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0. INTRODUCTION

In this paper we consider some examples of Siegel modular 3-folds.
These examples are all associated to certain subgroups of Sp,Z), con-
taining the principal congruence subgroup I'(8) with finite index. More
precisely we consider a subgroup, (2, 4, 8), of index 2 in the theta group
I'(4, 8) (the exact definitions are given in section 1). We use theta constants
to define an embedding of «/(2,4,8):=E,/I'(2,4,8) into P!, where
S,={reM,C)|t="7 and Imt is positive definite}. Riemann’s theta
relations show that the closure of the image is a complete intersection of
10 quadrics. This complete intersection, however is rather complicated, for
instance any resolution has 4%°=2283 (see [vG-vS]). Instead we study
three types of quotients of ./(2,4,8) (denoted X, Y, Z). The variety
/(2,4,8) is a quotient of «/(2,4,8) (denoted X, Y, Z). The variety
«/(2,4,8) is a ramified Galois cover of .o/(2, 4) with group (Z/2)"°. The
key observation is that the Satake compactification of (2, 4) is P* thus
each of the three types of quotients can be viewed as a ramified Galois
cover of P*. Again the Riemann theta relations allow us to realize them as
complete intersections, this time of four quadrics in P’.

Our main goal is to determine the Betti and Hodge numbers and the
L-functions associated to the Galois representations on H; of suitable
resolutions of these varieties. By a careful study of the rationality properties
of the exceptional fibers in the resolutions and using a computer we count
the number of points over various finite fields. Using the Weil conjectures
allow us to compute the Betti numbers and, using results of Faltings, Serre
and Livne, to determine the L-functions.
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46 VAN GEEMEN AND NYGAARD

The paper is organized as follows: In Section 1 certain results, con-
cerning theta groups and projective embeddings by theta constants, are
proved. These results are used in section 2 to associate to any 6-tuple of
distinct even theta characteristics a complete intersection of four quadrics
in P’7. Under the action of the Siegel modular group Sp,(Z) there are
3 orbits of such 6-tuples. It follows from the transformation laws for theta
constants that the varieties associated to the 6-tuples within an orbit are all
isomorphic over the cyclotomic field Q({s) and thus it suffices to consider
one 6-tuple from each orbit.

In Section 2 the 3-folds associated to the orbits are studied.

The first orbit we consider consists of 15 6-tuples, characterized by the
sum of the theta characteristics being 0. The associated 3-fold, X, has 96
ordinary double points and H* of the blow-up, X', has rank 2 with A =1,
We prove that the L-function of H; is equal to L(g,s), where g is the
unique new-form of weight 4 on I'y(8) = SL.(Z).

On the other hand the holomorphic 3-form on X’ corresponds to a
Siegel modular form, ¢ of weight 3. In fact it is the product of the six theta
constants corresponding to the 6-tuple of theta characteristics defining X
and is a cusp form for the principal congruence subgroup I'(4) = Sp,(Z).
In an appendix we sketch a computation of the Andrianov L-function of
this form, using Shintani’s and Oda’s results on the Saito-Kurokawa lift
[Sh, O]. The main result is that the form is in fact the Saito-Kurokawa lift
of the elliptic modular form g; this essentially comes down to proving
that a certain period integral is non-vanishing. We find that L(¢, s)=
Ls—1)L(g, s){(s—2). This relation between the L-functions are predicted
by the general conjecture on the Galois representation associated to a
Saito-Kurokawa lift.

We note that the Galois representation associated to the form g also
occurs in H; of the elliptic modular threefold of I'y(8). The Tate conjecture
predicts that the isomorphism between the Galois representations is
induced by an algebraic correspondence, i.e., an algebraic cycle on the
product of the two varieties. In fact J. Stienstra has explicitly exhibited such
a correspondence and later a modular interpretation of this correspondence
has been given by Ekedahl and the first author [ E-vG].

The second orbit consists of 180 6-tuples which are characterized as
being the disjoint union of an azygeous and a syzygeous 3-tuple. The 6-fold
products of theta constants are cusp forms. The singular locus of the
associated threefold, Y, consists of 16 ordinary double points and 4 conics
intersecting transversally configured in a square. We construct a resolution,
Y’, and show by similar methods that #*(Y')=4 and that the L-function
of H} is the product of two Hecke L-series. In this case the Tate conjecture
predicts the correspondence between Y’ and the triple product of an elliptic
curve with CM by the field Q(i). We explicitly construct a correspondence
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inducing an isomorphism of the H*%s. Though we were not able to deter-
mine the Andrianov L-function of the associated Siegel modular form our
computations indicate that it is a Yoshida lifting [ Yo].

Finally we consider the orbit consisting of the remaining 15 6-tuples. In
this case the associated products of theta constants are not cusp forms. The
corresponding threefold, Z, has two non-intersecting lines as its singular
locus and is birationally equivalent to ¥'xP' where V is the quartic
Fermat surface. Hence its resolution does not have any holomorphic
3-forms. In contrast with the other two examples, however, it has a holo-
morphic 2-form, A**=1. Using results of Weissauer [ We] we determine
the Galois representation on H>

Although the examples considered in this paper are of a very special
nature, we feel that they do provide an interesting testing ground for con-
jectures about the arithmetic of Siegel modular 3-folds. Also these examples
point to interesting correspondences between Siegel modular 3-folds and
other types of modular varieties.

We thank Jaap Top for assistance with the computer programming and
also the mathematics departments at the University of Chicago and the
Rijksuniversiteit Utrecht for their hispitality.

1. THETA GROUPS

Let A be an abelian variety of dimension g and let L be a symmetric
line bundle, ie, L ~i*L where i is the inversion on A, which defines a
principal polarization. The line bundle L®? is canonically determined by
the polarization (while L itself is only determined up to translation by a
point of order 2). Let s#(2n,4n) be the moduli space of principally
polarized abelian varieties, ppav’s for short, with a symmetric theta struc-
ture of level 2n (for definitions see [ Mul]). A theta structure ¢ of level 2n
on A defines an ordered basis of H(A4, L*), {8,,,} with fe(Z/2n)%. As
i*342,="9 _y 2, the subspace of even sections, H%(4, L*")*, has dimension
26 Y nf+1).

The exist canonical morphisms

s, 1 (2, 4n) - P
with m=22"1(nf+ 1)~ 1, defined by the even theta constants of level 2n:
O (A, 1) =(- 195,50V +3_4,,(0):---)

Let #,, denote the pull-back to .«(2n, 4r) of ¢(1) by this morphism.

6415314
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Over C, Z(2n,4n) ~ &, /I'(2n, 4n), with &, the Siegel upper half plane
of symmetric g x g complex matrices with positive definite imaginary part
and

I'(2n,4n)= {(g g>el“g(2n) : diag(B) = diag(C) =0 mod 4n},

where I ,(n) consists of the matrices which are = I'mod n.

Pulling back the line bundle %, to &,, its global sections can be

expressed as classical theta constants. These are defined by
O (T)= 3 exp(mi("(p+m)e(p+m)+2'(p+mym')).

pezZt

Global sections of &, are given by the 8, ((2nt), with me (1/2n) Z¢/Z%. In
the case n =1 these sections of %, are linearly independent and we denote
them by

0,(1)=0,,21), mefZ%/Z*%.

The space of global sections of %, has two natural bases: The “canonical”
basis, given by

{0,,0(47)+0_,, o41) | me} Z2#/7%}
and the “classical” basis, given by
{0, m(T) | M, m' €17%/7% x $Z7/Z % with ‘mm’ =0 mod Z}.

We denote these by 6, m= (m, m’). The relation between these bases is
easily found from the Fourier series.

LemMa 1.1. (1) Let [2] denote multiplication by 2 on the abelian
variety A. Then [21*L* = L® and the matrix with respect to the canonical
bases of the linear map [2]* : H°(A, L*") — H°(A, L*") has entries which do
not depend on the moduli of A

(i1) The matrix coefficients of the canonical map Sym>H% A, L*") —
H(A, L*) are linear combinations of the theta constants 94 4,(0) of level 4n.

Proof. See the theta relations in [ Mu2] or [I12].

For n | m, consider the canonical projection map

Tom.2n - l%(zm’ 4m) - %(2”, 4n)
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CoroLrary 12, (i) For all n,n¥, ,, %, ~ %,.
(ii) For all n,ak ,n, FE* >~ F LY 50 1t onFon~ F,® L with
RSN

Proof. (1) From the frist part of 1.1 we have a relation

9ﬂ.2n(2a) = Z cpsp‘SM{’a)

pelZ/An)®

with ae A. Since the ¢,’s do not depend on A, we get after putting a=0,
a linear relation between the theta constants, which is valid for any 4. Thus
both sides of the equation are sections of the same bundle, which proves

(i).
(i1) is proved similarly.

Next we consider certain normal subgroups of I'{2n, 4n).

LemMMmA 1.3.  The set of matrices

A B
I+2
+”<C 'A>

with B, C symmetric defines a set of coset representatives of I'(2n)/I"(4n).

Proof. The reduction map Sp(Z) — Sp(Z/4n) 1s surjective and the order
of I'(2n)/I(4n) is 252+ It is clear that the matrices above are in I'(2n)
and that modulo I'(4n) there are 222¢+ 1 of them.

Recall that Sp(Z) is generated by matrices of the following three types

. 7 . Y 0\ 0 N\
(1) <0 X) (it} (0 ,Y,,>, (1it) <_I 0).

where X is a symmetric matrix.

DeriNntTION.  We define a map s: I'(2n)/I"(4n) — Z/2 by

s(ry=Tr(A+ BC)mod 2,

where r is represented as in Lemma 1.3.

LEMMA 14. (1) For all ue Sp(Z) and all re I'(2n)/I"(4n) we have

sturu =1y =s(r).
(i1) For re I'(2n, 4n)/F(4n) we have
stry=Tr(A).
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Proof. - (1) It suffices to prove it for the generators of Sp(Z). For u a
generator of type (i) we get

sturu " )=(A+ XC)+ (AX+ XCX+X'A+ B)C

For any matrix M, Tr(M?) = Tr(M) mod 2, so Tr((XC)?) = Tr(XC) mod 2.
The diagonal coefficients of the symmetric matrix AX + X'4 are 0 mod 2
and C is symmetric. Thus Tr((AX+ X"A)C)=0mod 2. For the other
generators the argument is straightfoward.

For (ii) note that B, C are symmetric and that their diagonal entries are
0 mod 2.

