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This article aims to give a modular construction of a correspondence
between modular varieties whose existence was suspected in {Ge-Ny]. The
modular varieties in question are on the one hand a Siegel modular three-
fold X°, that is a moduli space of 2 dimensional abelian varieties, which
is a quotient of the moduli space with level 8 structure and on the other
hand the self-product (over the base curve) V° of £ 5 Yy(8), the uni-
versal (smooth) elliptic curve with a cyclic subgroup of order 8. These
varieties have smooth compactifications X and V respectively and it is
shown in (loc. cit.) that the 2 dimensional Galois representation G =
Gal(Q/Q) — Aut(H3(X,Q)) is a subrepresentation of H3(V,Q,). This
fact can be explained by the theory of lifting of elliptic modular cusp forms
to Siegel modular forms, but the Tate conjecture relating algebraic cycles

._. " and Galois invariant subspaces in the étale cohomology groups predicts the
- existence of an algebraic cycle Z on X x V inducing the injection of Galois

representations H3(X) — H3(V). Using explicit equations, J. Stienstra
found a dominant rational map X — V whose graph gives the desired cy-
cle. In this paper we give in fact an isomorphism of stacks (cf. Cor 2.10)

" which also induces the desired inclusion. It seems however that our con-

struction does not directly work for higher levels, whereas the lifting theory
"is quite general.
Roughly speaking the isomorphism is constructed as follows. One

" starts with the space of elliptic curves (i.e. a smooth genus 1 curves with

a section) with 2 distinguished points. Given a point of that space one
gets 6 points on a projective line; the line is the quotient of the curve by
#£1 and the 6 points are the 4 ramification points of the quotient map and
the images of the 2 distinguished points. To these 6 points one associates
.the double cover ramified at them and finally one obtains a principally
polarised abelian surface; the Jacobian of the double cover. This gives
an element of A, the moduli space of principally polarised 2-dimensional



abelian varieties. In order to get an equivalence one first needs to keep track
of various choices. We get for instance not just 6 points on a projective line
but rather one point, corresponding to the zero section of the elliptic curve,
one set of 3 and one of 2 points. Furthermore, only in the case when the 6
points are distinet do we get a smooth double cover, which corresponds to
the condition that the Jacobian of the double cover being an abelian surface
and to the theta divisor of this principally polarised abelian surface being
irreducible. (It should also be noted that the genus 1 curve associated to a
genus 2 curve C is simply the Prym variety associated to a double cover of
¢ and so this article can also be seen as an attempt to compare certain level
structures on C (or its Jacobian) with level structures on the associated
Prym variety.)

The article is therefore divided into several parts. First we get an
equivalence of data with the minimal number of choices and with a situa-
tion where the 6 points are distinct. The proof of the equivalence follows
almost exactly the sketch given. The only difference is that we make the
constructions in families of elliptic curves etc. This forces us to deal with
one choice which was implicit in the above description. Namely that a
double cover is not determined by the choice of a degree 6 divisor in a
P! bundle, one also needs the choice of a square root line bundle of the
associated line bundle. The next step is to compare some further choices
(i.e. level structures) on either side of the equivalence such as a level 2
structure on the elliptic curve. This is done by first comparing extra data
for the elliptic curve and the double cover genus 2 curve and then to trans-
late the data for the genus 2 curve with data involving only its Jacobian.
Finally, we make a brief study of compactifications of moduli spaces. It
turns that when we do this extension we cbtain not an equivalence but only
a map from the modular variety of genus 2 curves to the one for elliptic
curves.

We generally formulate our results in terms of algebraic stacks rather
than (coarse) moduli spaces. There are two reasons for this choice. Firstly,
we have started with an elementary construction of an elliptic curve from
the & Weierstrass points of a genus 2 curve, which gives us the searched
for map between modular varieties on geometric points. With some care
it is seen that this construction can be done in any family. Working with
algebraic stacks immediately shows that the map on geometric points comes
from an algebraic map. Secoudly, the equivalence of stacks gives us the
isomorphism of coarse moduli spaces by passing to the associated algebraic
spaces. The equivalence of stacks, however, contains more information.
To see an example of this let us recall that the moduli stack of elliptic
curves is the quotient of the upper half plane by SL+(Z) as analytic stecks
whereas the (coarse) moduli stack is the quotient as analytic spaces. The

‘difference between those two quotients is that the former behaves as if the

--action of 5L2(Z) is free whereas the latter doesn’t as some elements do have

fixed vomz.ﬂm. Hence the topological fundamental group of the stack is equal
SLo(Z) with the upper half plane as universal cover while the fundamental
group of the space is trivial, the space being simply the affine line. Similar

o phenomena will hold for many of the other stacks we will encounter (an
o -example where the fundamental groups are equal is the stack of irreducible
- genus 1 curves with a section of the smooth locus; it as well as its associated

analytic stack is simply-connected).

