′
2θ[ǫ2 ǫ1

ǫ′
2

ǫ′
1

](τ) and θ[ǫ1 ǫ2
0 0 ](2M · τ) = θ[ǫ2 ǫ1

0 0 ](2τ).

4. The projective automorphism R(M) ∈ Aut(P 2g−1) is given by:

R(M)(. . . : xσ : . . .) = (. . . : yσ : . . .), y(ǫ1,ǫ2) := x(ǫ2,ǫ1).

5. The image of H(M) under the map Θ : S2n → P 22n−1 lies in the eigenspace

PV of dimension 22n−1 + 2n−1 − 1 of R(M) which is defined by the
(

2n

2

)

=

22n−1 − 2n−1 linear equations:

Xǫ1 ǫ2 − Xǫ2 ǫ1 = 0, ǫ1, ǫ2 ∈ (Z/2Z)n.

6. The restriction of Θ to the submanifold Sn ⊂ H(M) consisting of the
matrices with τ12 = 0, is the composition of the Θ-map for g = n, Θn :
Sn → P 2n−1 , with the second Veronese map P 2n−1 → P 22n−1+2n−1−1 ∼=
PV . In particular, Θ(H(M)) spans the P 22n−1+2n−1−1.

Proof. We have Xτ = C2n/(I τ) and to define φ we must give a C-linear map
dφ : T0A = C2n → T0A which on the lattice Λτ induces φ∗ := M . The (easily
verified) matrix equality

dφ(I τ) = (I τ)M, with dφ :=

(

0 I
−I 0

)

(where 0 and I are n × n matrices) thus in fact defines φ : Xτ → Xτ . Since the
eigenvalues of dφ are i and −i, each with multiplicity n we have that φ is of type
(n, n).

The formulas are easy consequences of Igusa’s transformation formula, cf.[I].
In fact, denoting the two diagonal blocks of M by A, we get directly from the
series defining the theta functions that

θ[ǫǫ′ ](M · τ) = θ[ ǫA
ǫ′A](τ)

and then one must use [I], (θ.2), p.39 to make ǫA and ǫ′tA−1 have entries in {0, 1}.
The second formula is a special case of the first one since 2(Mτ) = M(2τ).

To find the eigenspace PV , note that for τ ∈ SM
2n we have θ[ǫ1ǫ2

0 0 ](2τ) =
θ[ǫ2ǫ1

0 0 ](2τ).
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If τ12 = 0 then θ[ǫ1ǫ2
0 0 ](2τ) = θ[ǫ10 ](2τ1)θ[

ǫ2
0 ](2τ1) with τ1 ∈ Sn, which implies

the last statement. 2

The following corollary follows trivially from proposition 10.7 and will allow
us to find the equations for the image of H(M).

10.8 Corollary. Let [ǫǫ′ ] be an odd (i.e. ǫtǫ′ ≡ 1 mod 2) characteristic. Then

θ[ǫ ǫ
ǫ′ ǫ′ ](τ) = 0 (∀τ ∈ H(M)).

In particular, there are 2n−1(2n − 1) even theta constants which vanish iden-
tically on H(M).

10.9 Remark. We observe that since the dimensions of the eigenspaces of
R(M) are not equal, while the eigenspaces of R(Nn,n) have the same dimension,
M cannot be conjugated in Sp(4n, Z) with Nn,n.

In case g = 4 we see that 6 even theta constants vanish on τ ∈ H(M). These
points do not correspond to Jacobians of curves (see for example prop. 7.9).
Since for general τ , the abelian variety Xτ has NS(Xτ ) ∼= Z (see [W]), Xτ is
not isogeneous to a product of abelian varieties. Therefore we found a new 4
dimensional subvariety of the locus θind

null,6 from [Deb].

10.10 We now consider the case n = 2, so the 4-dimensional H(M) ⊂ S4 is
mapped to a P 9 by the second order theta constants. We will show that the
image is the complete intersection of 5 quadrics.

