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This note offers an interpretation of the Verlinde formula that brings into play the
projective configuration of the Kummer variety of the Jacobian and its Pryms; we
derive a novel proof for the formula in degree 4 (actually, a lower bound, the upper
bound was proved by Bertram [Be]).

Let’s briefly recall the meaning of the words; for more detail and references see
below. What is referred to as the Verlinde formula is a Quantum-Field-Theoretic
derivation of the dimension of certain cohomology groups; we shall only consider the
following: let C' be a Riemann surface of genus g > 2, /" M(2) the moduli space
of semistable bundles of rank 2 and trivial determinant over C' and ¥ the ample line
bundle over .M ~(2) that generates Pic (Y M~(2)) 2 Z. Let

N <k+2)”“'§'3 1
. 2 j=0 (sin WU+1)>2g2
k+2

and let
D, :=dim H(Y M ,(2), ¥ ©F).

Then the Verlinde formula asserts:
(*) Dy =N,.
Recently Bertram [Be] proved an upper bound for D,:
D, < N,.
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The equality was proven by Beauville in the case kK = 1 [B1] and in [B2] he proved
that N, gives a lower bound, so the equality () is now proven for k = 2 as well.
Moreover, [B1] gives an identification of H oM o), %) with V
= H%JacC, L), where L = “;,.~(260) and O is a symmetric divisor defining the
principal polarization. This gives us the link with Prym geometry. The map to the
projective space PV determined by L sends X := JacC to the Kummer variety
K := X/+; for any point of order two x € X|[2], the associated Prym of X, P, an
abelian variety of dimension g — 1, maps similarly to PV:
x 2 K cpPv
U
P, — K(P,) C PV,

where the dimensions of PV, PV are 29 — 1, 20-1 1, respectively. As reviewed
in Sect. 1, the Kummer variety and the Kummers of all these Pryms (we call the
Kummers of Pryms simply Pryms in the sequel) are in the image of

@S M) — PV 2 PHU(Y Mo(2), ¥).

In particular, a polynomial which vanishes on (" M ~(2)) must vanish on all the
Pryms (as well on K).

Let F € SkV, so F is a homogeneous polynomial of degree k on PV. The
restriction of F' to (% M ~(2)) defines a map:

my, : SV — HO( M o(2), £ €F).

Since S¥V/ker(m,) can be identified with a subspace of H(/ M (2), ¥ ®*), an
upper bound for dimker(m,,) thus gives a lower bound for D,. Since a polynomial
which vanishes on (" M ~(2)) must vanish on all the Pryms, we find that

dimkerm, < dim{F € S¥V : F vanishes on all Pryms} .

By expressing geometric relations between K and the K(P,) in a suitable
coordinate system for PV, we obtain information on the quartics that vanish on all
Pryms, see [vG, Theorem 1] and Theorem 1 below. For a generic C, Theorem 2(b)
gives a lower bound for D,, which turns out to be IV,. Thus, combining our results
with those of Bertram, we have as a corollary a proof of the Verlinde formula for
generic C (cf. Sect. 3 below) but since D, is the same for all Riemann surfaces of
the same genus (cf. [L]) we have D, = N, for all C.

We also obtain some information on the ideal of the variety (/" M ~(2)) (cf.
Corollary 2):

Let C be a Riemann surface without vanishing thetanulls. Then a quartic F' vanishes
on (¥ M ~(2)) iff F vanishes on all the Pryms of C.

Remarks. 1. [B2] shows that K and ./ M (2) are projectively normal in degree 2 iff
C has no vanishing thetanulls. Our Corollary 2 implies that ." M ~(2) is projectively
normal in degree 4 if the same condition is satisfied.