-0, Preliminaries and conventions.

. We will use the equality sign to denote a canonically defined isomorphism.
.- Unless otherwise mentioned 2 will be invertible in all our schemes and §

will denote such a scheme. A multisection of a map 7" — § of schemes is
a closed subscheme V of T such that the composed map V — T — § is

- finite and flat; a multisection everywhere of degree m will also be refered

to as an m-section; a 1-section is then simply a section. If m:7 — S is a

.- map and V' a subscheme of 5 then a section of x over V is a section of the
- Testriction of m to V. Unless otherwise mentioned P, €, D, &, T, U and

V will have the meaning given to them in Theorem 1.2 and the paragraph

o after it. By an elliptic curve over § we will mean a smooth proper map
.. m:€&€ — 5 with fibers curves of genus 1 together with a chosen section of

m. The scheme of Welerstrass points of an elliptic curve is then the fixed
points of multiplication by —1 wrt the S-group structure on £ with the’
chosen section as origin.

- Definition 0.1, Let m: X — S be a smooth map everywhere of relative
“dimension 1, p:T" — S a finite flat map and 717 — X an S-map. The
" 'divisorial image of 7 is the subscheme defined by the invertible ideal which
¢/ is'the image under the norm map (i.e. the ideal generated by all norms of
- elements in the ideal) for the map X xs T"— X induced by p of the ideal

of the T-section of X xg T induced by 7 and .

Recall that a finite flat map of degree 2 7: T — § is determined by

v-a line bundle £ on S and a2 map p: £%~? — Og; 7, Op decomposes as

Os €D L1, where £7! is the kernel of the trace map and the multiplication

- in m,Op determines and is determined by p. The cokernel of p is the
- structure sheaf of the branch locus B of the cover. If R is everywhere
. -of codimension 1 then p gives also an isomorphism £8? = Og(R) and
- conversely if R is any Cartier divisor on S giving a double cover with




R as its ramification locus is equivalent to giving a line bundle £ and an
isomorphism £82 = Og(R). Furthermore, we have a global section s of £L%?
given by the transpose of p and the double cover represents the problem of
finding a section # of £ such that 82 = 5. On the double cover itself there
is therefore a canonical section of (the pullback of £) which we will denote

te.

Lemma 0.2. Suppose that U and V are two digjoint Cartier divisors, L
and M line bundles on 5 and p: £8% — Og(U) and 11 M®2 — O5(V)
isomorphisms. Let a:S; — S, B: Sy — S and v:S3 — S be the double
covers associated to p, T and p® 7 respectively and §: 54 := 51 x5 52 — 53
the map for which m.&h@s\_ = t; ®@itpr. Then § Iis an étale double cover

with associated line bundle equal to v*£(—U") (and v* M(-V")) where U !
is the intersection between the zero set ow t LR M and the inverse image

of U. Furthermore, the étale cover 8~'U — U is isomorphic to the étale
cover 61U — U,

Proof. The map & induces a map S5) X5 S2 — v*{a) over S3. Let us
consider the situtation locally with U defined by f = 0 and V defined g =0
so that the affine m._mmvnmm of §1, Sa, Ss and Sy are equal to Og[s]/(s? ~ f),
Os E\Qm — ), Os[yl/(y*— fg) and Og[s, t}/(s% ~ f, 1% ~ g) respectively and
§ is given by y +— st. Then the affine algebra of & is given by Og,[s, ]/(s* -~
f,t2 — g,y — st). If f is invertible then Og, is free as Og,-module with a
basis {1, s} and s* = f is invertible, if g is invertible then Oy, is free as Osg,-
module with a basis {1,#} and ¢ = g is invertible. This shows that § is étale
and it is clear that the annihilator of the cokernel of O, [s]/(s% — f) — Os,
is exactly the ideal defining U’. This last fact remains true globally and
so if we write 8,05, = Og, BN ~! we see that the annihilator of the
cokernel of the map v*£~' — AN~ induced from S; x5 S2 — ¥ (a) is
the ideal defining I/ and hence N @ v* £~ = Og,(—U"). Finally the last
statement is clear since 7 induces an isomorphism between U’ and U7 and
together with the projection Sy — Sy it induces a map between étale covers
§=I = U to B0 — U. Q.ED.