PrOPOSITION 1.5. Let H be a normal subgroup of Sp,,(Z) such that
I'dn)c Hc I'(2n, 4n).
If H+# I'(2n, 4n) and I'(4n) then H is one of the following

(1) H is the subgroup of index 2 in I'(2n, 4n) which maps onto the set
of representatives of I'(2n)/I"(4n) with

diag( B) = diag(C)=0mod 2 and Tr(A4)=0mod 2.

(i1) I'(4n) has index 2 in H and H maps onto the set of representatives
with B=C=0and A=1 or 0 mod 2.

Proof. If H is such a normal subgroup then H/I'(4n) is a Sp,(Z)-stable
Z/2-subspace of I'(2n)/I'(4n) where Sp(Z)/I"(2) = Sp(Z/2) acts by conjuga-
tion. Let U be the Borel subgroup of Sp(Z/2) generated by the matrices
above of type (i) and (ii) with Y an upper triangular matrix. Then U has
an eigenvector in every stable subspace.

To find these eigenvectors in [°(2n, 4n)/I'(4n) we first conjugate a
general v, of the form given in Lemma 1.3, with a generator « of type (1).
Checking v =wuvu ~"' we find, that C'= 0 and then that 4 must be a diagonal
matrix. Taking X to be an general symmetric matrix we get A=0o0r 4=1
Conjugating with a u e U of type (ii) then shows that B, =0 for all i, j with
i+j>3. Since ve I'(2n, 4n)/I'(4n) we have B, =0. Thus any stable sub-
space contains at least one of the following elements:

(1) e: The representative with 4 =1, B,C=0

(it) f:The representative with 4A=C=0, B,=8, =1, B
otherwise

(iii) e+f

0

ij:

Let H be the subgroup of I'(2n,4n) containing I'(4n) such that
H/I'(4n)= (e). Since e is Sp(Z )-invariant, H is normal and [ H : I'(4n)] =2.
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Next we consider the subspace W spanned by the Sp(Z)-conjugates of f.
Conjugating f with a generator of type (ii) shows that W contains all
reprosentatives with 4 = C=0 and B any symmetric matrix with diagonal
entries equal to 0. Conjugating with an element of type (iii) we also get all
symmetric C’s with diagonal entries equal to 0. Next we conjugate f with
matrices which are the transpose of the type (i) generators. We then get in
the upper left block, all matrices A4 such that the sum of the diagonal
entries is 0. As s( f) =0 and f e I"'(2n, 4n), any conjugate of f has Tr(4)=0
and thus every clement in W has this property. If follows that W has
codimension | in I'(2n, 4n)/I"(4n).

If g is even then ee W. The module W is then reducible but indecom-
posable. The following are exact sequences of Sp(Z)-modules

0> W->TI12n4n)/I'(4n)—2/2 -0
0-<ed-»W—-W >0,

where W is irreducible. Thus W= {Sp(Z)(e + f)>. Hence we find only one
other normal subgroup, namely the inverse image of W, in this case.

In case g is odd I'(2n, 4n)/I'(4n)=e> @ W and W is irreducible so the
Sp(7Z )-module generated by e + f must be all of I'(2n, 4n)/I"'(4n). Hence the
only other normal subgroup H is the inverse image of W.

Remark. The Sp,.(Z/2)-module I'(2n,4n)/I'(4n) is in fact isomorphic
to A’V where V is the standard representation of Sp,,(Z/2). The
isomorphism is given by

r—A,. e, ne;

iy €i ivgtByene+Che  ne

where r is in the form above and {e,, e,, .} is a symplectic basis.

DeFmnITiON.  Let I'(n, 2n, 4n) denote the unique normal subgroup of
Sp..(Z) with index 2 in I'(2n, 4n) and containing /"(4n). Thus I'(n, 2n, 4n)
consists of the matrices 7+ 2n({ 3) in I'(2n) such that

(1) diag(B)=diag(C)=0 mod 2
(i) Tr(A)=0 mod 2
Remarks. 1. I'(2,4)=1(1,2,4)if and only if g is odd. Indeed for any

g —1lisin I'(2,4) but not in I'(4). Since —1I,, =1I,,+2diag(—1,, —1,)
we have —1,,el,(1,2,4) if and only if Tr(—/,,)=0 mod 2, ie., if and
only if g is even.

2. If g=1 one has I'(n,2n, 4n)=1I(4n) for every n. This follows
from a computation of the indices of these groups in SL,(Z).
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THEOREM 1.6. (i) The line bundles #,, and n}, ,, %, are isomorphic if
and only if n is even.

(i) Assume n is odd. Then there exists a non-trivial line bundle £ on
<A,(4n, 8n) with &>~ O such that 1}, 5, %, ~ F0u ® &L

(i1) Assume n is odd. Let (2n,4n,8n) denote the unramified
2:1 cover of <Z(4n,8n) defined by #. Then over C, ./(2n,4n,8n)~
&,/I'(2n, 4n, 8n) so the map from S, to projective space defined by the
global sections of either #,, or #,, factors over <,(2n, 4n, 8n) but not over
A/, (4n, 8n).

Proof. We first give the proof in the case where the ground field is C.

By Corollary 1.2(ii) we have n%,,, %, ~ %,®% with ¥>~(¢. Put
F(7) = 0,0(2n7)/0o(4n7) and Q(M) = F,(M<)/F,(t) for M e I'(4n, 8n).

Since fyo(2n7) defines a global section of =¥, ,, %, and #(4n7) a global
section of #,, we have & ~ ¢ if and only if Q(M) =1 for all M e I'(4n, 8n).
Now #?~( so Q:I'(4n,8n)~ { +1} and hence ker Q is a normal sub-
group of index at most 2. It is easy to see that ker Q contains the matrix
(2 Xy with X, =8n and all the other entries 0. In case g <2 it follows from
[Me] that I'(8n) <ker Q. By Proposition 1.5 it then follows that ker Q
contains [7(2n,4n,8n). The group [I(4n,8n)/I'(2n,4n,8n)~7/2 is
generated by the matrix

l+4n O 8n> 0
0 I 0 0
M, = ¢!
« 8n 0 1—4n+16n* 0
0 0 0 I

g—1

Note that 2aM (7) = 2M(n1) where

1+4n 0O 8n? 0

O 0 0
® 8 0 1—4n+16n> 0

0 0 0 1

Writing 1’ for nt (so F,(7)= F,(1')) an choosing for 7 a period matrix with
7,;,=0 for i>1, we get (M) =0p(2M|T},) Ogo(417 )/HAM 1) Boo(27))).

From the transformation formulas for the theta functions fy,(7) and
Boo(27) (cf. [Ko]) it follows that Q(M,)=1 if and only if M el (8)=
I'y(2,4,8). Since MjeI'(8) if and only if n is even it follows that O is
trivial if and only if » is even.

In the general case of a field k of characteristic | 2n the result follows
from the fact that the situation over C is obtained by base change from
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Z[1/2n] and that the line bundle of order 2 can not have trivial reduction
at any prime of Z[ 1/2rn]. This concludes the proof of 1.6.

From now on we assume g=2. We denote the Satake compactification
of &/(*) by &°(*).

The following proposition follows from Igusa’s results on modular forms
of genus 2.

PropPosITION 1.7.  The morphism

0,:4(2,4)— P*
extends to an isomorphism
(2,4) - P

The closure of the locus of those ppav’s which are products of two elliptic
curves (as ppav’s) consists of 10 quadrics in P*. The boundary of /%2, 4)
consists of 30 lines. These lines are the intersections of pairs of the quadrics.
Any pair of the quadrics intersect in 4 lines configured in a square. Under the
map /%2, 4) — o/°(2) the two opposing sides in a square map to the same
boundary component.

Furthermore the morphism

0,: 4(4,8)-P°
extends to an embedding
(4, 8) - P°,

Proof. The Satake compactification is the projective variety «/*(2, 4) =
Proj R(I'(2,4)) where R(I'(2,4)) is the graded ring of modular forms on
I'(2,4). We have R(I'(2,4))=C[(0,_0,)% 6] ([12, p. 397]) where @ is the
product of all the 10 non-vanishing theta constants (this is a cusp form of
weight 5 for 7'(2)). Note that the other generators have weight 2 and that
#* is in the subring generated by the other generators. Then we have
Proj R(7°(2,4)) =~ Proj R(I'(2,4))even, =~ Proj C[(0,_,6,)*] ~ Proj C[#%].
The formulas in [12, p.408] imply that C[62] is the subring of C[6,,]
generated by the elements of degree 2. Hence Proj C[6#2]=Proj C[8,,].
Since .«/*(2,4) has dimension 3 and C[@,,] is generated by the 40, s,
there are no relations among the @,’s so C[8,,] is the polynomial ring in
4 variables hence its Proj is P*.

A 2-dimensional ppav is a product of two elliptic curves of and only if its
theta divisor is reducible. This is equivalent to the vanishing of exactly one
of the 10 theta constants. The theta relations below give the connections
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with the quadrics. Since any boundary point is the limit of a family of products
of elliptic curves, each boundary component lies in one of the quadrics.

The 9 remaining theta constants on a product of two elliptic curves are
the 9 products of the 3 elliptic modular theta constants on each of the ellip-
tic curves. On the boundary where one or both of the elliptic curves
degenerate to G,, at least one of these theta constants must vanish and
hence at least 3 of the 9 products vanish. It follows that the boundary com-
ponents are characterized by the vanishing of at least 4 theta constants.

By a direct verification one finds that the union of the intersections of all
pairs of the 10 quadrics of 30 lines and each line lies on 4 of the quadrics.

The last statement follows from the fact that

%4, 8) ~ Proj R(I" (4, 8)) ~ Proj C[4,,60,] ~ Proj C[4,,].
Next we consider the morphism

045 S~ PP
defined by
Ouag(t)=0 0t 10,(t): ),

ie., defined by the 10 84, and the 4 &,,(1).
The Riemann theta relations below ([11]) imply that the image is
contained in the intersection of 10 quadrics:

Bo000 = o0 + @5, + OF, + O3,
O =g — @51 + 01, — 07,
9%010 = @(2)0 + @?61 - @%o - @%1
0%, =05 —-0% —03,+673
02100 = 2(Op00 B0 + 0 1,0,)
oo =208 o+ @y, 0,))
02,00=2(000,, + 60, 0,,)
03,10=20 0 — 60 ,,0,;)
03501 =2(B 01— 0y, 0,;)
0}, =200, — 0y 0,).
THEOREM 1.8. (i) The map @, , s, defines an embedding of </(2,4,8):=

$,/I(2,4,8) into P'3. The closure of the image is the complete intersection
of the 10 quadrics above.
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(i) The projection on the last 4 coordinates (the 8,,’s) induces the
canonical map 7%(2,4,8)— o/%(2,4)=P>*. The covering group is (Z/2)'"°
acting by changing the signs of the 10 8,,’s.