2. Almost a footnote: an interpretation of the Verlinde numbers IV, in terms of the
representation ring R(SU(2)) is offered by Bott and Szenes [Bott]; their algorithm
gives indeed IV, cf. Sect. 3.
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1 The geometry of . M- (2)

In this section we derive from the theory of rank 2 bundles on C' the Schottky-Jung
relations (an identity between theta constants on X = Jac C' and those of a Prym)
and the Donagi relations (an identity between theta constants of two Pryms).

For any rank 2 bundle E on C and z € X we have det(F @ z) & det(E) ® 2%2.
Thus the group X[2] acts on .”"M (2) via tensorization. Since ¥ is the unique
ample generator of Pic (¥ M (2)), the pull-back of ¥ by the automorphism of
/M ~(2) defined by z € X[2] is isomorphic to ¥ . Therefore there is a projective
representation:

U: X[2] — Aut(PHU (Y Mo2), ©)), and U@)p(E) = o(E @ z),

SO ¢ is equivariant for the action of X[2].

For z € X = Pico(C), the rank 2 bundle z & 2~! has trivial determinant and is
semi-stable (but not stable). Thus we have a map X — "M ~(2) which factors
over K (since z @z~ ' =2 271 @ 2):

Vit K — Y M), 2 z® 2"

The image of 1, is stable under the action of X[2] on /"M ~(2) and we have
U@ (z) = Yy (z ® ). Using the identification PV =2 IP’HO(.VJMC(Z), ¥) and
Mumford’s theory of theta groups, we see that the projective representation U of X[2]
is isomorphic to the projectivization of the irreducible (Schrodinger) representation
of the Heisenberg group H:

H=H, :={(t,a,a") € C* x(Z/2)? x Hom((Z/2)*,C*)}, with
(t, @, @™)s, B, %) = (tsB¥ (), o + B, 0% B")

on a space V', with basis §,, o € (Z/2)9 via:

t, a,a™)- o, 1= ta™ (o + )y g -
Therefore each U(x) has two eigenspaces in PV, each of dimension 29~! — 1, and,

since the Weil-pairing E : X[2] x X[2] — Z/2 corresponds to the commutator in H,
we have:

U@)U(y) = (=D U@U ().
Thus if E(z,y) = 1, the eigenspaces of U(z) and U(y) do not intersect. On an
eigenspace PV of U(x) the group

zt = {y € X[2]: E(z,y) = 0}

acts, and since U (z) acts trivially on an eigenspace, the action factors over z /(x) =
(Z,/2)*9=D. This action is the projectivization of the Schrodinger representation of
H' =H, ,onV,.

When E(z,y) = 0, the space PV, , =PV, N ]P’Vy, is an eigenspace of U(y),

Ji=y+(z) €at/(z)
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so dimPV, , = 2972 — 1, the group (z* N yb)/(x,y) = (Z/2)*9~? acts on it and
the action is the projectivization of the Schrodinger representation of H" = H,_, on
|%4

T,y
For any ppav (4, © ,), with symmetric © 4, the map 4 : A — PHC(A, L ), with
L, =420 ,) is equivariant under the action of A[2] and factors over A/=. If the
decomposition of this ppav into indecomposable ppav’s is given by:

4,00 =[[A,.04), then A KA :=][]A/+) CPHYA L)

and we call K(A) the Kummer variety of A. In case A is a Jacobian, then
KAy A/+.
For non-zero = € A[2], let:

S, :={z€A:2% =g}

The set S, is a principal homogeneous space for A[2], and since for z € S5,
0(2) = p(z~") = p(2®@z), the image of S, lies in the union of the two eigenspaces of
U(z)in PH(A, L ,), and each eigenspace gets half the points. If A is indecomposable,
then K(A) N PV, consists exactly of the image of one half of S, (since then
p(z) = @(z ® x) is equivalent to z € S,) and since  is 2:1, that is a set of
229-2 points.

A point of order two z € X[2] defines an unramified 2:1 cover C, of C' and a
(principally polarized) abelian variety (P, ©p,):

n,:C, — C, P,:=ker(Nm, :JacC, — X)°,

where © stands for the connected component containing 0 € Jac C,. Here Nm,, is
the norm map, it maps D — 74D for any divisor D on C,, and it is a surjective
homomorphism.

