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Mathematisch Instituut, R.U.U., Budapestlaan 6, NL-3584 CD Utrecht, The Netherlands

Introduction

Let M, be the moduli space of curves of genus g and let 4, be the moduli
space of principally polarized Abelian varieties of dimension g. The morphism

Jjt M- A,
given by
% — J(¥)=Jacobian of ¥

is injective (on geometrical points, Torelli’s theorem) and the Schottky problem
is to find equations or characterizations of the locus j(M,) or of J,, its closure
in 4,. (Note that dimM,=3g—3 (g=2) and dimAg=%g(g+1).)

In case we work over the complex number field the quasi projective variety
A, is a Zariski open subset of its Satake compactification Zg:

A,=Proj(A(I})

where A(I}) is the graded ring generated by Siegel modular forms on I
=Sp(2g,Z). A solution of the Schottky problem would be a set of Siegel
modular forms which generate the ideal of the variety fg, the closure of J, in
A,.

) The goal of this paper is to give “explicitly” an ideal S(I;) of A(I;) whose
zero locus S, contains J, as an irreducible component.

In case g=4 this ideal, which is then generated by one element, was given
by Schottky [S]. It was shown by Igusa [I3] (see also Freitag [Fr1]) that S, is
irreducible, which gave a solution to the Schottky problem for g=4. For g=5
a set of Siegel modular forms which define a subset of 4, having J, as an
irreducible component has been given by Accola [A]. These Siegel modular
forms are elements of the ideal S(I7).

The ideal S(I',) is defined using the Schottky-Jung relations between the

values of the theta constants for a Jacobian and those of its Prym varieties. To
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prove that J is a component of S we use an induction argument (with respect
to g). This 1s suggested by the fact that A =4, uA _, and J, r\Ag 1= Jg 1
Moreover we show (in Sect.3) that S mA 1<:Sg 1- However we do not
intersect with the boundary Ag , of A but w1th the boundary of A%, the blow
up of A along its boundary. This 1dea is already implicit in the paper of
Schottky [S], §11, see also Frobenius [Fro], §14. For technical reasons we
work on finite coverings of Ag. In the last section we will prove some facts on
theta relations and their consequences for the structure of S(I",).

Recently there has been much progress on the characterization of Jacobians
by differential equations, i.e. by polynomials in the theta constants and their
derivatives. In [A-DeC] Arbarello and De Concini gave a set of such equa-
tions defining J—g Moreover, the Novikov Hypothesis which states that a theta
function satisfying the Kadomtsev-Petviasvili (K-P) (differential) equation is the
theta function of a Jacobian, was proved by T. Shiota (Harvard thesis). (The
K-P equation is included in the system of [A-DeC].) Mulase has also found
simple differential equations characterizing theta functions of Jacobians. The
relation between differential equations and S(I',) is not yet clear.

Notations

(0.1) We write IH, for the Siegel upper halfplane:
H, = {r: g xg complex matrix, ‘t=1, Imt>0}.
The group I, =Sp(2g, Z) acts on H, by:
M-1=(4At+B)(Ct+D)!

where M = (g g)el"g and teH,.

We define congruence subgroups of I

Fg(n)={M61;: M= ((1) (1)) mod. n}
I(n,2n)={MeI (n): diag(4'B)=diag(C'D)=0mod - 2n}.

We denote by Ag . Lesp. Ag @ 2n the Satake compactification of A,
=T, (mW\H, resp. 4, , 2m =T (n,2n)\IH,, cf. [Fr2]. The boundary A of
A s 15 a dlSjOlnt union of a finite number of copies of 4, ,, with 0<k<g—1
each of these is called a boundary component of A on

(0.2) A Siegel modular form on a subgroup I'cIl,, g=2, is a holomorphic
function f: IH,— € which satisfies:

f(M-1t)=det(Ct+ D) (1)
for all MeI" (with components 4, B, C, D) and k is called the weight of f.
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(0.3) We define the theta functions (with half integral characteristics):

g I £ e ! £ ¢
0 [s’] (1,2)=) expmi [ (m+§) T (m+§) +2 (m+§) (z+~2~)]
where we sum over meZ®, where teld,, zeC*® and ¢ ¢€Z® have all their

components in {0, 1}, in fact it is often convenient to write ¢, &'e(Z/2), and add

the [Z] as elements of (Z/2)?%. Note that

0|5 —a=-vo]]wa.

hence there are 28~ !(2841) even (i.e. ‘e’ =0) and 28~ '(28—1) odd theta func-
tions.

(0.4) The theta constants [j] (z,0), 07 [Z](r, 0) and 6% [2](1, 0) are Sicgel
modular forms of weight 3, 1 and 2 resp. on the groups I,(4,8), I.(2,4) and
I,(2) resp. (use [12], V.1, Cor. to Th. 2).

(0.5) Let X, be the Abelian variety €3/{It) where we divide out the lattice
generated by the columns of the identity matrix and those of 7. Line bundles
on X, can be described by automorphy factors (cf. [12], Chap.1l, [M3],
Chap. 1). The automorphy factor

e(r,z)=exp—mi(A A +2'Vz)
where A=1 A"+ 1"e{I 1), defines symmetric line bundle L_ (i.e. i* L~ L, where 1
: X—>X with 1(z)=—2z) on X, and (X,, L,} is a principally polarized Abelian
0
variety. The theta function 6 [O] (t,z) corresponds to the (up to a scalar

multiple unique) global section of L,. The other 22¢—1 symmetric line bundles
on X, algebraically equivalent with L_, are defined by the automorphy factor

X [5’] (A) - e,(t, 2), where:
X [2] (A)=expri(Ad e—"1"¢).