(iit) The projection on the first 10 coordinates induces the canonical
2:1 map o/°(2,4,8)— /%(4,8). The covering involution is induced by
changing simultaneously the sign of the last 4 coordinates. This involution
acts fixed point free.

Proof. We have already shown that &, ,, factors over &,/I'(2, 4, 8)
which is a 2: 1 cover of .&/(4, 8). The quadratic relations above imply that
its image 1s a 2 : 1 cover of the image of .</(4, 8) under @,. Thus (i) follows.
The others are straightforward.

Consider now a 6-tuple of distinct even theta characteristics and consider
the remaining 4. The corresponding 4 theta constants together with the
4 @’s define a map .#/(2, 4, 8) - P’ which is of course just the projection
on the appropriate coordinates from the image of @, , 5,. The closure of
the image is the complete intersection defined by the 4 corresponding theta
relations. Let I be the stabilizer of this map in I'(2, 4) then we get an
embedding S,/7I"' into the complete intersection in P’. Since the product of
all 10 theta characteristics is a modular form for I'(2), the product of the
6 theta constants is a modular form of weight 6 for I"'. If this form is a cusp
form it defines a holomorphic 3-form on every resolution of the complete
intersection.

In the next section we study these complete intersections.

2. SIEGEL MODULAR THREEFOLDS
ASSOCIATED TO PRODUCTS OF THETA CONSTANTS

The set of 6-fold products of distinct theta constants contains () =210
elements. These are all modular forms of weight 3 for 1°(4, 8).
Under the action of Sp,(Z) this set breaks into 3 orbits:

(1) An orbit consisting of 15 forms, characterized by the sum of the
theta characteristics being 0 in (Z/2)* These are all cusp forms, in fact they
are precisely the cusp forms of weight 3 for the principal congruence
subgroup I'(4).

(2) An orbit consisting of 180 forms, characterized by the set of 6
theta characteristics being the union of an asyguous and a syzyguous triple.
These are all cusp forms.

(3) Finally the remaining 15 forms from an orbit. These are not cusp
forms.



56 VAN GEEMEN AND NYGAARD

The action of Sp,(Z) on /(2, 4, 8) is defined over Q({3) and hence the
complete intersections associated to the forms in an orbit are all
isomorphic to each other over Q({;). Thus it suffices to consider one form
from each orbit.

As a representative for the orbit 1) we take the 6-tuple of theta charac-
teristics

(0100, 0110, 1000, 1001, 1100, 1111).
The remaining 4 theta constants and the @,,’s define a map
(Bovo  Pooor * Ooor0 = Ooor1 - Qg+ Op1:015:0yy) 1 S, P7

The theta relations show that the closure of the image is the complete
intersection X = P7 defined by the equations

Yi=Xi+Xi+ X3+ X3
Yi=X;—-X;+X3+X3
YI=X2+Xi-X3:-X2

Yi=Xi—-Xi-Xi+X2

ProposiTION 2.1. (i} The singular locus of X consists of 96 ordinary
double points.

(i1) The Euler characteristic of X is —32.

(1) Let X' be the blow-up of X along its singular locus. Then the
Euler number of X' is 256.

Proof. A singular point must have at least 2 of its Y coordinates equal
to 0. One finds easily that there are 96 singular points all rational over
Q({y) and that they are all ordinary double points.

The Euler characteristic can be determined from the vanishing cycle
exact sequence

0— HY(X,Q)— HY(X,, Q) V- HYX,Q) - H%X,, Q) -0
H(X,Q)=H(X,, Q) for i#3,4.

Here V is the space of vanishing cycles, in this case the Q-vectorspace
spanned by the tangent cones, so dim V=96, and X, is a general com-
plete intersection of 4 quadrics in P7. Thus 2 X)=x(X,})+96. Since
x(X,)= —128, (ii) follows.
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The Leray spectral sequence for the blow-up of the double points X’ — X
gives exact sequences of terms of low degree
0 H¥(X,Q)-HY(X,Q)- HYE Q)-> HYX,Q)- HYX', Q)—0
0- HYX,Q)-» HYX',Q)» HYE, Q)—0
HX,Q)=H(X',Q) for i#23, 4

Here E is the exceptional fiber, i.e., the union of 96 quadrics in P It
follows that y(X”) = y(X) + 288 = 256.

ProrosiTiION 2.2.  The Betti and Hodge numbers of X' are

W =ht=1

W=h’=0 h20=0,h""' =128
W=kt =128  K=1,h% =0
=2

Proof. From the Leray spectral sequence for the blow-up one finds that
h'=h>=0, and that H” is spanned by divisors so 4>°=0. The Kaehler
differential coming from P’ via Poincare residue pulls-back to a regular
3-form on X', hence #*%=1. Using this and the computation of the Euler
characteristic we get

W~ + h* =2h% — h* =254

The number of points on X defined over F;, is 13024, counted by a
computer. Since 17 =1 mod 8, all the double points as well as the rulings
on the exceptional fibers are rational. This adds 96(2p + p?), p= 17 points.
Hence we have # X'(F,;) =44032.

On the other hand #X'(F,)=1y(p)+1:(p)—t:3(p)+1(p)+t(p)=
1+ (14 p)h*—t3(p)+ p* where t,(p)=Tr(Frob,: H(X', Q,)). Here we
have used that H” is spanned by classes of divisors so Frobenius acts by
multiplication by p.

Since |1, p)| < p*°H°

(14 p(1 4+ p)h* — # X'(F ;)| < (2h —254) p*”

we have

It follows from this estimate that 4% = 128 and so #*=2 and ¢, = 50.

Next we are going to explicitly determine the semi-simplification of the
Galois representation

p: G=Gal(Q/Q) - Aut(H* (X5, Q)

We need to know the trace #,4(p) for several primes:
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LemMA 23.  Let N, denote the number of points on X over the field T,.
Then

13(p)=(1—64p+32p° + p*)—N,, p=1mod 8

p)=(1+p*)—N,, p=3,5mod 8

Lp)=(1—16p+8p>+p*)—N,, p=7mod 8

Proof. The first case was proved in the preceding proposition. In case
p=3,5mod 8§, none of the singular points are rational. Hence t4(p)=
1+ p(1+ p)k+ p*— N, where k is the difference between the multiplicities
of the eigenvalues +p and —p (remark that all of H7 is algebraic over F ”
S0 Frobf, = p?). Since all the double points and the rulings on the excep-
tional fibers in the blow-up are rational over Q({y), k¥ depends only on p
mod 8. To determine & we use the estimate on |#;( p)| as before. Computing
N,y =06818 and N,,=24192 we find k=0 in both cases and then

13(19) = 44, 15(29) = 198.

In case p=7 mod 8, 24 of the double points are rational over [, and
the rulings on the exceptional fibers are also rational. It follows that
#X'(F,)=N,—242p+p*), and t1{p)=1+p(l+p)k+p’— #X'(F,).
Computing N,; = 16088 one finds & =32 and #,(23) = —56.

Let

g£=9q 1—[ (1 — q?.n )4( 1— q4n)4 —_ ,7( 2:)4 '1(4:)4’ g= ez”’:
Then g is the unique new-form of weight 4 for I'y(8).

THEOREM 2.4. We have an identity of L-functions
L(p,s)=L(g,s)

Proof. Consider the Galois representation r, associated to the new-
form g [D]. We may assume r,: G- GL(2,Z,) and L(g,s)=L(r,,s).
Also we can consider p as a representation in GL(2, Z,). To show that the
semi-simplifications of these two representations are isomorphic we follow
the method in [L1].

The determinants of p and r, are the same. Both representations are
unramified outside 2 and if we reduce mod 2 we get representations in
GL(2,F,)=S,. The image of the two representatons is either contained in
Zj2 or is all of S;. But a surjective map G — S5, ramified only at 2, would
give rise to a quadratic extension of @, unramified outside 2, which has a
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cubic extension unramified outside the prime lying over 2. Now the quad-
ratic extensions of Q ramified only at 2 are Q[/], @[\/5} and @[ﬁ]
but none of these has a cubic extension unramified outside the prime over
2. It follows that Tr p(o)=Trr(c)=0mod 2 for all ceG. The com-
positum of all the quadratic extensions of @ unramified outside 2 is the
field Q[ \/5]. The non-trivial elements in Gal(Q[ \/E]/@) are the
frobenius elements at 3,5,7 so they certainly form a non-cubic set.
Computing the traces Tr p(frob,)=1;(p) using Lemma 2.3 we get that
Tr p(frob,) =Tr r(frob,) for these primes. By [Li, Thm.4.2], it follows
that the semi-simplifications are isomorphic.

Remarks. The threefold X has also been studied, independently and for
different reasons, by Hirzebruch [Hi]. Indeed, composing the map
X — .%2,4)=P? with the map P*— P? which squares the coordinates,
we realize X as a covering of P? with group (Z/2)’, branched over the
union of the 4 coordinate hyperplanes and the 4 hyperplanes defined by the
equations

Xo+ X\ + X+ X3=0
Xo— X, +X,— X, =0
X0+X1—X2'_X3:0

Xo— X, — X, + X,=0.

It is easy to verify that these hyperplanes form the faces of a regular
octahedron.

Let & denote the universal elliptic curve over the modular curve X(8)
and let W denote the resolution of the fiber product & x 5, &. Then W is
a threefold and the cusp form ge S,(I,(8)) gives rise to a holomorphic
3-form on W. The Galois representation r, occurs in H (W, Q,) and hence
the trivial representation occurs in H% W x X', ©,(3)). The Tate conjecture
predicts the existence of a correspondence between W and X' defined over
Q, inducing an isomorphism between the Galois representations on the
H*s. Such a correspondence has been constructed by JI. Stienstra
(unpublished) (see [E-vG] for a moduli theoretic construction of a
corresponce ). We shall briefly explain Stienstra’s construction: By Beauville
([ Be]), the universal curve & over X,(8)=P' can be realized as the family

tXYZ +s(X—Y)Z*—XY)=0,

(s:)eXy8),(X:Y:Z)eP2
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The map & — X(8) is given by (£,(X:Y:Z))—t so on the affine open
piece s=1, Z=1 we have
(X=Y)—-1+XY) 1 1

X+——Y—=.
Xy X Y

!