One has ker(7 : X — Jac(C})) = (z), 7+ induces an isomorphism:

ko at/(z) =,P, 2] and ker(Nm,)= P, + (P, + ),

for (any) y € X[2] with E(z,y) = 1. Since Nm_(p ® W:z) = Nm_(p) ® 292, the
group X[2] acts on ker(Nm,) viap— p® n¥y, y € X[2] and this action factors
over X[2]/(z) = (Z/2)*97 1.

Since 7+, = ¢ ® x we have detm, = x. For any p € ker(Nm,), the
rank two bundle 7_«p on C then also has determinant x. Fixing a z, € X with
2%% 2 z, we get a map:

Y, 1 ket(Nmy) = P, UP, — Y Mc(2), p— (Tpxp) ® 2, -

Note that the actual map depends on the choice of z_, but that if also 2/®2 = g then
2! = 2 ®uy for some y € X[2]. Thus if ¢; is the map defined by 2!, then we have

YL (p) = U(y)y,(p) for all p € ker(Nm,).
By the projection formula we have, for any p € ker(Nm,) and z € X

TP @z 2T (p@Tiz) thus ¥,(P) @Y=,y (VyeX2])
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and so the map v, is equivariant for the actions of X[2] on ker(Nm) and.”” M ~(2).
Moreover, the choice of z, in the definition of 1), does not affect the image of 9,
(i.e. Im(¢p,) = Im(yL)).

Since both 1), and ¢ are equivariant for the X [2]-action, and since (x) acts trivially
on ker(N'm,), we have, for all p € ker(Nm,):

U@, (p) = o, (), thus 1 (ker(Nm,)) C PV,F UPV,",

the union of the two eigenspaces of U(x) in PV. Since U(y), with E(x,y) = 1,
interchanges the two components of ker(Nm,) and the two eigenspaces, there is one
component of ker(Nm,) in each eigenspace. We can restrict ¢ o 1), to get a map:

Yy P, — PV,

where PV is the appropriate eigenspace of U(z). The description of ¢ by Narasimhan
and Ramanan [NR] and Beauville [B1], combined with results of Mumford’s [M]
allows us to identify ¢_.

Proposition 1. The map ¢, : P, — PV_ is the natural map
P, — K(P,) CPH(P,,Lp) =PV, with Lp :=((20p).

Proof. Let ©, | := {z € Pic?”(C) : H'(C,2) % 0} be the theta divisor of C.

Then there is a unique w € Picg‘l(C), in fact a theta characteristic, such that
O={zow':2€6, }. Themap ¢ .V M-(2) — PV = |20| = |20, || is
given by:

¢:E—Dgpe|20, ||, Dg:={zecPic/”(C): HYC,E®z)#+0}.
For p € ker(Nm,) we have:
HYC, (mxp) ® 2, ® 2) = HY(C, v (p @ 71 (2, ® 2))) = HYC,,p @ (2, ® 2)).
The degree of 7z is 2(g — 1) = g, — 1 with g, the genus of C,, therefore

D, o =Dpi= {2 €Pic?(O): Ml () ep~ @ (nF2,) ' @6, _},

with © g1 C Pic%=~!(C) the theta divisor of C,, and Mumford [M, p. 334] proved
that p — D, gives the natural map P, — PH(P,,Lp ). O

From now on, we simply write K and K(P,) for the images of the maps
Yy =@ oYy and @ respectively.
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Proposition 2. For any curve C and any x,y € X[2] — {0} with E(x,y) = 0 we
have:

(i) The SJ (Schottky-Jung) relations:
(S)) KNPV, = K(P,2]).
(i) The Donagi relations:
(D) wy(SE) n ]P’Vz'y = cpz(S@) N ]P’Vz’y

with@ :=z + (y) € y*/(y) 2 P2l and § = y + (x) € - /(z) = P,[2].

x

Proof. The Schottky-Jung relations follow from 7, (¢ ) = ¢ @ = which, after a
translation to get trivial determinant, implies that ¢ K(y) = goz(O) for some y € X[2].
Since the maps are equivariant under the action of xt, which stabilizes PV, and acts
there via z/(x) = P,[2], the first point follows.