The corresponding line bundles are denoted by M [j’]’ 0 [s,] (t, z) corresponds
to a global section of M [:/]

(0.6) Let € be a curve (in this paper ¥ is in fact a compact Riemann surface)
and let D be a divisor on %. Then we write [ D] for the linear equivalence class
of D and we write h°([D]) for dim H°(%, 0,(D)).

(1.1) We recall some facts from the theory of Prym varieties. Let € be a curve
of genus g, g=1, then ¥ admits an étale covering of degree two n: ¥ —»%, and
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the genus of € is 2g— 1. The Jacobian of @ is isogeneous to a product J(€) x P,
where J(%) is the Jacobian of € and P is a principally polarized Abelian
variety of dimension g—1, the Prym variety.

(1.2) Let t,elH, be a period matrix of J(%). Then there exists an étale
covering of degree two of ¥ such that the Prym variety has a period matrix
n,_,;€H,_, which satisfies the following equations for all ¢, &'e(Z/2)* -1

oot Jeaoofs Yoo

where AeC, 140, is a constant independent of ¢, &'e(Z/2)f~'. For proofs see:
[S-31, [F-R], (also [R-F], Chap. VI). [Fa], form. (80) and [M2], p. 340.

(1.3) The theta constants 62 [:,](n,O), nelH, ,, are modular forms on

I;_(2,4), and they define a map:
0,: Ag—l,(2,4)=I;—1(23 4)\IHg-1""IPN

given by: Hz(n)z(...: 0? [S](n,O): ), where ‘ee’=0, N+1=28"2(28-141)

and where we ordered the even theta characteristics in some fixed way. (Occa-
sionally we make this ordering more explicit by writing X [2] for the coor-

dinate functions on IP.) ~

The map 0, extends to a map of the Satake compactification 4, , , 4
which we also denote by 0,. The closure of 6,(4, ;4 in By is
HZ(Ag—»l,(Z,li))‘

(1.4) Let I,_,<C[X,,...,Xy] be the ideal defining the projective variety
0,(A;_1,(2,4)- For homogeneous Fel, , we define ¢(F): H,—~C by:

o(F)(x)=F (...,e [88 g] (,0)0 [88 (1)] (7, 0), )

where telH,, and we have substituted: X[E]=9[8, 8] (1,0)9[8, (1)] (z,0).
&’ & &

By (1.2), g(F)(t)=0 if t is the period matrix of a curve. As F is homogeneous
and the theta constants are modular forms on I(4,8), the o(F) are also
modular forms on I;(4, 8).

(1.5) Let A(I,(4,8)) be the graded ring generated by the modular forms on
I,(4,8). We define S(I (4, 8)) = A([;(4, 8)) to be the ideal generated by the o(F),
Fel,_, and F homogeneous, and the conjugates of o(F) under the action of
I/I,(4,8) on A([,(4,8)). Let S, ., be the subset of A, , s defined by
S(I,(4,8)). The canonical map 4, , 4—A4, maps S, , 4 onto a set S,. Ob-
viously, J. <8,
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(1.6) Theorem. Let g=2. Then fg, the closure of J, in /Ig, is an irreducible
component of S,.

(1.7)  Remark. We can define the ideal S(I}), mentioned in the introduction, to
be the ideal of A(I}) generated by the elements of §(I;(4, 8)) invariant under the
action of I /I,(4, 8) on S(I;(4, 8)).

(1.8) Remark. For g<3 the theorem follows from (1.5), as J,=S5,=4, for g
=2,3. This will give the starting point for the induction argument.

(1.9) For technical reasons it is easier to work on Zg g» the Satake com-
pactification of 4, =L, (8)\IH,. As I(8)<=I.(4,8), the o(F) are also modular
forms on I(8). Let S, be_the subset of Ag’8 which they define. (Obviously,
S, g is the inverse 1mage of S, under the canonical map 4, ;—4,.)

(1.10) Let Af 4 be the monoidal transform of A _g along its boundary, and let
B: A¥ 8—>Ag 8 be the projection map. If 4,_, 4 cAg’8 is a boundary component
and meA,_, 4 then f~'(n) is the Abelian variety e~ 1/8{I =y ([11], p. 249).

Let S be the intersection of A4, g and S g in Ag g and let S¥ . be the
closure of g~ l(Sg g) In AFg, ie. SFg is the strict transform of S 8- Lhe
following proposition will be proved in Sect. 2:

(1.11) Proposition. Let € be a hyperelliptic curve of genus g—1, and let
neAgﬂl,8 be a period matrix of €. Then:

dim (S} g~ (m) 2.
(1.12) Lemma. Theorem (1.6) follows from Proposition (1.11).

(1.13)  Proof (of Lemma (1.12)). Let J, 3= A4, ¢ be the inverse image of J,= 4,
under the canonical map 4, — 4, (or, equivalently, J, ¢ is the image of the
moduli space of curves of genus g with level eight structure in A4, g), and let
J¥4 be the closure of J, 4 in 4F ;. Let V* be an irreducible component of 57 ¢
which contains J¥. It sufﬁces to show that dim V*<3g-3.

Let V*nf~Y(A4,_, o)=W,u...UW,, where the W, are irreducible. As every
point in B4, , ) is smooth on A%, [I1] Theorem2, p.246, and
B~ 1(Ag g isa d1v1sor on A* ¢ we have dim W,=dim V*—1 (cf. [M4], (3.28)).
Hence it suffices to show:

dim W,;<3g—4 for some i.