The fiber product & x g, € is then given by the affine equation

X+l Y l—U+i v 1
X Y U v

Changing variables we obtain an affine equation for W:
U+ Ui+ U+ U+ U, + U + U+ U =0

To construct a rational map X — W we consider the intermediate threefold
" defined by the equations

Vi=sWo(Wo— W,— W,— W)

VisW(—Wo+ W, — W,— W;)
VisW(—Wo+ W + W,— Ws)
Vi=Wi(—Wo— W, — W,+ Ws).

This is the 16-fold cover of P* ramified over the 4 pairs of opposite sides
in the regular octahedron considered in Hirzebruch’s construction.

[t i1s now straightforward to verify that the following are well-defined
dominant rational maps

d: XV, V,i=X,Y, 0<i<3, Wo=—X5, W:=X?,1<i<3

ViAW, /2 ,
,0<i<s.
+ W+ W+ W,

WV W, U:=—1+2./2
W,
For the sake of completeness we prove the following proposition.

PROPOSITION 2.5. Let I'" be the congruence subgroup defining X. Then X
is the Satake compactification of S,/I"".

Proof. Composing the map X — P’ with some 2n-tuple embedding of
P7 into PV, we see that X is embedded by modular forms on I,

The Satake compactification «7*(I"') = Proj R(I"') so we have a birational
morphism .«/*(/") — X which is an isomorphism on an open set of S,/
We show that this map is a bijection. This is clear on the open set &,/I’
by proposition 1.6. To see that it is bijective on the boundary, note that the
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covering involution of @, , 4,72, 4, 8})) over @4, 8)) ~ .o/ (4, 8) is
fixed point free, thus @,, 44, must induce a bijection between .&/*(2, 4, 8)
and its image. Since X is the quotient of this image by the finite group
I''/r'(2,4,8) and the Satake compactification oZ*(I"’) is the quotient of
/%(2,4,8) by the same group, it follows that the birational morphism
above is bijective. Since X is normal it follows from Zariski’s Main
Theorem that the map is an isomorphism.

Next we consider the orbit of 6-tuples of theta characteristics which are
unions of an azygyous and a syzygyous triple (a triple of theta charac-
teristics is azygyous if the sum of the theta characteristics in the triple is an
odd characteristic, syzygyous if it is an even characteristic). This orbit has
180 elements and the corresponding products of theta constants are cusp
forms of weight 3 for I'(4, 8). We take as a representative the 6-tuple

(0000, 0001, 0010, 0011, 1001, 1111).

The Riemann theta relations then give the complete intersection Y defined
by the equations
Y2=2(Xo X, + X, X3)

Yf=2(XOX2+X,X3)
Y§=2(X0X3+X1Xz)
Y2=2(X, X, ~ X, X,).

The Euler characteristic can be computed by viewing Y as a sequence of
four 2 : 1 coverings

LEMMma 26, #(Y)=—12.

Proof. Let Y(i)c P'*? be the threefold defined by the first i equations.
Let Q(i) = Y(i) be the branch locus of the covering Y(i) — Y(i—1) so Q({)
is the surface defined by the first i—1 equations and Y,=0. We have
A YN =2x(Y(i— 1))~ y(Q(i)). Each of the surfaces Qi) maps by a
sequence of i — 1 degree 2 coverings to the quadric in P* defined by the
right hand side of the i/ th equation. The ramification locus for each of these
2: 1 coverings can be found from the intersections of the 4 quadrics in P*.
Computing the Euler charactenstics successively we find for i=1,2,3,4
respectively x(Q(i))=4,4,8,12 and y(Y(i))=4,4,0, —12.

ProrosiTioN 2.7. (1} The singular locus of Y consists of 16 ordinary
double points and 4 plane conics intersecting transversally, configured in a
square.
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(it) A resolution Y' is obtained by first blowing up the 16 double points
and a pair of opposite sides in the square of conics and then blowing up the
strict transforms of the other pair of conics.

(iit) The fiber of m: Y’ — Y over a double point is a smooth quadric in
P*. The fibers over a point P on one of the conics are as follows:

(a) = Y (P)=P' if P is not on any of the other conics and if Pis
not one of 8 “special ponts” lying on each of the 4 conics.

(b) If P is on the intersection of two of the conics, n ~'(P) is a tree
of 3 Pls.
(c) If P is one of the special points = (P) is a tree of 2 P'’s.

(iv) The Euler characteristic of Y' is 80.

Proof. It is easy to check that a singular point must have at least 2
Y-coordinates equal to 0. One finds 16 double points

(+ \/E:O:O: iﬁ:l:l:O:O)
(+ \/——Z:O:O: iﬁ:l:~1:0:0)
(-I_-ﬂ:O:O: + \/——:5:0:0: 1:1)
(+ \/:_5:0:0: + \/510:0: 1:—1)
The other singular points are on the 4 conics defined by
Yo=Y,=Y,=Xo=X,=0
Yo=Y, =Y, =X, =X,=0
Yo=Y, =Y:=X,=X;=0
Yo=Y, =Y,=X,=X,=0.
To describe the resolution we consider the situation locally around a point
on the intersection of two of the conics e.g, P=(0:0:0:0:1:0:0:0).

On the open set of P7 where X, # 0 and ( Y3+ Y¥3)?# 16 we can put X, =1
and eliminate the other X,’s. First we get

Xlzé(Y(Z)‘*‘ Y%)
X, =3(Yi—3(Yo+ YY)
Xy=3Y3—3(Yi+TYHX,)
X, X,=4Yi-T3).
Eliminating the X,’s we get the equation

UY—VYI-WYIYi=0, *)
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where
U=(16—(Yi+ Y3)*)?+64Y? +64Y2
V=(16—(Yi+Y3)*) —64Y—64Y;
W=16(16— (Y + Y3)?).

Near P the functions U, V, W are units and hence passing to an etale
cover we can transform them away so the Eq. (*) simply becomes

Yi-Yi-riri=o.

Blowing up this hypersurface, first in the line L,: Y,=Y,=Y,=0 and
then in the strict transform of the line L,: Y,=Y,=Y,=0 we get a
smooth variety. We briefly indicate how the procedure works:

For the first blow up we put Y,=U,Y,, Y,=U,Y,. In A* with
coordinates (U,, U,, Y,, Y,) we get the equation

V- U2- Y2=0,

The fiber over the line parametrized by (Y,, Y\, Y,, Y3)=(0,0,£0) is
then given by

U= U2=12=0

so for ¢+ 0 the fiber is a smooth conic ~P' and for r=0 we get the two
lines (U,, U,, Y, Y,)=(s, +s,0,0).

Next we blow up the other line, which in the new coordinates is given
by (U, U,, Y, Y,)=1(0,0,0, ).

Taking U,=V,U,, Y,=V,U, we get the equation

Viepvio1=0

in A* with coordinates (U,, V,, V,, ¥,). The fiber is now a smooth conic
in the V', V,-plane and does not depend on the point on the line. To see
how the two lines we found earlier intersect the conic, we observe that over
the origin in A* with coordinates (Y, Y,, Y,, ¥;) we have after the two
blow ups, the two planes defined by the equation V, U, =0. The conic lies
in the plane defined by U, =0 and the two lines lie in the plane defined by
V,=0. They meet at the points where ¥, = +1, one point on each line.

The special points on L, are by definition the points where UV =0 ie,
16°+64Y3=64(4 + Y3)=0 or 64(4—Y3)=0.

In a neighborhood of the special point @ with Y, = \‘VZ we may then
write

V=(Y,— \‘Vi ) V' + higher order terms

641 33 1-3
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so Yy, Y, V, Y, are local coordinates at Q. Since Y, does not vanish at Q
neither does W' = WY and hence after an etale extension the equation for
¥ may be written as

UYZ— VY =W Y>=0o0r —VY2+ ¥Y2=0.

It is now clear that for V0 the fiber of the blow up over a point of L,
is a smooth conic and for =0 it consists of 2 lines, intersecting in one
point. The situation at the other special points is similar.

To compute the Euler characteristic of ¥’ we use the description above
and Mayer-Vietoris sequences. The 16 double points contribute 48 and the
fiber over the singular lines contribute 48 thus y(Y')= —12 + 44 4+ 48 = 80.

Next we determine the Betti and the Hodge numbers of Y.

ProrosiTiON 2.8. The Betti and Hodge numbers of Y' are
h=hnt=1
h'=h"=0 h°=0, A"'=41
h*=h*=41 hhl=1
h'=4

’

Proof. From the Leray spectral sequence for the blow up we get
h' = h%=0 and also that H? is spanned by algebraic classes so 47 =0. The
space of cusp forms of weight 3 1s in 1 — 1 correspondence with the space
of holomorphic 3-forms on the toroidal compactification and since A*° is
a birational invariant, we get #*Y=1. Using this and the Euler charac-
teristic computed above, we get A% — A’ + h*=2h" — h* =78.

The number of points on Y over the finite field F,, is 102,772. Since
41 =1 mod 8, all the double points as well as the rulings on the fibers are
rational. Hence blowing up of the 16 double points adds 16(p + 1)2—16 =
16(2p+ p*), p=41 points, All the 32 special points on the conics
in the singular locus are rational as are the 2 components in the fibers
over the special points and the 3 components in the fibers over the
4 intersection points. It follows that blowing up the conics adds 4(3p+ 1)+
322p+ 1)+ (4p—32—4)(p+1)—4p=40—4p*’, p=41 points. Hence
# Y'(Fy) =139, 344.

On the other hand since H? is spanned by divisors which are all rational
over Fy, frobenius acts by multiplication by p on H? and so we have

# Y (Fy)=14(41) + 1,(41) — 1,(41) + 1,(41) + 1,(41)
=1+ p(1+pyh* —1,(41)+ p*,  p=4l
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Since |[t:{41) < Ap?? we get (1 +p(l +p) R +pY)y— #Y(F,) <
(2h* —78) p**. This estimate gives h* =41 so h* =4 and 1,(41) = 180.

Next we want to determine the L-function of the 4-dimensional Galois
representation

p:Gal(DQ/Q)— GL(H Y, Q)

We need to know the trace of frobenius #;(p) for several primes.

PrOPOSITION 2.9. Let N,= # Y(F,) then

t(p)=(1-31p+2lp*+p")—N,,  p=1mod8
tp)=(149p=3p*+p') =N, p=3,5mod 8
t{py=(1—Tp—5p*+ p')—N,, p=7mod 8

Proof. In order to prove these formulas we need to know the
rationality properties of the exceptional fibers in the blowing up ¥’ — Y.