More precisely, let cpK(z ) e KNPV, thenz®2 = g and KNPV, = {¢k(2,®y) :
y € 1}, Let z, define p, : P, — PV, “then:

Using the action of 21 and the identification 7% : z*/(z) — P,[2] we get, with y
running over z:

KNPV, = {px(z, @0} = {UWpr(z,)}
= {UWp, (")} = {e.(mry)} = K(P,[2]).

For the second point, we consider the unitary rank 2 vector bundle £ on C' defined
by the representation:

akHlv 1§k§Q’ ﬂlHlv 3§l§g

: C)— SUQ), 0 0 =1
5] 7T1() (2) /61H<(Z) —i>, ﬁz’-’( 2)7

)

here the «,, §; are standard generators of m,(C). To prove the Donagi relation, we will
first show that E 2 mxq, = mxq,, for z,y € X[2], q, € Jac(C)), q, € Jac(C ),
which is equivalent to proving that

711(0) TI’I(C)
E " Indm(cz)(gz) ~ Indwl(cy)(gy)v

with g, : m,(C,) — U(1) the representation corresponding to g, etcetera.
Let C,, be the unramified 2:1 cover of C defined by the subgroup ker(e,,) of m,(C)
with

T :ﬂl(C)—_)U(l)a Ez(ﬁl): _17 Em(ai):‘gz(/@j): 1a

with 1 < i < g,2 £ j £ g Similarly, we define C, by a character ¢, with
6y(ﬂ2) = —1, and €y trivial on the others generators.
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Note that 7. : m(C,) =, ker(e,) C m(C), and that 7 (C,) is the fundamental
group of a Riemann surface of genus 2g — 1. For suitable generators v,, 6, of 7,(C,,)
the homomorphism 7« is given by:

717 72a MRS ’797 ’Yg+17 RS} 729‘]7 617 627 LS| 69, 6g+17 LS ] 62gA1
e L] Lol Lob ol Lol !
ala a/27 ] alg7 a27 RS ag7 12a ﬂéy tty ﬁ;a ﬂz» S ﬁg

with X' ;= ﬁl)\[)’fl and 7. is given by a similar prescription, with the roles of 1 and
2 interchanged.

Then it is easy to check that the restriction of g, to m(C,) C 7,(C) is reducible;
invariant subspaces are W, := ((})) and W;'. Since

m(C)=m(C)UBm(C,) and C*=W, @ W} =W, ® 05(3)W, ,

it follows that ¢, = Ind](€) (0,), with o, : 7,(C,) — U(W,) 2 U(1) the restriction

of o, see [S]. Similarly, the restriction to 7,(C,) has invariant subspaces W, = <(1)>

0
m(C
and WUL = 0p(B)W,, and o = Indn:EC;)(Qy)‘

Let z, € X define the map v, and let p, := ¢, ® 7}z, then p, € ker(Nm,)

and, after tensoring by some y € X[2] if necessary, we get p, € P_. Then:

w:r,(pa:) = Trz*(p:zr) ® Zy = ﬂ—z*(qac ® ﬂ—:zm ® W;-(Zz) = Wx*(qz) =F

since 252 = & implies (1}2,)%? = ¥z = 7, . Since p%? = ¢®? is the line bundle

defined by the character Qi of m,(C,) and since Qi = £,, the character defining Cy
when restricted to 7,(C,) (easy verification), we have that p, € Sy Using a similar

argument for y and using the equivariance of 9, %, for the action of zt Nyt the
stabilizer of IP’Vm,y in X[2], we get the desired result. O