As Jfgc V* there is a k such that J,_; <= B(W,). From Proposition (1. 14)
to be proved in Sect.3, and an 1nduct10n hypothesis it follows that J,

=pW.

(1.14) Proposition. Let A_g-l,S be the closure of a boundary component of /Ig’S
Then:

-1,8

Sg,BmAg—l,SCSg—l,B'

(1.15) Induction hypothesis. The closure J,_, of J,_, in 4,_, is an irreducible
component of S,_;.
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(The hypothesis is true for g=4, cf. (1.8).)

(1.16) Using Proposition (1.11) to estimate the dimension of the general fiber
of W,— (W), we find

dim W, <(3(g—1)~3)+2=3g—4,
hence Lemma (1.12) is proved.

(1.17)  Remark. The intersection of JF, the closuré of J, in A4¥, with the
boundary of 4}, was studied by Namikawa [N].

(2.0) In this section we prove Proposition (1.11). First we give a basic proper-
ty of A} .

(2.1) Let f be a Siegel modular form on I;(8), g=2, and let
(N)={re4d, s: f(1)=0}.
Let (_f—) be the closure of (f) in Z_&_g, and let (f)* be the closure of (f) in A%,
i.e. (f)* is the strict transform of (f).
(22) Let

f@)= Y Oy, 2) &

k=kg

where {=exp2niw/8, 6, (r,z)%0 and

2 )

T=

'z ow

where nelH,_;, welH,, and zeC#~ !, be the Fourier-Jacobi series of f. The

functions z—8,(mn, 8z) are classical theta functions of order 16k, ie. they cor-
respond to global sections of the line bundle I}¢* on X .

(2.3) From Igusa’s study of the blow up we have [11]:

Let nemnAg_l,g, where 4,_, 5 is a boundary component of Zg’s. Then
the intersection of (f)* and the Abelian variety p~!(n)=C8~1/8{In) is the
divisor of the theta function 6, (r, z) on p~'(n).

0
(24) Lemma. The Fourier-Jacobi series of a theta constant 0 [8, 6] (z,0),
SeZ/2. e, ¢ e(Z/2F !, 'ee’ =0, is given by: €

6 [j g] (z,0)=0 [j] (. 0)+2§1(— 16 [j] (r, n 2) 7.

Proof. Substituting for 7 the matrix given above in the power series defining
the theta constants we find:
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0 [j’ g] (z, O)=(§")expni [t(m+§) T <m+§)

+2r(m+8) n +n2w+2t(m+8) 6I+ 5]
pa— Z — ——
2 2)27"

where we sum over (m, n)eZ®~ ! x Z. From this the lemma easily follows.

If Fel, ,=C[X,,...,Xy], and F is homogeneous then the modular form
a(F) was obtained by substituting:

Xm=e[§ g] (r,O)O[j ?](1,0).

(2.5) Lemma. Let ne(a(F))nA,_, g, where A,_; g is a boundary component of
A, g Then the intersection (6(F))* n\f~'(r) is contained in the divisor of the
theta function O:

0p(2) = [%] ; ;ﬁ . ( 02 [:77] (n,0), ) 0? [88] (n, 2).

Proof. From Lemma (2.4) we have:
o [j g] (2.0)6 [j (1)] (2, 0)=67 [8’9] (n,0)— 462 [5] (m,2) E8 + 0(&1°).

Substitute this in F and expand it in a power series in {. As Fel,_, the
constant term vanishes and the lemma follows by applying (2.3).
To find S} 3N B ~1(n) we determine the C-vector space spanned by the 0.

(2.6) Let neld, , and let I'=I(X 127, ie I is the C-vector space of theta
functions with functional equation:

0(z+2)=e}(m, 2) B(2).

Then dimI'=2¢-' and a basis for I is given by the 2¢~! theta functions ([12],
Chap. II):

(2

Oo](m, 2): =0 [ o] Qm27)  (ce(@/2F-Y).

(2.7) Lemma. The even theta functions 0> [8/] (m, 2) (i.e. ‘e &' =0) span the vector
space I. £

Proof. The relation between the 6> [8,] and the basis functions @[o] is given
by ([12], Chap. IV, Th.2): &

0* [ @ a=E (-1 BLo+2) (. 0 01T .2),
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& . . . .
where we sum over all 6. As 62 1, z) is not identically zero as function of z,
g y

at least one of the ®[¢](z,0) is not zero. Using this fact and the following
formula, derived from the one above, the lemma follows:

28(O[c+¢](1,0)0[c] (1, 2)+ O[] (z,000[0c +¢] (1, 2))
=23 (-0 ||

where we sum over all &’ such that ‘¢¢' =0, and we took teH,.
(2.9) Let
62
I},O={9el": 0(0)=0, 52,77, ———(0)=0 for all 1<1]<g—l}

0
Note that 6(z)=0(~—z) for all ferI, hence B_zq(o)=0’ all i.

(2.10) Proposition. Let zelH, ;, and assume that 0,(r) is a smooth point of
8,(A,_,(2,4)- Then the subspace of I' spanned by the 0, Fel is Iyo-

g—12

Proof. First we show that 6gel;,. As Fel,_,, substituting z=0 in 6, and
applying Euler’s relation we find 6,(n,0)=0. Differentiating the function F(m)

=F( 62[]m(» ) which is zero for all nelH
find:

1> With respect to n;; we

592[ ]
( 92[;](nxnp.) —2(,0),

ij

a” (9%

From the Heat equations:

o] =]

27i(l +5ij)—an—ij—(7t, z)=~a—Z-i—é—z;—(7t, z)
and ‘e¢' =0 we find:
002[8] 6202[8]
. g _ g
2mi(1 49, o, (=, 0)= 52,07, (n,0),

hence 6 r€loo.
As 8,(m) is a smooth point of 6,(4,_,, @ 4)) we have in particular that the
following 26-2(2¢~! +1) x 1 g(g— 1)+ 1 matrix has maximal rank:

€
(62[Z](R,O)”.ai;Ej](n,Oy.).