We first consider the isolated singularities:

The quadric surfaces over the points (iﬁ, 0,0, iﬁ, 1,1,0,0)
are given by the equations U2-Uj= +4 \/EUZ U,. Over the points
(+/-200.+/-20,0.1,1) the equations are Uj+Uj=
+4./—2U,U,. The fibers over the points (i\/i, 0,0, i\/—Z, 0,0,1,1)
have equations Uj— Uj= +4 \/EUZ U, while the fibers over
(i\/—Z, 0,0, iﬁ. 0,0, 1, —1) have equations U(2,+ Uf= +4 \/EUZ U,.

Locally around each of the 4 intersection points

P,=(0:0:0:0:1:0:0:0),
P,=(0:0:0:0:0:1:0:0),
Pi=(0:0:0:0:0:0:1:0),
P,=(0:0:0:0:0:0:0:1)
we have the following local equations
P,:
UYZ—VY2-WYIY2=0
with
U=(16—(Y2+ Y2)*) 2+ 64Y2 +64Y?2
V=(16 —(Y;+ Y3)?) —64Y —64Y3
W=16(16—(Yi+ ¥Y3)?).
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The fibers over the line Y,=Y,=Y,=0 are given by the
A+ YHUZ—(4—YH Ui=4YIU3 except over P, where we have the
extra component V4 Vi=V3

P,

Same local equations as above. The fibers over the line Y,=Y,=Y,=0
are given by the equations (4 + Y3) Ul — (4~ Y3) Ui =4Y3 U] except over
P, where we have the extra component Vi+ V= V3.

Py
UY;+VYi-WYiY3=0
with
U=(16—(Y2—Y3)*)+64Y;+64Y5
V=(16—(Y:—Y3)?)’—64Y; —64Y3
W=16(16+(Yi— Y3)?).

The fibers over the line Y,=Y,=Y,=0 are given by
4+ YH Ui+ (4—YH Ui=4Y2U;3. Over P, we have the extra compo-
nent V2—Vi="V3.

P,

Same equation as above. The fibers over the line Y=Y, =Y,=0 are
given by (4+ Y3) U2+ (4—Y3) U2=4Y3U2. Over P, we have the extra
component V§i—Vi= V3.

Let p=1 mod 8. Then everything is rational over F, and the argument
is exactly the same as in the proof of Proposition 2.8.

Next consider the case p=3 mod 8. There are 4 of the isolated double
points rational over Foo(xy/—2:0:0:+./-2:1:-1:0:0) and the
exceptional fibers have equations U3+ U? = +4 ./ —2U, U,. The discrimi-
nant is 8 which is not a square in F, so the rulings are irrational and each
fiber contributes ( p? + 1) points. Over the intersection points P, and P, all
3 components of the exceptional fibers are rational so the contribution
from each of P, and P, is 3p+ 1. Over P, and P, the components of
U%+ U?=0 are irrational so the only rational points in the fiber are those
on the conic ¥}~ V=0, thus P, and P, each contributes p + 1 rational
points. Finally each of the 4 conics in the singular locus has 2 rational
special points, the 2 solutions to 4— Y*=0. The fibers are given by
8U,=4Y3U3. The two components are irrational over F, so each special
point only contributes 1 point. It follows that

#Y'(F,)=N,— #Sing Y(F,)+4(p>+1)
+2Bp+ 1) +2(p+ 1) +8+(4p—12)(p+1).

The last term is the contribution from the smooth fibers over the 4 conics.
Since the singular locus consists of 4 4+ 4p rational points we get

#Y(F,)=N,—4p+8p°.
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Everything is rational over [, so Frobf, acts by multiplication by p® on
H*(Y', Q,). Hence the eigenvalues of Frob, are +p. Let a denote the multi-
plicity of +p and b the multiplicity of —p then a, b only depend on p
mod 8. If k=a—b then t,{p)=kp and 1,(p)=kp* thus we have the for-
mula 1;(p)=1+(k+4)p+(k—8)p*+p'—N,.

To determine k& we compute N,,=1068 so #;(11)=132—-660. Since
[132k — 660| = |t;(11)] < 4(11)*? ~ 1459 we get 3 <k <6. We have
a+b=41s0 k must be odd hence k =5 and the formula follows.

When p=35 mod 8 none of the isolated double points are rational. All
components in the fibers over the intersection points are rational. On each
of the 4 conics there are 4 rational special points but the components of the
fibers are irrational. Counting as above we get

#Y'(F,)=N,—8p—4p°.

It follows that 1;(p)=1+(k+8)p+(k—4)p”>+ p*—N,. To determine k
we compute N =84 and proceeding as above we get k =1.

Finally when p=7 mod p there are 4 rational isolated double points:
(+ ﬁ :0:0: \/5_: 1:1:0:0). The quadrics in the fibers are given by the
equations U — U= +4 ﬂUz U, hence the discriminant is 8 and the
rulings are irrational. The fibers over P, and P, have 3 rational com-
ponents and the fibers over P; and P, only have 1 rational component.
Each of the conincs have 2 rational special points and the 2 components
over a special point are both rational. It follows that

#Y'(F,)=N,+20p+8p*
This gives the formula t,(p)=1+(k—20)p+(k—8)p+p’—N,. To
determine & we compute N, =540 and proceeding as above we get k = 13.
Let y denote the Hecke character of Q[i] defined by y(p) =a where p
is a prime ideal of Z[i] not dividing 2 and « is a generator of p with
a=1mod (2 +2i). We identify y with the orresponding character of

Gal(Q/Q[]). Let y,_,, denote the Tate twist, 1.e., x,_,(p)=Nm(p) x(p).
Define a Galois representation

o' 1 G' = Gal(@/Q[i]) - GL{(Q,[i])
by o' =diag(y®, x_1,. ¥ #—1,)- We let p’ denote the restriction of p:
)
p G - GSp(H(Y', @) ®Q,[i])

with the symplectic structure defined by cup-product.
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THeEOREM 2.10. (i) The semi-simplifications of p' and o' are isomorphic.
(i) The semi-simplification of p is isomorphic to Indi(y* @y, \)).
(i) Li{p,s)=L{y% s) L{y,s—1).

Proof. We use an automorphism of Y’ to split the representation p’
into a sum of 2-dimensional representations and then as before use the
method from [Li] to identify these representations.

Let [/ ] denote the automorphism of Y defined by

(Yo: Y i Y, Y5 X Xt XS0 X))
= (Yo Y, Y dY o X, Xy Xy X)),

This clearly lifts to an automorphism of the resolution Y’ and acts by
multiplication by i on H®Y’, Q). Thus [i]? is not the identity on
HAY', Q,).

We consider the two cases:

If {i]?# —1 the subspaces ker([i]*+1) and ker([{]*—1) are
2-dimensional Galois stable subspaces of H*(Y’, Q,) and hence p itself
splits into a direct sum of 2-dimensional representations.

If [i]?= —1T (this is in fact the case that occurs though we shall not
prove this here) we consider the subspaces ker([i]—i) and ker([i]+1)
of HXY', Q,[i]) hence we may assume that Im(p' )< {(§ })| 4, De
GL,(Z,[i]}.

We shall give the proof of (i) only in the second case, the proof in the
first case is similar and easier.

Let » denote the representation of G' on ker([i] —i). The eigenvalues of
the frobenius elements F(p) at the primes p in Z[i] lying over 3 and S can
be determined from the number of points on Y’ over the fields F,, F,, Fs,
and F,;. We get —27 with multiplicity 4 for the prime 3 and for each of
the primes lying over 5 we get (1+2i)" and 5(—142i). It is clear that
ker([i]—1i) and ker([i]+ i) are isotropic subspaces and hence we can
choose a basis of eigenvectors ¢, e, for ker([{] — i) and e, ¢, forker{[i] + i)
such that {e,, e,, €3, €4} is a symplectic basis for H*(Y', Q,[i]). Assume
that H{(F(—1+2i))e; =(-1+2i)*e,. Then p'(F(—1+2))e,;=(—1—2i) ¢4
and so H(F(—1+2i))e,=5(—1%2i))e,. The determinant of r is a Hecke
character ¢ of Q[ /], unramified except at the prime over 2, taking values
in Z[i]. It follows that J factors through C* x(Z[i]},,/{ £1, £i} =
C* x Uy/U; where U,={xeZ[i]},, | x=1mod(2+2/)"}. The loga-
rithm defines a isomorphism U, ~ Z[i],,, ;, and Us/U, =~ (Z/4)%. Thus J is
a twist of either y'y,_,, or »°7,_,,. By computing traces for some other
primes we find that the twist is trivial
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By class field theory @[] has 3 quadratic extensions, ramified only at
the prime (1+ /), namely @[\ﬂ], @[\/1 +i] and @[\/1 —i]. None of
these have a cubic extension unramified outside the prime over 2. Now by
reducing modulo (1 +/)r defines a representation in GL(2, F,)~.S,. The
considerations above shows as before that ImrcZ/2 and hence
Trr(g)=0mod 1 + i for all ge G'. Again applying Theorem 4.2 of [ Li] we
get r~ @y, _,, or x*®j,_,, This proves (i), (ii), and (iii) are
straightforward consequences.

Remark. The L-function of HYY') also occurs as a factor in the
L-function of H*(Ex E x E) where E: y>=1+x* is the elliptic curve with
CM by Q[i]. The Tate conjecture then predicts the existence of a corres-
pondence between Y’ and Ex Ex E. We shall exhibit such a corre-
spondence.

Consider the genus 5 curve C given by the equations

w=1—-1r

vr=1+41*

and two copies of the elliptic curve F
pi=1+ad*
g*=1+b

We define a rational map ¢ : Cx Ex E— Y by

Y, = \/Evab Xy=1

Y, =./2thp X, =a*h?
Y,=./2taq X,=a't*
Y.=/2uab  X,=b

Mapping CxExE-—ExExE by y:((40v,1),(p, a), (g b)) ((uv, 1),
(p.a), (g, b)) we obtain a correspondence.

Consider the rational 3-form w on Y defined by dX,dX, dX,/Y,Y, Y, Y.
It 1s easy to see that this extends to a holomorphic 3-form on the resolution
Y'. Pulling back by ¢ we get ¢*w = —16((abt)*/4uva*b**pg) da db dt =
—4(t{uvpg) da db dt. The holomorphic 3-form on Ex Ex FE is given by
dx da db/ypq where x, y are the coordinates on the first copy of E. Pulling
back this 3-form by ¢ we get —4y*(dx da db/vpq) =¢*w. 1t follows that
the correspondence induces an isomorphism H*%(Y')~ H*YEx ExE).