2 The multiplication maps

To find the polynomials which vanish on all Pryms, we study various multiplication
maps. We use the translation of the SJ- and D-relations in coordinates to derive
geometrical information on these polynomials. Before we launch into calculations, let
us sketch the philosophy: since a basis of H'(X, L) is given by theta functions of
order 2, both (SJ) and (D) turn out to have expressions in terms of thetanulls (for
suitable choices of period matrices of X and P,, 7 and m,., say). These thetanulls
happen to give the entries of the matrices of the (H-equivariant) multiplication maps:

Py SV — HUX, L), p,: SV, — HP,,LEY, .
Let k be even; then the action of H on S*V factors through an abelian group

and since C* acts via t — t*, the essential part of the action is given by a character
of H/C* = (Z/2) x Hom((Z/2)?,C*); let x € Ch(H), the group of characters
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of H/C*, with O denoting the trivial character. Then we have a decomposition in

character spaces:
SV =EPsiv.
X

Given a non-trivial Y € Ch(H), we can choose an automorphism ¢ of H, which
is the identity on C*, such that

b, =x; = (), g, af, .. a0) = (=D)).
X g g

The element h € Ch(H)/C* corresponding to x,, that is [(t, h), (s, )] = x(D),0),
is then
h=(0,...,0),(0,...,0,1) € (Z/2)7 x Hom((Z/2)9,(C*)

since the commutator in H is: [(¢, o, &¥), (s, 8, 6%)] = (@®(8)5% (@), 0, 1).
As in [vG], we choose bases as follows:
i inV: X,= 020(27, 22) o €(Z)2)°
2

(ii) in SéV:
P = Z XaXa+gXo+uXcr+9+V

forall I = {0, 0,v,0+ v} C (Z/2)9.
(iii) in S4X]V:

R; =Y X0 X540 X620 X 6+8470 ~ Xon X Xt Xo+s441)
é

forall J = {O,ﬁa’y’ﬁ_*_ ’Y} - (Z/z)g—I.

(iv) in the following subspace of H°(X,L®*%), which contains the image
P4(SYV): [21*H(X,L,),, where L, = T}L,2y = x, and z € X[2] corresponds to
x (the subscript + means even thetas, note all elements of V' are even!):

010(27-7 42)7 (S (Z/Z)g y for X = 0
2
9(%0) (0%)(27,42), a € (Z/Z)“’*1 , for x = x,.

The matrices of the multiplication map p, are computed in [vG, Proposition 4]:

@’

Pyt SEX, L) — [2I¥HO(X, L), , Pi=5)  Cp 0, @7, 42)
A 2

where \ € (Z/2)Y and

CI,,\(T) =(f )\+9002\ﬁ09k+g+u 0)(27', 0);
2 2 2
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(i)’
py: Sy V = [2"HOX, L), R,25> D158 50) (1) (27:42)
p 2 2

(where 6 € (Z/2)~" and

D, (1) = (0. N 0/ 5:5es 27,0).
26 = O58) (01)? (2220) (01) (5422 0) (01) 2T D

In [vG], the (SJ]) relations are shown to be equivalent to 0( s )(0 1 )(27', 0) =
2 2
0 5,27, 0), for suitable period matrices 7 of X and 7, of P, thus, (ibid., Proposi-
2

tion 6), the matrices of the multiplication maps p, in the above bases (ii), (iii), (iv)
differ by a non-zero multiplicative constant, where the maps are:

py: Sy V — RI"H%X,L,), and p,:SjVp — [21"H(P,,Lp ), .