Using the Heat equations again we find that dim Ij,=dim ' —(1 +3g(g—1)).
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On the other hand, if 0,(n) is a smooth point of 0,(4,_; (, 4) the linear

forms: oF

where Fel, ,, F homogeneous, define the (projective) tangent space to
0,(4,_1,(2,4) =By which has (linear) dimension 1+4g(g—1). As the functions

6? [:',] (m, z), 'e¢’ =0 span I' the proposition follows.

To apply the proposition we need the following lemma, due to R. Sasaki
[Sas]:

(2.11) Lemma. Let t€lH, be the period matrix of a hyperelliptic curve. Then
0,(v) is a smooth point of 8,(A, (5, 4)-

We use the results obtained thus far to prove Proposition (1.11).
(2.12) Proof (of Proposition (1.11)). As we have seen:
Sten B m)c{zef~ (n): 0(z)=0, all Bel}},
where 7 is the period matrix of a hyperelliptic curve €. The projection map
BN (m)=C* 1B my > T KT m)y =J(¥)
is finite, hence it suffices to show:
dim{zeJ(¥): 0(z)=0, all Oel},} <2.

Note that J(%)=Pic®(%), where Pic®(%) is the group of divisor classes of
degree zero modulo linear equivalence. For convenience sake we let the genus
of & be equal to g. Let

O ={aePict~1(%): h°(x)=1}

where Pict~ (%) is the algebraic variety isomorphic to J(%) which parametrizes
divisor classes of degree g—1 modulo linear equivalence. Then @ is a divisor
on Pict~ (%), and its singular points are:

Sing © = {aePict~1(%): h°(x)=2}.
For aePict (%) we define:

0,={zeJ(6)=Pic’(%): h°(z+xu)=1},
then O, is the zero locus of the theta function 6 [g] (m, z—u,), for some u,eCs.

0 0 .
One can verify that the zero locus of f,(z)=0 [O] (m,z—u)0 [ 0] (m,z+u,) is 6,

U6y _,, where K is the canonical divisor class of €, and that f,eI. Moreover,
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if xeSing @, then fel;,, and f,(z)=0 if and only if: i°(z+0)=1 or h°(z+K
—a)=h(—z+a)=1.
We conclude that the following lemma proves Proposition (1.11):

(2.13) Lemma. Let € be a hyperelliptic curve of genus g. Let zeJ(%) be a
divisor class of degree zero and assume:

f(2)=0  for all aeSing @.
Then z=[P—Q] for some P,Qc%.

Proof (of Lemma (2.13)). For g<2 there is nothing to prove, so assume g=3.
Let [D]ePic®(%) and write deg[D]=[D,—D_], where we choose D,,D_
effective and such that deg D, =deg D _ is minimal. It suffices to show:

If degD, =2, then there is an aeSing @ such that h°([D]+a)=h°(—[D]
+o)=0.

Let h be the divisor class of degree 2 on € with h°(h)=2. Assume degD
=r22, then h°(h+[D])=0, because else h+[D]=[P+ Q] for some P,Qe%. As
h=[0+Q'] for a Q'e¥ we find [D]=[P—Q’], hence degD_ =1 in contradic-
tion with our assumption.

By Riemann-Roch: h°(K —h—[D])=g—3. So if g=3 take a=h. For g>3
there is a Zariski open subset U = @®~ such that for EeU we have: h®(K —(h
+[D+E]))=0. The same argument for —D gives an U'<%®~? such that for
E'eU’ we have h°(K—(h+[—D+E'])=0, hence for EeUnU’ we find: a=h
+[E]leSing @, h°(K—a—[D])=h°(@+[D])=0 and h°(x—[D])=0 which
proves the lemma.

(2.14) Remark. G. Welters [We] recently generalized (2.13) to non hyper-
elliptic curves.

(3.0) In this section we prove Proposition (1.14). The technical result which
we need is Lemma (3.8), to prove it we recall some well known facts.

(3.1) Let X be an Abelian variety of dimension g. A symmetric sheaf on X is
called totally symmetric if e, the function on the two torsion points of X with
values in {—1,1} associated to L, [M1] §2, is trivial. Let L be a totally
symmetric sheaf with dim H°(X, L)=2%. The theta group of L, G(L), is isomor-
phic to the Heisenberg group H(2), which, as a set, is just C*x(Z/2)
x Hom(Z/2, C*)¢ with multiplication:

(&, x, x*)- (s, y, y*)=(t s y*(x), x + y, x* + y*).

A theta structure is an isomorphism a: G(L)— H(2), which is the identity on
the center €C* of both groups (in this case any theta structure is symmetric).
With the definitions 4, (, 4 is the moduli space of triples (X, L, o).

The group G(L), resp. H(2), has a linear representation U’, resp. U, on
H°(X, L) resp. on the € vector space of functions (Z/2)*—C, i.e. on C¥*!
where M+1=2% Given a theta structure o, we get equivalent irreducible
representations U'oa! and U of H(2), hence by Schur's Lemma o defines an,
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up to scalar multiple unique, isomorphism ¢, : H°(X, L)-»C**!. In particular,
it defines a canonical map ¢,: X —1IP,,, which gives a map:

@: A, 4~ by O:(X,L,2)-,0),

where 0e X is the identity element. We always take L=1%2, and the map @ is
defined by the theta constants, cf. (2.6):

@: L2, 4\H,»Py, O()=(...: O[c](z,0):...).