10.11 Proposition. The closure of the image of the map

Θ4 : H(M) ∼= H2,2 −→ PV ∼= P 9

is the complete intersection of the following 5 quadrics (here Z0, . . . , Z4 and
W0, . . . W4 are the coordinates on PV ):

Z2
0 = W 2

0 +W 2
1 +W 2

2 +W 2
3 −W 2

4

Z2
1 = W 2

0 +W 2
2 −W 2

4

Z2
2 = W 2

0 +W 2
1 −W 2

4

Z2
3 = W 2

1 +W 2
3 −W 2

4

Z2
4 = W 2

2 +W 2
3 −W 2

4

Proof. From corollary 10.8 we know that 6 even theta constants vanish on
H(M). The quadratic relations between the first and second order theta constants
(see 3.3.2) thus imply that the image of H2,2 lies in 6 quadrics. Since the image
lies also in PV ∼= P 9, we restrict the quadrics to this projective space. As
coordinates on PV we choose:

X0000, X0101, X1010, X1111, X0001, X0010, X0011, X0110, , X0111, X1011.

In these coordinates, the restriction of 1
2
θ[10101010]

2 is given by:

X0000X1010 + X0101X1111 − X2
0010 − X2

0111 + 2(X0001X1011 − X0011X0110).
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Proceeding in this way, one finds 6 quadrics, and it is easy to check that:

θ[10101010]
2 − θ[10101111]

2 − θ[11111010]
2 + θ[11110101]

2 − θ[01010101]
2 + θ[01011111]

2

gives a quadric which is identically zero on PV . Note that the quadric given by
the theta constant θ[10101010]

2 − θ[10101111]
2 is 4(X0001X1011 − X0011X0110).

Define new coordinates Xi by:

X0000 = X0 + X1 + X2 + X3

X0101 = X0 − X1 + X2 − X3

X1010 = X0 + X1 − X2 − X3

X1111 = X0 − X1 − X2 + X3.

In particular, one has:

X0000X1010 + X0101X1111 = 2(X2
0 + X2

1 − X2
2 − X2

3 ).

Coordinates Yi are defined by:

X0001 = Y0 + Y1 X1011 = Y0 − Y1

X0010 = Y2 + Y3 X0111 = Y2 − Y3

X0110 = Y4 + Y5 X0011 = Y4 − Y5

In particular, one has:

X2
0010+X2

0111 = 2(Y 2
2 +Y 2

3 ), 2(X0001X1011−X0011X0110) = 2(Y 2
0 −Y 2

1 −Y 2
4 +Y 2

5 ).

In these new coordinates the equation of each of the 6 vanishing even theta
constants is a sum of squares, for example, θ[10101010]

2 corresponds to:

X2
0 + X2

1 − X2
3 − X2

4 + Y 2
0 − Y 2

1 − Y 2
2 − Y 2

3 − Y 2
4 + Y 2

5 ,

and θ[10101111]
2 corresponds to:

X2
0 + X2

1 − X2
3 − X2

4 − Y 2
0 + Y 2

1 − Y 2
2 − Y 2

3 + Y 2
4 − Y 2

5 .

Taking suitable lineair combinations one finds

X2
0 − X2

1 + X2
2 − X2

3 −Y 2
0 − Y 2

1

X2
0 + X2

1 − X2
2 − X2

3 −Y 2
2 − Y 2

3

X2
0 − X2

1 − X2
2 + X2

3 −Y 2
4 − Y 2

5

−Y 2
0 + Y 2

1 +Y 2
4 − Y 2

5

−Y 2
2 + Y 2

3 +Y 2
4 − Y 2

5 .

Finally, by substracting the first equation from the second and the third, one can
express the squares of Z0 := X0, Z1 := X1, Z2 := X2, Z3 := Y0, Z4 := Y2 as
linear combinations of the squares of W0 := X3, W1 := Y1, W2 := Y3, W3 :=
Y4, W4 := Y5.

The equations in the statement of the proposition define a variety X which
is a 25 : 1-covering of the P 4 with coordinates Wi, from which the irreducibility
of X is easily seen. Since the four dimensional Θ(H(M)) lies in X we thus have
X = Θ(H(M)). 2
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