Note that the identification S;‘“V = S3Vp, maps R; € Sy V. J = {0,0,v,
o+ v} C (Z/2)*" ' to P, € S5}{Vp , which is now a polynomial in the 29~
variables X, & € (Z/2)9~!. The identification is thus obtained by restricting R J
to the eigenspace V, defined by X5, = O and then putting X4, = X,. More

intrinsically, we use the action of H,_| to identify V, and HYP,, L p,) and take
Sym* of this identification. Similarly:

4 P, * 770
ker(p, ;) —— SV, — [RI"HP,,Lp, ),

.

44 - Sg‘/m,y

ker(p, 3) —— SyV,

Py x

21" HP,, Lp, ) -

Lemma. Let x©,y € XI[2] correspond to characters x,u € Ch(H g)- Assume
E(x,y) =0, and let X, i € C’h(Hq_l) be the characters induced on P,_[2], Py[2].
Then under the isomorphisms given by restriction:

by~ gy x> ghy
Sﬁ I‘_SO m,y_Si Yy
the multiplication maps

py: SV, — RI"H(P,, Lp, ), and p,: 53V, — RI*H(P,, Lp, 4
differ by a nonzero multiplicative constant. (Note that we should write P4 g Pa

=)
In particular, W := ker(py , ) = ker(p, , ). o
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Proof. By a suitable identification X[2] = H/C* we can assume that x and p
correspond to the points = = e,,,y = €,, , in the “standard basis” {e,} of X[2].
The linearized eigenspaces of U(zx), U(y) are coordinatized by:

Xy, Xp0-1_150,...,0]

and
[}/0,...,szgfz_l,o,...,O;Y'zgf],...,)/'2971+2g_2A1,0,...,0]

and their intersection, which is a P2° ~!, has coordinates [(Zy,- -+ Zrg-2_,] which
correspond t0 X igp), 0" € (Z/2)?72. The X 1, 0’ € (Z/2)?7", and Y ),
€ =0, 1, are acted on by the obvious Heisenbergs H,_, in the obvious way.

Thus we can use ([vG, Proposition 4], see also above) to express the matrices of
the multiplication maps p, on S%VX and S%V#, resp. (i, X € H,_,), where we use
the (analog of the) basis R; on the left 1\ (27,,2%), and 6 nQ2m, ,22)

w0(0}) o0(o}) O

resp. on the right. The theta constants in the matrices are the coordinates of 4-torsion

points on the Pryms, and the Donagi relations say precisely that the coefficients of

the multiplication matrices are the same up to a (nonzero) multiplicative constant.
The last statement follows because the R;’s from SiV, and S$V, restrict to the

same elements in S§V, ., which are polynomials in the Z;, 0 =i <297° — 1. [J

Finally, using the same ideas as in [vG], we get:

Theorem 1. Let F' € S;‘(V, X F0, and let x € X[2] correspond with x € Ch(H).
Then F vanishes on all Pryms if and only if K(P,) C Sing Z(F).

Proof. We will take = and V,, as in the proof above. Using the basis of S*V, given
by the I ;’s one sees:

K(P,) C Sing Z(F) iff K(P,) C Sing(F,), with F := Fly, .

First we cut down the number of variables by restriction, recall that restriction gives
an isomorphism StV — S¢V, [vG, Proposition 3]. Now in SgV, we proceed as in
[vG, Theorem 1], only with respect to the Heisenberg H g—1: 10 minimize confusion
(rather than to avoid another abuse of notation!) we denote the maps M(x) of [vG]
by N(fi) here. So if fi = (¢*,¢) € Hom((Z/2)~",C*) x (Z/2)?~" = Ch(H,,_,) is
defined by: fi((0, 0*)) = £*(0)o* (), then we have (surjective) maps:

N@ : S}V, — SiV,, N@G:=» " 0)X,CGoy, with G, = 2o,

here H := N(0)G and since the space Ssz consists of cubics invariant under the
action of the subgroup K, , := {(1,0,0") € H,_, : 0 = 0}. For fi = 0, the trivial
character, we have an isomorphism:

~ 1 0H
a3 X o4 1. 1
N : S{V, =SV, NOTH i g

(a) Assume K(P,) C Sing F, for F' € .S’;‘(V. We have to show that for all y we
have K(Py) C Z(F).
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In case E(x,y) = 1, it is easy to check that in fact the restriction of F' € S4V to
V, is 1dentlcally zero. So F vanishes on all these K(P,)’s. It remains to cons1der the

RS xt
The restriction map S*V — S*V, gives an isomorphism 5%V — S{V,, and for

— F, €SV, let F,=NOG, with GeSjV,

OF
Since K(P,) C PV, all d—X_X o€ (Z/2)9", also vanish on K(P,). Thus all G

are equations for K(P,) and go, for all & € Ch(Hgfl), we have:
NG € ker(SyV, — H(P,, LE%).

Any y € 1, y ¢ (z) corresponds to a € Ch(H) which defines a non trivial
€ Ch(H ). We can apply the lemma to these x,y and find that the element

F € S“V corresponding to N ()G is an equation for K(P ) C ]P’V
4 0 ®4
F, €ker(SV, — H (P, L")

Now F, is indeed, as the notation suggested, the restriction of F' to V, and since
K(P,) C PV,, we thus get K(P ) C Z(F), as desired. To see this, we must check
that N(u)G and F have the same restriction to V,, ry = =V, NV, Recall that VN V
is an eigenspace the Heisenberg group H,_, then by [vG Proposition 3i]:

res NG|y,  =resN(O)G|y, =resF, |, ~=res Fly,ay, =resF,ly, .

(b) Conversely, assume that F' vanishes on all K (P,). Then F; is an equation
for K(P,) C PV, and thus, by the reasoning above, N(u)G, for all fi € ChH,_)),
is an equation for K(P,). Considering only the i = (¢/,0), we have the following
equations for K(P,), with o running over (Z/2)9~ "

> X o (Ve’ € Hom((Z/2)?~",C*))
. 70X, T

oF
Taking suitable linear combinations it follows that all XX vanish on K(FP,) and
thus K(P,) C Sing (Fx) = Sing (F)NPV,. O o

3 Quartics and . M¢(2)

The kernels of the multiplication maps are the spaces that encode the projective
geometry, and their dimensions may depend on the choice of the Jacobian (unlike the
dimensions of the source and target of p,, which depend only on k and g). We will
in fact have to restrict our attention to curves without a vanishing thetanull, although
the statement of Theorem 2a might be true for all curves.
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To get the results on D, = dim H'(¥ M »(2), ¥ ®*), we draw some consequences
from Theorem 1. Let d(g) = dim S§V = dim S3V (then d(g — 1) = dim S§V, =
dim S}V, for z # 0), let e(g) = 279 dim H°(X, L?),:

29+ D" + 1) 39 + 1
3 , e(g) = >

d(g) =
and define, for x € X[2] corresponding to x € Ch(H):

S Viing :={F € S3V : K C Sing Z(F)},

St Vg :=1{F € S}V : K(P,) C Sing Z(F)} .

X ' sing *
Theorem 2. With the same notation as above:
(a) For a curve C with no vanishing thetanulls we have:

dim 53V, = d(g) —e(g), dim SV, =dg— 1D —e(g—1)

X ' sing

and the number of independent quartics in PV vanishing on all Pryms is equal to:
v(g) == d(g) — e(g) + (2% — 1)(d(g — 1) — e(g — 1)).
(b) For all curves C':
D, =dim H( M ~(2), ¥®*) 2 e(g) + 2% — De(g — 1) = N,.

Proof. First of all we use Theorems 1 from [vG] and from Sect. 2 to rephrase the
condition that a polynomial F € S*V vanishes on all Pryms. Writing F' =} F and
observing that the union of all Pryms is stable under the action of X[2], we see that
F vanishes on all Pryms (and K) iff each FX vanishes on all Pryms (and K).