(3.2) Let G be the group of automorphisms of H(2) inducing the identity on
the center C* of H(2). Then obviously G acts transitively and faithfully on the
set of symmetric theta structures by g-a:=goa. Hence G acts on 4, , 4 by
g (X,L,o)y=(X,L,g-a).

The irreducible representations U and Uog of H(2) (geG) are equivalent,
hence by Schur’s Lemma there is a p(g)eGI(M+1,C) (unique upto scalar
multiple) such that:

p(@U(x)p(g)~'=U(g-x) for all xeH(2).

The map p: G—GI(M +1, ) defines a projective representation of G and, up
to scalar multiple, we have: p(g)®,=9®,.,, for all theta structures «. In particu-
lar, p(2) O(X,L,x)=0O(X, L, g- ), so @ is a G equivariant map.

According to [G] or [W] there is an exact sequence:

0-IF28—»G - Sp(2g,IF,) - 1

where IF38~ H(2)/C* is the group of inner automorphisms of H(2). The ele-
ments p(g), for gelF28— {0} =G have, in PGI(M +1, ), order two, hence they
have two eigenspaces in IP,,.

(3.3) Lemma. The 2(22¢—1) eigenspaces of the projective transformations p(g),
g as above, are permuted transitively by the projective transformations p(h), heG.

Proof. As IF2¢8 is a normal subgroup of G it is obvious that the eigenspaces of
the p(g) are permuted by the p(h). If §=(t, x, x*)e H(2) is such that § mod C*
=geH(2)/C* then we can take p(g)=U(t, x,x*). Let h=(s,y, y*)eH(2) with
y¥(x): x*(y)= —1, then p(h) permutes the two eigenspaces of p(g). The group G/
IF38~Sp(2g,1F,) acts as group of automorphisms on H(2)/C ~IF32. If x, yelF3*
— {0}, there is a heSp(2g,TF,) such that hx=y. The images of the eigenspaces
of p(x) under p(h) are the eigenspaces of p(y). This proves the lemma.

(3.4) Lemma. The Satake compactification Eg,(zv‘t) of Ag 2.4 has 2(2%8—1)
boundary components which are isomorphic to A,_; (3.4,

Proof. The proof is a computation similar to the example in [Sat].

(3.5 Lemma. Let V<IP, be an eigenspace of p(g), with gelF2¥—{0}<=G.
Then:

Ve @(Zg,(l,lt)): @(Ag— 1,(2,4))‘
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Proof. The image of a boundary component A, _; 4 of /Ig’(z"” can be
obtained as the image of the map &’:

it 0
0 A, 1.4~ Fy, O, )=lmO (O . ),
g—1

where we take the limit of t—» 00, telR. From the definition of @[g] it follows
that @©[c](r,0)=0[0,1(it,0)0[0,_,](r,_;,0), where t is as above and ¢
=(0,,0,_,)€L/2 x(Z/2¢~t It is easy to see that lim@[0](it,0)=1 and
lim ©[1](it,0)=0, hence @'(4,_, (2, 4) is contained in the linear subspace V<
P, defined by X, _,;=0 for all 03,16(1/2)8'1. Note that ¥ is an eigenspace
of the element p(g)=U(t, 0, x*), where x*(a,, p,_;)=(—1)"". Moreover, the map
©' is just the canonical map © on A, _, , 4 to I, > V(M'=28""1-1).

According to formula (1) below, @[l1o, ,](z,0)=0 (all o¢) implies

!
o[a :] (1,0)=0, for all weZ/2, all &&e(Z/2F~". Hence by formula (2):

Olpl(t,2)O[p+(,8](z,z)=0 for all zeC8 As the @(s) are not identically
zero, this is impossible, hence VN @(A4, (, 4)=0 and VN O(4, , ,) consists of
boundary points.

The group G acts transitively on the eigenspaces and @ is G equivariant.
As each eigenspace is spanned by a boundary component the lemma is proven.

(3.6) We return to the map 6,: A, , 4,—~IBy. To apply Lemma (3.5) we need
the following (equivalent) formulas ([R-F], Cor. IT1A 2.3 or [12], VI.1, Th. 2):

1 o [f] (2,0)0 [2] (t,22)=Y (= 1) O[0] (v, 2) O [0 +¢] (1, 2),

@) 2000162 OLp+:1(52)=Y (~1)** 0 [j] (2,0)0 [ﬁ] (,22)

where we sum over all ¢ resp. all ¢ in (Z/2)8. (Note that 6 [j] (z,0)=0 if ‘e¢

#+0. The equalities are between global sections of 2* M [8,] ~LQL(L~L? 2).)
3

These formulas show that the following diagram is commutative (substitute
z=01in (1)):

- (2]

Ay By

R l“’
Iby
where ¥ is the second Veronese map, i.e. the canonical map 1Py, —IPH(IP,,

Op,,(2)), with respect to the basis of quadratic polynomials given by formula

(1)
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(3.7) Definition. Let W <IP, be the linear subspace defined by:

X 1.,=0 foralleég (Z/2F ! with'ee =1,

15']
Xr16+4=0 and X 0..=X0:+ all ¢ & withee =0.
Os’] 08/] ls’]

(3.8) Lemma. Wn0,(A4, ; 4)=0,(A,_, .4) Where A,_, ;4 is the Satake
compactification of a boundary component A, _, ; 4 of Eg,(2,4)‘

Proof. According to Lemma (3.5) and its proof, the subspace V 1P, defined by
X1y =0 for all o, €(Z/2)* ", intersects (4, , 4) in the closure of a bound-
ary component. Using formulas (1) and (2) the lemma follows.