Finally we consider the orbit of the 6-tuple

(0000, 0001, 0010, 0011, 0110, 0100).
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From the theta relations we get the complete intersection Z defined by the
equations

S=2X X5+ X, Xs)
Yi=2(XoX;— X, X,)
YI=2(XoX,— X, X;)
Yi=2(X X, + X, X5).

The Euler characteristic can be computed by viewing Z as a sequence of 4
2: 1 coverings.

LemMa 2.11. x(Z)=4

Proof. Similar to the proof of Lemma 2.6.

Next we determine the singular locus of Z and construct a resolution

7 - Z

ProrosiTiON 2.12. (1) The singular locus consists of the two non-inter-
secting lines

L:Yy,=Y,=Y,=Y,=X,=X,=0
Ly Yo=Y, =Y,=V,=X,=X;=0

(1) The blowing up of these lines, Z' is a smooth 3-fold.

() Let mn:Z'—>Z denote the blow-up. Then the restriction
n:n L)~ L, i=1,2 defines an elliptic fibration which is the universal
Sfamily of elliptic curves with level 4 structure.

(iv) x(Z')=48.

Proof. (i) This follows easily, noting that a singular point must have
at least 2 of its Y-coordinates 0 and that the 3 automorphisms defined
by

X, — X, the other X fixed
X, —iX;, X, iX, the other X fixed

Xg=» X=X, X =X+ X, L X, — X5, - X+ X,

generate all permutations of the Y-coordinates.
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(ii) Consider the open piece where X;=1. In this open affine the
equations become

4X,=Y:+ Y3
4X,=-Yi+7Y;
4X,X,=Y2+ Y]
4X, X, =Y~ Y3,
Substituting the first two equations in the last two, the 3-fold, as a sub-
variety of A® is defined by the equations
(Yi+Y)X,=Yi+ Y]
(-Y3+Y)HX,=Y2-Yi
Blowing up the line Y,=Y,=Y,=Y,=0 we get the equations
(Z3+Z) X, =2Z3+1
(=Z3+ 1) X,=Z3— 72,
where Y,=2,7,, etc.
A global model 1s given by
(Z3+2Z3) X, =(Z3+ Z3) X,
(=Z3+Z) X,=(Z5 - Z]) X,
in P? x P' with coordinates (Z,, Z,, Z,, Z;), (X,, X,). It is immediate that

the blow-up is smooth.

(i) The fiber over a point on the line parametrized by X, is the
intersection of 2 quadrics in A* so for a general X, the fiber is an elliptic
curve. To see explicitly that this family is the universal level 4 curve, recall
that an elliptic curve defined by 2 quadrics, given by binary quadratic
forms 4 and B, is the 2:1 cover of P! branching over the points
(s :t) where det(s4A +1tB)=0. In our case the branch locus is given by
(X2—52)(X3s2—1)=0 or equivalently, (s*—X3)(s?—X;?)=0. This
model is the same as the one given in [ Sh] for the universal level 4 curve.

(iv) The elliptic modular surface of level 4 is a K3 surface so the
Euler characteristic is 24 and hence the Euler characteristic of Z' is
4—-4+2x24=438.

Z is in fact birational to P! x F where F is a Fermat quartic surface in
P? defined by Zj—Z1+2Z3—Z3=0. The existence of a rational map
Z — F follows from a classical theta relation.
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PROPOSITION 2.13.  The rational map ¢ : P' x F— Z < P’, defined on a
suitable open subset by

o, 2y, 2,25, 2Z4)
=(cZy:cZy . cLy:cLy:
(Z2+ZD(—Z3+ 2D W Z3+ ZDNZE+Z) 0 1)
with ¢* =2, is birational.

Proof. One verifies directly that ¢ maps into Z and it is clear that it has
degree 1 and is dominant.

PropoOSITION 2.14.  The Betti and Hodge numbers of Z' are given by

h=ht=1
h'=h*=0
h*=h*=23
=0

h*=1, AN =21
Proof. Since Z' is a Siegel modular 3-fold it has #' =0 and so
R =R+ h* =207~ h =46,

Since Z' is birational to P’ x F we have /%% =0 and #>%= 1. The Hodge
structure on H>(F) splits over Q and all of H"! is algebraic. It follows that
the Hodge structure on H*(Z') splits over Q and so H'-'(Z'} is spanned by
algebraic classes. Hence the Galois representation on H}(Z') is a direct
sum of a 2-dimensional “transcendental” part and a 4''(Z’)-dimensional
“algebraic” part. On the algebraic part the Frobenius element at p has
eigenvalues p x (a root of unity).

If p=1 mod 8 the algebraic part is rational over [, and so Frobenius
acts by multiplication by p. We compute # Z(F,;) =9636. The number of
[ ,,-rational points on the universal level 4 family is 600. Hence we get
#Z'(F ;) =9636 — 2 x 18 + 2 x 600 = 10800.

On the other hand

#Z'(F ) =t(p)+1(p) — 1 p) + 14l p) + 1 p)
=14+p(l4+p) ' 11+ p)—tip)+ p°

where ¢ is the trace of Frobenius on the 2-dimensional trancendental part
of H*.
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The representation on the transcendental part of H*(Z'} is isomorphic to
the representation on the transcendental part of H*(F). The Galois
representation on the transcendental part of the Fermat quartic is given by
»> @ 7> where y is the same Hecke character as in the previous section. It
follows that 7 = (1 +4i)? + (1 —4i)>= —30. Since |1;(p}| <h*p?* we get the
estimate

1+ p(L+py " + 11+ p)+ p*— #Z/(F ;)
=t:(p)| < p?? = (2" — 42) p*»

It follows from this estimate that A"' =21, #2=23 and #*=0.

APPENDIX: EtLrLipTic MODULAR FORMS
ASSOCIATED TO SIEGEL MODULAR FORMS

In this appendix we apply some results of Shintani [Sh] and Oda [Od]
to sketch a proof that the Siegel modular form considered in the first
part of section 2 is a Saito-Kurokawa lift and to compute its Andrianov
L-function.

The result is the following:

THEOREM. Let ¢ be one of the fifteen products of six theta constants
ssociated to a 6-tuple of distinct theta characteristics with sum =0 (these
form a basis of eigenforms for the space of cusp forms of weight 3 for
the principal congruence subgroup 1I'(4)< Sp,(Z)). Then the Andrianov
L-function is of the form

Lig,sy=L{y,s—1)L(g, x s) Ly, s—2),

where g is the unique normalized eigenform in S{I'y(8)), y is a Dirichlet
character mod 4, and L(y, s) denotes the Dirichlet L-function.

We consider the space V of 4 x 4 skew-symmetric matrices

0 «
—a 0

B

B 0 ¢

B —¢ 0

with Tr(B)=0. The symplectic group Sp,(R) acts on V' as follows:
o€ Sp,(R) sends Me 1" to oM'a. We define a quadratic form Q* on }' by
O*(M)=2ac —2det(B). The action of Sp,(R) preserves this form and in
fact we get an isomorphism PSp(R)= Sp,(R)/+1=~ SO Q*). Let e,

y



74 VAN GEEMEN AND NYGAARD

i< j denote the skew-symmetric matrix with 1 as the 7, j’'th entry, —1
as the j,i'th entry and ’s everywhere else. Then V is spanned by
{€12. €14, €13 — €24, €23, €34}. The matrix of the quadratic form Q* with
respect to this basis i1s given by

0 00 01
00 010
00 2 00
01000
I 0 0 00

so it has signature ( +3, —2). Let 0= —20* ! so Q has matrix

0 0 0 0 -2
0 0 0-2 0

0 0-1 0 O
0-2 0 0 O
-2 0 0 0 0

and signature (+2, —3). Consider a positive rational multiple Q" of Q*
and let ¥ be a lattice in V" such that Q' takes integral values on .. Let
Z* be the dual lattice with respect to Q' and let I’ be a congruence sub-
group of Sp,(Z) which leaves ¥ stable. Then /' acts on the finite group
F*/#. Let & be a character of I'' such that ker £ is also a congruence
subgroup. Consider a form ¢e S, (I, &), ie, a cusp-form satisfying
¢lot) =&(o) det(yr+0)* §(1) where o=(7 f)erl’. Consider a vector
he £* with Q'(h)>0. The stabilizer G, of 4 in PSp,(R) is isomorphic to
the Lorenz group SO°,3) and the homogeneous space X,=G,/K,,
where K, = G, n K, K a maximal compact subgroup of PSp,(R), is hyper-
bolic 3-space embedded in the Siegel space &, = PSp,(R)/K. The volume
form w=dt A dz A dw for t=(! [)e &, restricts to a volume form on X,
which we shall also denote by w. Let ¢ e Sy(17, &) then ¢w transforms
under I'" by o*(¢w) =&(0) dw. Let v be a function on the finite set ¥*/.¥
such that v(ox)=¢~'(o) v(x). Remark that the existence of such a function
forces & to be trivial on the isotropy subgroup I',< I’ for any h with
w(h) #0 and hence the integral I(¢, h)=1{, ; pw is well-defined. We call
this integral the period integral of ¢ with respect to h. Remark also that
wh) I($, h) only depends on the [-orbit of A
For zeb, b the usual upper half-plane, consider the sum

A, v)=3 vih)ye(5Q'(h)2)) I(¢, h),

{n}
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where we sum over the I''-orbits {h} in #* with Q'(h)>0 and where
e( — ) denotes exp(2ni—).
For each k€ £*/¥ we let ©(¢, k) denote the sum

% e(3Q'(h)z) K¢, h)
{h} with i=k mod ¥
so O(¢, \')=Z=,\,.‘Ey,.‘¢,, wk) @(¢, k). The following is a special case of a
result due to Shintani:

THEOREM A.1. Let ¢e Sy(I"', &). Then O(¢, v) is a holomorphic function
on by which vanishes at i>c u Q.

Let y=(“")eSLAZ) such that abQ'(x)=cdQ'(y)=0mod?2 for all
x, ye & and such that ¢Q'(h)=0 mod 2 for all he £*. Then

b
/ Y v(dk)e(%Q’(k)>@(¢,k}(:) for ¢=0

ke %y

s —2¢ _l_)_ _ 502
6"( d ><d>(c~+d)

< x oy v(dk)e(fl;Q’(k))@((ﬁ,k)(:) for d>0

O(¢, v)(y:z)

ke L+

2N/ D ,
e’ <—d£><_—d> (cz +d)*?