For x = 0, this is equivalent to M(0)~'F € ker(py : S3V — H%(X,L®?),) and
for x & 0 N(0)~'F, € ker(ps : S3V, — H°(P,, L§)),) where F, = F|y, . Thus we
have to determine the dimensions of these kernels.

We recall (cf. [vG] for the setting, the result is classical) that for a ppav (4,0 ,)
with L, := ,4(20 4) the map

py: 82V, — H%A, L),

is surjective if and only if the abelian variety A has no vanishing thetanulls.
For any ample divisor D, the multiplication H°(A, (aD)) ® H°(A, (bD)) —
HY%A, (a + b)D) is onto if a = 2, b = 3 (cf. [K]). We take D = O,
a = 2, b = 4, then, since HO(A,LA) consists of even sections, we see that
HYA,L,) ® HYA,LE»), — H%A,LY), is surjective. Thus, if none of the
thetanulls of A vanish, it follows that p; : S*V, = S?H(A, L) — H%A, L), is
surjective.

If X has no vanishing thetanulls, then the (SJ) relations (in their classical form:

(9 {5 O] 0 [s, ﬂ (T,00=10 [J] 2(Trg,v‘,0)> show that the Pryms of X do not have any

/ !
e 0 €

vanishing thetanull either. Applying the result above to A = X and A = P fora C
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with no vanishing thetanulls (meaning those of X), the maps S°V — HO(X, L®3),
and S*V, — HO(P,,L®%), are seen to be surjective. Thus the dimension of the

kernels is 29(d(g) — e(g)) and 29~ '(d(g — 1) — e(g — 1)), and the dimension of the
kernel of p, restricted to S3 is found by dividing by 29 and 29~ respectively.

Now we prove (b). Recall that p( M ~(2)) contains all K(P,) (and K). Thus,
by Theorem 1, the kernel of the multiplication map:

my 2 S*HO(Y MQ), ¥) = 8*V — H(v/ M(2), ¥ ®*%
must be contained in @ S} Vs;,,. Then dimkerm, < v(g) by (i), and
X

D, 2 dim S*V — v(g)
= e(g) + (2% — De(g— 1)
=239 4397 2422297 - DEIT 4 D)2
=2%713971 4 22971 4 397!
=39712. 2972 4 2. 2/V3) 2 1 1)
= N47

with IV, the Verlinde number. Since D,, depends only on the genus of C, this result
is valid for all C. O

Theorem 2b together with Bertram’s result that D, < N,, yields:
Corollary 1. The Verlinde formula (x) holds for k = 4.
The results of Theorem 2 can be rephrased more geometrically:

Corollary 2. Let C be a Riemann surface without vanishing thetanulls. Then a quartic
vanishes on o(./" M ~(2)) iff it vanishes on all the Pryms of C and K.

Proof. We need only argue that a quartic that vanishes on all K(F,) vanishes on
©(¥ M ~(2)). This is a dimension count; indeed, by Theorem 2a, there are exactly
v(g) independent quartics that vanish on all Pryms. On the other hand, since D, = IV,
there are at least dim S*V — N, = v(g) quartics vanishing on ¢(/" M ~(2)). O

Remark. Conjecturally, the Verlinde numbers can also be computed using the repre-
sentation ring R(SU(2)), cf. [Bott]. We verify this for k = 4. For r € R(SU(2)),
define W, (r) € Z by:

r=v,r)Vy+aV,+...+a,V, mod Vs,

with V, the irreducible representation of SU(2) of dimension ¢ + 1. Then we show
that W*((VO2 + ...+ Vf)g = N,. One has:

V4. +VH =4V, +2V, + V5 and (1) = Q"' +(=D)™)/3.
Using the binomial expansion, it follows that
V@V, + V) = @7+ (=D)™)/3,
and using the binomial expansion once more, we finally get
U, (4Vy + 2V, + V;))9) = 22971 4 2207139-1 1 39=1 — N
(Zagier proved this result for all k).
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