By the definition of S, g, the following lemma implies Proposition (1.14):
(39) Lemma. S, , 5N A, | 48, 145

Proof. To obtain a suitable set of equations defining S,_; ; 5 =4, ; 4.5 We
use Lemma (3.8) with g replaced by g—1. Let I, ,<C[X,,...,Xy] (N+1
=2"%(26~'+1)) be the ideal generated by I, , (the ideal defining
0,(4,_ (2.4) in IRy) and the ideal of W<IPy. Then I,_, defines, set theoreti-
cally, the variety 0,(4,_, ; )cWclB,.

In particular, if we substitute:

Xi1oa=Xe1.1=0
is’] (l)e']
0 ¢ 0 ¢
Xoe1=Xe=0]o ] E-r00[] §]E0

’

in the polynomials Fel, , we obtain a set of Siegel modular forms on
I 1 (4,8 Which, together with their conjugates under I,_,, define the Schottky
locus §g_1’(4’8_) in A,y 4.8

Let 1, €8, 45N A1 .5 then

lim o(F) () =lim F ( 0 [; g] (z,0)0 [f (1)] (z,0), ) 0,

0

for all Fel,_, and teH, is as in the proof of (3.5). As lim@ [8, ](r, 0)=0 if
0 0

=t and imo [} ] 0)=0[! ], 1.0 @ oez2 none@r we

find that limo(F) is one of the Siegel modular forms on I_,(4,8) defined
above. Using that I, _,(4,8)<TI,(4,8) we conclude that t,_; in fact satisfies all
equations for S, _; ., g, given above, which proves the lemma.

(40) In this section we study the ideal I, of relations between the Siegel
modular forms 6* [8,]. We give a description of all quadratic relations and we
€

show that the Siegel modular form ¢(F) is identically zero if F is such a
quadratic relation.
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The only other relations which are explicitly known are obtained from
. .. . . & .
rationalizing quartic relations between the 6 [8,]. It is well known that not all

o(F) obtained from these relations are identically zero, in fact Schottky’s
relation is of this type. We describe some of these quartic relations. R. Salvati
Manni has recently shown that we have in fact found all the quartic relations

& . .
between the 9[ ,}’s. It is not known whether the ideal of relations between the
3

el . . .
0 [e’] is generated by quartic relations.

(41) We use the action of I'/I,(2,4) on the 6° [8,](1)::62 [:/] (r,0) to find
€

suitable generators for the quadratic relations. Let

G(1)=Y 1,6 [2] (r) 02 [Z] (¥)

where 4,eC, be a quadratic relation (i.e. G(r)=0 for all telH,). Then we can

write:
G=) G,
Z (a")

where we sum over all (U,)E(Z/Z)Zg and
g

Geoy=The 7] ]

where we sum over those i’s for which:

()= (2)
gtn) \o')
(42) Lemma. Let G=Y G(,, ) be a quadratic relation. Then G(,, ) is a quadratic

relation. ’

Proof. Let xeZ®, with components x;e{0, 2}, let

I B(x))

M= (0 i

be the 2gx2g matrix with B(x);=0 if i#j and B(x);=x;. Then
M(x)eSp(2g, Z) and

0 [z] (M(x) 1) =(—1)>*-c- 67 [:‘] (¥)

where ¢ is independent of [:,] ([12], p. 176, p. 49). Replacing M(x) by ‘M(x) we

find (—1)*¢ in stead of (—1)™% From this the lemma easily follows.
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(4.3) Lemma. Let G(a) be a quadratic relation and assume that (;)4:0. Then
there exists an M eI such that:
G(a’)(M 7)=Gy(1).

B
%

where G, is a quadratic relation with ﬁz( ), p'=0and p"=(1,0,...,0)e(Z/2):.

Proof. The group I acts non-linearly on the [s] but it acts linearly and

transitively on the (G,)E(Z/?.)zf"—{O}, in fact I/[,(2)~Sp(2g,IF,) acts. Choos-
o

ing M~'el such that M~! (:,)= B and using the transformation formula

again ([12], p. 176), the lemma is proved.

As a consequence of the lemmas we only have to study the quadratic
relations of type G, and G;, where «=0 and f is as in Lemma (4.3). First we
study the G,’s. To obtain relations of this type we use formula (1), (3.6).

(4.4) Example. Let g=1. From formula (1) we have:
62 [8]:@2[0]+@2[1], 62 [é] —20[0]0[1] and

02 [?]:@2[0]—@2[1].

Hence we find the relation:

e i o

(4.5) Definition. Let T, be the C-vector space of Siegel modular forms of
weight two on I(2) spanned by the * [Z]

Using only formula (1) we get the estimate:
(4.6) Lemma. dim T,<(25+1) (25! +1)/3.

Proof. Using formula (1) it is sufficient to show that the dimension of the
vector space spanned by the homogeneous polynomials PES,] of degree 4 in 28
variables X : ¢

P[5]=Z(—1)‘65’XUXG+E (8, 8/, O_E(Z/z)g’ t88,=0)

is less then or equal to (28+1) (28! +1)/3.
Let H be the subgroup of the Heisenberg group H(2):
H={(t x,x*eH(Q2): t*=1}.
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The group H has a linear representation on C[..., X, ...], where oe(Z/2),
defined by:

R(t,x, x*) X =t-x*(o+x)- X, ,

x*

An easy computation shows:

R{t,x, x*) Py =12 - (—1)** . x*(¢) - P-,.