\ x Yy v(dk)e(?Q’(k))@(qﬁ,k)(:) for d<0,

ke* ¥

where D is the discriminant of ¥ and ey=1ifd=1mod dande,=iif d=3
mod 4.

For the proof we refer to [ Sh, Proposition 1.6 and Proposition 1.7].

In our application of Shintani’s theorem we take I'" to be the principal
congruence subgroup 7°(2). This group is generated by the following 10
matrices:

-1 0 0 0 1 20 0
a 0 1 0 0 A:o 1 0 0
H 0 0-1 0 27lo o0 1 o
0 0 0 1 0 0 -2 1

1 0 0 0 1 0 0 0
A:2 1 0 0 A=0—1 0 0
2710 0 1 =2 2710 0 1 0
0 0 0 1 0 0 0 —1
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1 0 20 1 0 0 2 1 00 0
01 00 01 20 01 0 2
Bn_ Blz= Bzz=
0 01 0 001 0 0010
00 0 1 00 0 1 0 0 0 1
1 0 00 1 0 00 1 000
01 0 0 01 00 0100
C”“zolo C”_ozlo C22_0010
00 0 1 2.0 0 1 0200

Let ¢ be the character on I'(2) defined on the generators by &(4,,)=
(A1) =8 Ay) =LA} =L(B ) =&(By) =4(C) =¢(Cyp)= —1 and
E(B,)=¢&(C,)=1. It was shown in [Ny] that S;(7'(2), &) 1s 1-dimen-
sional, spanned by the product

¢ = ()U()m 0001000100601 109100001001

Since the sum of the theta characteristics is 0, ¢ is one of the 15 forms in
the first of the orbits considered in section 2.

Let L be the lattice of integral matrices in ¥ and put Q" =10 so Q' has
matrix
0 -

o O

FNE

0
0
0

x|—

o o o o

_%0

falm
o o O
o o o O

0
0

It follows that Q' takes integral values on the lattice ¥ spanned by
{de,,, de 4, 8(e 3 — €44), 4€13, 4eq,}. The dual lattice ¥ * is equal to L and
LHP ~FVAxZ/AxZ/8x Z/4x Z/4. Clearly I'(2) stabilizes ¥ so we get
an action of I'(2) on L/Z.

Consider the element v, € L represented by the matrix

0 0 0 1
0 0-1 0
0O 1 0 0
-1 0 0 0

so v; has coordinates (0,1,0, —1,0) with respect to the basis
{e2, €14, (€13 — €34), €33, €14} We define a function v on L/¥ by
v(gu,)=<&(g) on the orbit of v, and v is identically 0 on the complement
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of the orbit. To verify that v is well-defined it suffices to show that £ is
trivial on the isotropy subgroup I(2),, < I'(2).

Since & is trivial on the congruence subgroup I'(4) this equivalent to
showing that £ is trivial on I'(2),, (I, " I'(4)) < I'(2)/"(4) = (Z/2)". Also
since gv; =v, mod . implies gv, =v, mod 4L we have I'(2), /(I(2), 0
I(4))<(I'(2)/I'(4)),, =1sotropy subgroup of I'(2)/I'(4) of v, L/4L. The
next lemma shows that £ is trivial on this group.

LemMMA A2, The isotropy group (I'(2)/I(4),, =(Z/2)" is generated by
the 6 elements A, A5, Aj2 Az, B2, Cray, By By, € Cha.

Proof. The generators of I'(2) act on v, as follows

Ay vy —(0, —1,0,1,0) A= (0,5 -2, -1,0)
Ao ivy—(0, 1, =2, —5,0) A ivy— (0, —1,0,1,0)
B, :v,—(2,1,0,-1,0) Cy:ivop—(0,1,0, —1,2)
B, v,—~(0,1,0, -1,0) Cpiv,—(0,1,0, —1,0)
Byivy—(2,1,0, —1,0) Cypiv—(0,1,0, —1,2).

Let H be the subgroup generated by the 6 elements above. The quotient
(F(2)/T'{4))/H is generated by 4,,, A,,, B\, C,, and using the description
above one can check directly that no element in this group satisfies
gv,=r, mod 4.

LemMa A3, The isotropy group G, (R) is the subgroup of Sp,(R)
consisting of matrices of the form

a, b, a; b,
—b, a, b, —a,
ay, by a, b,

by —ay —b, a,

Proof. Let J denote the matrix ( _{ ) so v, =(9 J). A symplectic matrix
M=({ 2)eG,, if and only if the following equations are satisfied: AJ'B +
BJ'A=0, BJ)C+AJ'D=J, DJ'"A+CJ'B=J, DJ'C+ AJ'D=0. Put A*=
—JAJ, B*=JBJ, C*=JCJ, D* = —JDJ. Then the above equations show
that (22 B0 °, Dd $5)=(2 ). Since we also have M(‘, /)'M=

(% ywe get M=(20 5.

CoroLLARY A4, G (R) is isomorphic to SLy(C).
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Proof. The isomorphism is given by

a b a, by
-b, a b, —a, . a,+ib, b,+ia,
a, b, a, b, by—iay, a,—ib,)

by —ay —b, dy

We now come to the main result of the appendix.

THEOREM A.5. ©(@, v) is a non-zero cusp form of weight 3 for the group
Iy(16)y={(4 Z)ESLZ(Z) [ c=0(16)} with character y given by y((¢ Z))=
e{ab/4), ie., O, v) satisfies the transformation law

5
O, v)(yz) =y &g’ C_l’) (ez+d)*? O(4, v)(z),

where y=(* b)ye I'(16).

Proof. Observing that dv,=A4,,v,mod4 if d=-—1mod4, and
=y, mod 4 if d=1 mod 4 we get v(dk)=(—1/d) v(k) for all ke L/#. Since
the discriminant of Q' on % is —8x 167 and since ¢;'=(—1/d)¢, it
follows immediately from Theorem A.1 that @&{¢, v) satisfies the transfor-
mation law above and that it is a cusp form ie., (¢, v) e S5,(I(16), x).
We shall prove that it is non-zero.

The Fourier expansion of @(¢, v) is given by

O¢, v)(z) =) v(h) e(3Q'(h)z) I(4, h).

h

Since v(h)=0 unless A= gv, +w for some gel'(2) and we ¥, we only
have terms for which Q'(h)=Q'(gv,)+2(gv,,w)+ Q(w)e1+2Z It
follows that we can write the Fourier expansion as

g v)z)= 3 cner),
n=1(4) .
where ¢, =3 () win 20 = V() 1($, ).

It suffices to show that one of the ¢,’s is non-zero. We first show that if
v(h)#0 and 2Q'(h)=1 then A is in the orbit of v,. If 2Q'(h)=1 then A
must be primitive. Indeed if #=nh' we would have 4=n?Q(k') so if
n#1, n must be 2 and Q(A')=1. But if A’ =(a,b,c,d e) we have
1 =Q(h')= —dae —4bd — c? so ¢* = —1 mod 4, which is impossible. Now
both v, and & are primitive elements in L with Q(v,) = Q(k). By a theorem
of Humbert, this implies that v, and A are conjugate under Sp,(Z).
Assume h=g'v, for some g'eSp,Z). Since v(h)#0 we also have
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gv,=h=gv, +w for some gel'(2) and we . In particular we have
g'v, = gv, mod 2. The same argument as in the proof of Lemma A.3 shows
that the isotropy subgroup of &,eL/2L in Sp,Z/2) is isomorphic to
SL,(Z[i]/2). The reduction map SL,(Z[i])— SL,(Z[i]/2) is surjective by
strong approximation (or by a direct verification) and since g*'g' maps to
an element in SL,(Z[i]/2)c Sp,Z/2) we can write g~'g' =0l with
gel'(2)and Zel . It follows that = g'v, = goiv, = gav, and go e I'(2).
This argument shows that {he L |2Q'(h)=1} =I(2)v, hence we get
¢, =1(¢, v,) and thus it suffices to show that this period integral does not
vanish.

Let K be the stabilizer in Sp,uR) of il[,e&S, so K= U(2). Then
X,=G,/K.,={(; *)eS,|1ebh, beR}. This 3-manifold can be iden-
tified with hyperbolic 3-space C xR., via the map (], )~ (a+ib,r)
where r=a+ireh.

Let 1: €, — €, denote the involution (! )+ ( % #;). Clearly X, is the
fixed point set of 1.

Consider a theta characteristic ¢£’'d6’. We have

1 P c
0, 55(i(T)) = e<—<—w (p +—> +2‘_< _>
’ (pu%)ez 2 1 2 2

et e (+3)9)
BT
6 )

T ]
iz) #(=ni=g)oe(peg)-0))

Consider again the cusp form ¢. If 7 is a fixed point for 1 we have

(1) = d1(7)) = Op001(T) Po010(2(7)) Oo100(T) Or1000(1(T)) Bo110(T) Oro1(1(T))
= |0o001(T) Bp100(T) 90110(T)|2

641 83 1-6
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Let & be a fundamental domain for the action of I(2),, on X, =CxR_,
then 1(¢avl):§y 100001 (7) Oo100(T) Bor10( T dr. But |000,(7) o300(T) Oy 10T
1s non-negative, continuous and not identically 0 (evaluate for instance
at il,) on %. Hence this integral is strictly positive so ¢, #0.

Using the next two lemmas we easily obtain a formula for the other
Fourier coefficients.

LEMMA A6, Let hykeL with Q'(h)=Q'(k)=d>0. Then h and k are
conjugate under I'(2) if and only if they are conjugate under Sp,(7) and
h=kmod 2.

Proof. Assume a(h)=k, e Sp,(Z) and h=k mod 2. Let ¢ be the ring
of integers in the imaginary quadratic field @(\/~d). By [ An] the isotropy
subgroup I', < Sp,(Z) is isomorphic to SL,(¢'). Let h and k denote the
images in L/2L and & the image in Sp,(Z/2). Since h=k, 6 e I';. By strong
approximation the reduction map I, — I'; is surjective. Hence we can write
a=0'd with '€ I'(2) and deI,. It follows that k=a(h)=0'6(h)=0'(h).

LEMMA A.7. Let he L such that v(h)#£0 and 2Q'(h)=n. Consider the
element v, e L with coordinates (0,n,0, —1,0) with n=1+4r. If h is
primitive then h is in the ['(2) orbit of v,. If h=dh' with ' primitive then
hois in the I'(2) orbit of dv, .