(6%, 3 By =2 (=1 - x*(e) - B

In particular, the P[zej’s are invariant under the action of H. We define:
R=) X?
P=Y X2XZ,, for pe(Z/2) -0,

PT:ZXaXd+an'+rXo'+p+t for T={0,p, 1, p+1}

with a group T~(Z/2)?> =(Z/2)?, and we sum over oe(Z/2). It is easy to see that
these polynomials are linearly independent, that they are invariant under the
action of H and that they span a vector space of dimension

1425 — 1)+ (28— 1) (251 —1)/3 =(25+ 1) (25~ L +1)/3.

Conversely, if a homogeneous polynomial of degree 4 is invariant under H,
then each of its monomials is invariant under the subgroup K of H:

K={(t,x,x*)eH: x=0}.

The action of H on a K-invariant monomial will give one of the polynomials
above. From this it easily follows that they are a basis of the H-invariant
polynomials of degree 4, hence the lemma is proved.

(4.7} Remark. It is not difficult to show that we found a basis of the space of
invariant polynomials of degree 4, we find this result later in another way. The
group H acts on the C-vector space of homogeneous polynomials of degree 4,
W, through its Abelian quotient (Z/2)%¢. Hence W=@®W, where we sum over
the characters of (Z/2)*%. One can show: dim W,=(28~"+1) (25> +1)/3 for all
non trivial y (we also find this result later).

(4.8) The group K=Sp(2g,IF,)~I,/I.(2) has a linear representation i on the
C vector space of Siegel modular forms weight 2 on I(2) defined by:

(k=) f)(r)=det(Ct+ D)2 f((At+B)(Ct+D)™ 1)

where f is such a Siegel modular form and the matrix with components A, B,
C and D is a representative in I, of k. Using the transformation formula for
theta functions one finds that T, is an invariant subspace. Let p be the
representation of K on T, obtained by restricting fi.

Let Q: F7¢—JF, be a quadratic form with maximal index, (i.e. Q is zero on
a linear subspace of dimension g) and whose associated bilinear form is the
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symplectic form for K (note: char-(IF,)=2). Let 0 (2g,1F,) be the orthogonal
group of Q. This group has only one nontrivial one dimensional representation:

e 07(2gIF,)>{ -1 1}.

Let Ind¥(e) be the induced representation, according to [Fra] this representa-
tion is reducible:

Ind§«(e)=v@p

where v and p are irreducible representations of K, and dimv=(28+1)(28"!
+1)/3, dim p= (28 +1)(2¢—1)/3 and dimv@p=28"1(2¢+1).

(49) Proposition. The representation pu of K on T, is equivalent to the irreduc-
ible representation v.

(4.10) Corollary. dim T,=(2¢+1)(2¢~"' +1)/3. In particular, all linear relations

&
between the 0* [ ,]’s are consequences of formula (1).
g

(4.11) Corollary. The representation of K on the € wvector space of linear
€

relations between the 0* [ ,]’s is equivalent with the irreducible representation p.
g

In particular, the conjugates of any linear relation span the vector space of linear
relations.

For practical purposes it is often convenient to have explicit relations with
only a few nonzero coefficients. It is known that for g=1,2,3 resp. 4 the
minimal number of nonzero coefficients is 3, 4, 6 resp. 10. Hence the following
corollary can be used to derive relations with 10-28~* terms for g=5:

(4.12) Corollary. ¥ A, 0% ¢ (z,)=0 for all 1 _elH_ if and only if:
[E,] ¢ 4 g g

i (o pleenrot ] L ]eme)=o

forall 7, el ,, where /I[e]e(D.
Proof (of Corollary (4.12)). Using formula (1) we find:

0’ [2 L @=C e amern o+

H=1PE (=1 O 610 Ol o+61(2)
=0t Ry

where we sum over ce(Z/2)* and telH, ;. Hence:

L[y tee]] L]e)=2Tige Ry
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Assuming the first relation and applying Corollary (4.10) we find that the
polynomials Zl[s]QES] and ZA[E]RESJ are identically zero. Conversely, the

second relation and Corollary (4.10) also show that these polynomials are
identically zero. Hence by applying formula (1) to the first relation, we con-
clude that it also holds.

(4.13) Remark. The representation y is in fact a real representation and can be
realized on the real vector space spanned by the theta constants. These theta
constants are, up to sign, permuted and this gives a permutation representation
of K on the (real) lines spanned by them which is doubly transitive. As there is
an invariant inner product on this real vector space, these lines are thus
equiangular. Sets of equiangular lines can be described combinatorically by
two-graphs [Se] (in this case the orthogonal two graph Q% (2g,2)). These two-
graphs can also be used to find equations between the theta constants.

(4.14) Proof (of Proposition (4.9)). It is sufficient to show that u is a factor of
Ind§+(¢), because then p=v or u=p. As dimT,<(28+1)(25~!1+1)/3 it follows
that uy=v if g=3 or g=1, and for g=2 it follows by explicitly comparing the
representations.

Using Frobenius reciprocity ((u, Ind%.(e)>x = (Res(u), £>o-) it suffices to find
an feT,, f=+0, such that u(g) f=¢(g) f for all ge0*(2g,IF,).
From the transformation formula we find:

w0 [o]=r@0[)] it sena e oo

Let Q be the quadratic form on IF7¢ defined by:
Qx)=X; Xpy 1 +... +X,X,, for xelF}e.