Proof. We have already seen that v(h)#0 implies that 2Q'(h)=1
mod 4, say 2Q'(h)=n =1+ 4r. Consider the element v,=(0,n,0, —1,0)=
vy +4re;. Then Q'(v,)=1+2r=Q'(h). Assume first that 4 is primitive.
Then Humbert’s theorem implies that v, and 4 are conjugate under Sp (7).
Now 4 is in the I'(2) orbit of v, modulo % so in particular #=v, mod 2,
but also v, =v, mod 2 so the previous lemma gives that & and », are
conjugate under 77(2). It follows that v(h)=v(v,).

Next consider the case where /s =dh' with 4" primitive. Then
Q' =d*Q(I) and 2Q'(h')=1 mod 4. It follows that A’ is in the I'(2)
orbit of v, ,: and so / is in the orbit of dv, .

Clearly K¢, h)=1¢,dh"y=K¢, k') and v(ih)=vdh')=(—1/d)v(h')=
(—=1/d)v(v,2)=(—=1/d). 1t follows that we have the formula for the
Fourier coefficients:

—1
> <7> ($. v,2) for n=1mod 4
0 otherwise.

Consider the form @(¢, v)(4z). This form is in S;,(7((64)). The formula
for the Fourier coefficients shows that it is in fact in Kohnen’s “ + -space,
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S3(h(64)), [Kohl]. It follows from the results of Niwa [Ni] that the
Shimura lift is a cusp form of weight 4 for I'y(32) with trivial character.

Next we consider the action of the Hecke operators. Let 4 € M (Z) with
A, A=A °, b, ie, A€ GSp(Q)n MZ). Assume that r(A4) is
odd and 4=(] , 5, mod4. Write the double coset I'(2)-A4-I'(2)=
T177(2)A,, a finite union. Then the Hecke operator T(I"(2)-A~F(2)) on
S(F(2) £) s given by T(I(2)-A4-I'(2))(¢)= V3 &(u) #l,, where
wi=(4 50 A; ' mod 4. By abuse of notation we shall use T(A4) to denote
this Hecke operator

We want to compute the Fourier series of @(7T(A4)¢, v) or equivalently
the period integrals (T (A)¢, v). We have

A hy=rA) | Y E) JAL D Bl
W2y

where J( —, 7) denotes the automorphy factor. The subgroup (2), = I'(2)
acts on the set of left cosets {F(Z)A,} in the double coset I'(2)-A-I'(2) by
right multiplication and we consider a set of representatives for the orbits,
(ri2)a,).

An element ge I'(2),, is in the stabilizer of a left coset I'(2) A4, if and only
if A,g=0A, for some gel'(2). Now c=A,gA; "' implies that o fixes
h,= A, h so the stabilizer of I'(2) A, is equal to F(2)mA,"'F(2),,,A,-. Since
£ is trivial on I'(2), it follows that we can write the period integral

KT(A)p, hy=r(A) J > &)

Xp/ 120 i

x > J(A;8, 1) $(A,gT) dr

ge M2yl 12 A, (254,

where the first sum runs over the set of representatives. Clearly the inner
sum is invariant under 77(2), and so the integral can be written

IT(A)t, h)= zz &)

J(A,, 1) (A, 1) dr.

x J ;
Xpid 2w A7 124, ’

As 1 runs over X,=G,(R)r, for 1,€E, some basepoint, 4,7 runs
over A,GyR),. We have 4,G(R)tg=4,G(R)A;'4,7,=G,4

T

7, changing variable t'=4A,1, using that d(4,7)=r(d,) " J(4,,7)""
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dr=r(A)* J(A o 1)~ dr and the fact that the integral is independent of
the choice of basepoint in S,, we get

KT(A), ) =Y &) #(z) de
J Xh,/T(Z)hjﬁAjl‘lZ)hA’,“
=Y )L T(2),: T(2),, A, T(2),A7' 1 I, h).
7

Let p be an odd prime and let 7(p) be the Hecke operator associated
to the double coset

I2) rQ).

(= R
oo — O
o © o
(=l R ]

P

The following p*+ p*+ p+ | matrices form a set of representatives for
the left cosets in the double cosets

p 0 0 0O I 0 25 2¢
. 0 p O . 0 1 2t 2u
O<7t’<_ls
Ddo o010l W logo , o Hhusp
0 0 0 1 0 0 0 p
p 00 0
-2t 1 0 2u
<’<_»
(111} o 0 1 O<tusp—1
0 0 0 p
1 0 2r O
. 0 p 0 O
<r<p—1.
(1v) 00 p 0 0<r<p—-1
0 0 0 1

In order to completely determine the action of the Hecke operator T'(p)
on the period integrals, we would have to determine the orbits under
I'(2),,. Luckily for our purposes it suffices to do this only for v,.

Applying the matrices above to v, we get the following elements in L:

(1) pv,

(1) (28+2u, p,0, —p,0),0<5,u, t<p-1
(iii) (2up, p% 2tp, —1 —44,0),0<u, t< p—1
(]V) (Pr, 1’05 _pz’o)a0<r<p—1
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We see that type (ii) is 7(2) conjugate to pv, if and only if p | 25+ 2u
and otherwise conjugate to v,.. Type (iii) is conjugate to pv, if and only if
p | 1441 and otherwise conjugate to v,.. Type (iv) is conjugate to v,:. Two
of the matrices above, 4 and B say, are in the same I'(2),, orbit if and only
if BeI'(2) AI'(2),,. In other words if we can find MeI'(2),, such that
AMB~'eI'(2). Thus it is clear that if 4 and B are in the same I'(2),, orbit
then Av, is I'(2) conjugate to Bv,. An easy but tedius computation, using
that the isotropy group of v, is SL,{(Z[i]), shows that there are two orbits:

(a) The orbit containing

p 0 0 O
0 p 00
A= ,
0010
0 0 0 1
consisting of the cosets with representatives
1 0 25 2¢
0 1 2t 2u
,P125+2
00 p 0 Pl 2s+2u
0 0 0 p
and
p 0 0 O
-2t 1 0 2u
\ 1+41.
o o 1 2P
0 0 0 p
(b) The orbit containing
p 0 0 O
B 01 00
10 010
0 0 0 p
consisting of the remaining matrices.
It now follows that
p 0 0 0
0 p 0
& 00 p mod 4
00 0 p!

x[I(2),:T'2),nA(2), A7"'] K¢, v,)
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mod 4

—_ o O O

o]
S o == O
o o ©

x[1(2),.: I'(2),,0B(2),, B 114, v,2).

We have to compute the two indices [I(2), : I'(2),, " AI'(2),,A"'] and
[1"(2)l,p1:1"(2)%3031“(2),.]8"]. It is easy to see thdt the ﬁrst index is
equal to the index of the parabolic subgroup P of lower triangular matrices
in SLy(Z[i]/p).

If p does not split in Z[i], ie, (—1/p)y= —1, we have SL,(Z[i]/p)/P =
SLo(F,2)/P=P'(F ).

If p splits in Z[/], ie, (—1/17)= 1, we have SL,([i]/p)=
SLo(F,)x SLy(F,) so SL,(Z[i]/p)/P= PY )x P! (F,). Thus we have
[I(2),:T(2),,nAT(2), A" ]=p? +1+p( —l/p)

It is easy to see that F(Z) o S BI'(2).,B~ ! hence the second index is 1
and we get the following formula

—1 —1
KT(p),v))= <p2+ 1+p (1 +<~p—>>> ¢, v))+ <—p—> I(¢, v,2).

Let ¢,(p) denote the nth Fourier coefficient of @(T(p) ¢, v)(4z). Using
the formula above and the formula for the Fourler coefficients from
Lemma A.7 we obtain the following formula:

n=(prren (1o (5o ()

—1
= <7> (c,,:+pc,)+(p2+p) cy-

Next recall that the action on the Fourier coefficients of Shimura’s Hecke
operator, T,(p?) on the space S, | o(I4(4N), x) is given by

K1 Nn 2% 14 2
apy=a,,+p" xp) rs a,+p" " x(pia,,:.

Since ¢ 1s and eigenform, @(¢, v4z) is an eigenform for the Shimura
Hecke operators. Let {4(p)} denote the eigenvalues for ¢ and {u(p)} the
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eigenvalues for ©(¢, v)(4z). We have shown that ¢, #0 hence we get the
following relation between the two sets of eigenvalues:

-1
).(p)=<7>u(p)+(p2+p).

Consider the operator

T'(p)=T(pY +T(p*)
p> 0 0 0 p 0 0 0
0O p 00 0 p 00
=T iy p? T
0 0 p o|TETIEATIG G
0 0 0 1 0 0 0 p

A long computation along the same lines as above gives the relation
L 2. a 5 —1 . s
Mp)y —MpT)=(p~+p) s Hpy+2p +p-

The local factor of the Andrianov-Evdokimov L-function of ¢
([An, Evl]) is given by

b 33

Lig.s) '=1—Ap)p “+(MpY—MpY—pHp *—Ap)p +pt

The relations above imply that

1 “1 . .
L. 5)=(1 —p-“)(l —<7>u(p)p"‘+p3‘2“>(l =p'

Let / be the elliptic modular form associated to &(¢, v) via the Shimura
correspondence. Then fe S,(I(32)) and f is an eigenform with eigen-
values {u(p)}. The space S4(I4(32)) has dimension 5 and is spanned by
the following eigenforms:

(i) The form g(t) =n(27r)*n(47)* This form is actually in S,(I,(8)).
(ii) The twist g7 of g by the non-trivial character y mod 4.
(i) The old forms g(4t), g(27) and g*(27).

We have ¢, # 0 so f cannot be one of the old forms. To determine which
of the two new-forms occur, it suffices to compute just one of the Hecke
eigenvalues of ¢. Using a computer we find A(11) =288 so u(11)=44. The
Fourier coefficient a(11) of g is —44 and so it follows that the normaliza-
tion of f is the twist g*.
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The local factors in the L-function of f are given by

Lifis) '=l—ulp)p " +p' >

and so we obtain

L(g,s)={s—1) L(g* x, s) {(s =2)={(s — 1) L(g, s} {(s —2).

The modular group Sp,(Z) acts transitively on the 15 forms in S;(7°(4))
and so the L-functions of the other 14 forms are twists by characters of
Gal(Q({5)/@) of this L-function. Which twist occurs in each case can be
determined by computing the Hecke eigenvalue A(11). In particular for the
form considered in the first part of Section 2 we find that there is no twist
so the Andrianov-Evdokimov L-function of this Siegel modular form is the
same as the L-function for ¢.

[An]

(D]
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[Ev2)
[Hi]
[Hu]
[(n]
[12]
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