Then @ has maximal index, its associated bilinear form is invariant under K,
and its orthogonal group is just I;(1, 2)/I,(2) (@ is in fact k). To show that the
character 4 is nontrivial, let MeI (1, 2) be the matrix with components 4, B, C
and D with A=D, B=—C and 4;;=0 unless i=j2=2, and then 4,,=1; B;, =1
and B;;=0 otherwise. It is easily verified that A(g)= —1, where g is the image

of M in I(1,2)/I,(2) (take t a diagonal matrix and use 0[8](—r;1)

=|/(7,)0 0 (t,), where t,=1,,€lH, and i is a primitive fourth root of
0 1 1 11 1

unity).
. . € .
Now that we know the linear relations between the 6* [ ,] we consider the

quadratic relations of type G, between the 92[

]. The following proposition
describes them completely.

’

(4.15) Proposition. All quadratic relations of type Gz are consequences of
formula (1). Every relation of type Gy is of the form (xx) below, and relations (x)
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and (x%) are equivalent. In particular, the vector spacd of Siegel modular forms

spanned by the 0?2 [8,] 0? [”/], with (&TH’,):B, has dimension (28~ +4+1)(28~2
+1)/3. & n &+

(*) ) /1[:,] 0* [Z] (1)=0 for all teH, _,

(x%) 21[5192[8 Z](r)ez [(1) Z]m:o for all teH,.

Proof. Let [8,] and U,] be even and assume (£+11)= B, ie e+n=0, &+n
g

g+y
0
=(1,0,...,0). Then obviously [8,], [’7}] = [0 p,],[ p’] for some
£ n 0 p 1 p

p, p'€(Z/2)!* hence every relation of type G can be written in the form (xx).
0
TO’ . ) we find that (x) holds.
g—1
Conversely, if (x) holds, then by Corollary (4.10) the polynomial:

Y iy (B (=1 O[] O +5)

Assume that (x#) holds. Substituting r=(

(ce(Z/2)r~ 1) is identically zero. Using form. (1), (%) gives:
Y /1[5'] {(O(=1)""0[0 ¢]1O[0 c+&])*— O (-1 O[1 ¢]O[1 o+&])*}

which is thus identically zero, proving the first statement of the proposition.
The other statements easily follow.

(4.16) Remark. 1t follows from Corollary (4.10) and Proposition (4.15) that the
quadratic relations between the 62 [:,] only define the image of IB, under the
Veronese map V. In case g=1,2 it is known that 4, , , =IF, (N=1,3). Hence
in these two cases the ideal of relations between the 62 [Z] will be generated

by quadratic relations. From Proposition (4.18) it will follow that o(F), Fel,_,
with g—1=1,2, is identically zero. In particular for g=2,3 we find §;=4, in
agreement with (1.8).

(4.17) For further study we need a generalization of formula (1):
0 e 0 ¢ 0 o 0 o+e
3 = __1)Yo¢
ol Jwoly de=seecofp GJeael) 75 e

where we sum over o,¢¢&e(Z/2¢, 'ee'=0, and telH,. This formula is a
specialization of Corollary II1 A 2.3 [R-F], or of [12], VL1, Theorem 2.

(4.18) Proposition. Let F be a quadratic relation between the 6* [E] Then the
Siegel modular form o(F) is identically zero. €
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Proof. If F is a relation of type G, the statement follows from Proposition
(4.15), where we take F =(x) and (+#) is then g (F). If F is of type G, then F can
be written as:

I [g Z,](T)ez [(1) i,]m:o for all zeH,.

Hence, by Proposition (4.15), the polynomial:
) i[s,] Q. (=101 0o +(0 ) (X (-1 ' O[e] O[s +(0 ¢)])

is zero, hence the polynomial

i (Zevmeoo ) oo} 9 )

{aft J 770

is also zero. Using formula (3) we find (for all zeH,, ,):

0 0 ¢ 0 0 ¢ 0 0 ¢ 0 0 ¢
”(F)zz’l[:']e[o 0 s’]g[l 0 8’]9[0 | 8’]0[1 1 e/]zo

(note that we found in fact a conjugate of o (F)).

(4.19) Finally we describe the known quartic relations between the 6 [8,]. The
monomials occuring in such a relation are: &

0 [8]9[&:‘4‘1/]0 [s+,u,]9[1(3+/1/+,u/]
& g+ g+u g+ +pu

A .
where (0>, ( ,), ('u>, (A:‘Hl,) is an isotropic subspace V of the symplectic
0/° \1 ! A+ u .
vector space IF7%, ie. ‘ui +'y 2=0. Using the action of I, on the 9[ ,] we
find: ¢

(4.20) Lemma. A quartic relation of type (4.19) is the sum of a quadratic
relation and a sum of relations which are conjugates under the action of I, of a
relation of type:

0 0 ¢ 0 0 ¢ 0 0 ¢ 0 0 ¢
(o) z'1[;]9[0 0 s']0[0 1 s/]9[1 0 s’]e[l 1 s']‘

Proof. Similar to the proof of the Lemmas 1 and 2.

The following proposition describes the relations of type (**). Its proof is
similar to the proof of Proposition (4.15) and we omit it. (Note that part of it
is in fact given in the proof of Proposition (4.18).)
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{4.21) Proposition. All quartic relations of type (4.19) are consequences of the
formula’s (1) and (3). The relations (x), (**) and (*#%) are equivalent where we
take telH H,_, and H, respectively and ¢, & €(Z/2)~>.

g—2> "¢

(Note that by Salvati Manni’s result all quartic relations are of type (4.19).)
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