Definition 0.3. Let A4 be a principally polarised abelian S-scheme and o a
section of order 2. On the scheme 2~ 'a := {8 € A: 28 = a} we have the
equivalence relation §3 ~ B2 <= e2(81 — B2, @) = 1, where eg(—, —) is the
pairing on the kernel of multiplication by 2. A Za-structure on A is the
choice of one of the equivalence classes of this equivalence relation.

If A is a principally polarised abelian S-scheme, then a section & of

~order 2 of A gives rise to an étale cover of A in the following way. By the
-polarisation « corresponds to a line bundle £ on A rigidified along the 0-

section. As « is of order 2 so is the rigidified line bundle and hence there is

a unique isomorphism £%? 2 Og compatible with the rigidifications. This
. isomorphism is then used to construct a double cover (with affine algebra
'Os D £ and multiplication given by the isomorphism). An alternative
“way of constructing this cover is as follows. One considers the orthogonal
~..complement Gy of @ in 3.4 under the Weil pairing ez() induced by the
. polarisation. Multiplication by 2 on .A factors as A — A/Gy =: A, — A

for a unique map A, — A. This map is the required double cover. (This

_is seen for instance by considering the action G, on the @ 4-algebra 2,04

and dividing it into eigenspaces.) As the equivalence classes of 2~lo are

. exactly the orbits under G, one gets the following lemma.

_ Hmﬁ:ﬁm 0.4. Q.mEm the notations of (0.3) and the preceding paragraph a

wn:mﬂznnzwm is equivalent to choosing a section of the map A, — A over
.

Proof. Q.ED.

" Lemma 0.5. (No conditionson S.) Let : T — § be a finite, flat S-scheme

‘of degree 3 which Is relatively Gorenstein (i.e. the dualising sheaf wrys is
: m dine v::&& ,

i) There is up to unique isomorphism a unique S-embedding of T' into

" a Pl bundle over S.

i) If T has a section R then it and T itself give relative Cartier divisors

. in'the P'-bundle P of i). Their difference is a 2-section of T which we will
" call the (schematic) complement of R in T. Its ideal is a line bundle T
- -and there is a canonical choice of a line bundle M and an isomorphism

I = M2

. Proof. Assume, to begin with, that T is embedded in a P'-bundle

‘mP — 8. Then T is a relative Cartier divisor of degree 3 in P and so

L = wpys(T) is a line bundle which fiber by fiber is of degree 1 and so

P can be identified with P(£), where £ := m.L. We have the adjunction
exact sequence

olvEm.\.mlhll.an.lvo

.érﬁnr gives the shott exact sequence

0~ & — rwp — mpa;ﬁm.\m — 0.




The map r.wp — Rlmwp /s composed with the trace map R'm,wp;s —
Og is the trace map for 7 and so £ is identified with the kernel of the
trace map Tywr — Og. The embedding of T into P is am&muamzmm._&\
a line bundle quotient of T*&; the correspondance is given by assoclating
to an embedding the restriction of the map 7*7.Op(£){1) — Opg)(1) to
T. This shows that the line bundle quotient map is simply the compuosite
of the pullback to 7 of the inclusion £ — r.wy and the adjunction map
r*ruwyp — wr. Hence P as well as the embedding of T' into it is canonically
determined by T itself (as an S-scheme). This proves the zsmazmswmm part
of i). To prove existence we need to show that, without assuming an
embedding, the composite 7*€ — T*Twp — wr is surjective, where £
is defined as the kernel of the trace map and then that the obtained S-
map from T to P(£) is an embedding. This is something which can _o.m
checked geometric fiber by geometric fiber so we may assume that is
an algebraically closed field. As we have seen, what we wani to show is
true as soon as T embeds in any P'-bundle so what remains to be shown
is that any T so embeds. If k is an algebraically closed field there are
up to isomorphism exactly four 3-dimensional commutative k-algebras; w.w,
kP k[z]/(2?), k[z]/(=?) and k[z,y]/(z,¥)%. The last is not QoHosmHﬁmE
(having a 2-dimensional socle) and the others evidently embed into P*.
To prove ii) we note first that it follows from the construetion that
Op(T) = Emwmﬁv = m* det £-1(3). The next step is to compute Qvﬁwv.
To do that we are required to compute the line bundle guotient of £ which
corresponds to R. This is the restriction to R of the map 7*& — " ruwy —
wp so that the searched for line bundle quotient is the restriction to R of
wyp. Now, by duality, wr can be identified with Homey (Or, Os) whose
restriction to R is Home (Or,0s) = On. Hence the restriction of wr
to R is canonically trivial and O@p(R) = 7*det£{1). Therefore if R’
is the schematic complement of R in 7' then Op(R') = Op(T - R) =
* det £72(2) = (" det £71(1))®2. This proves ii). Q.E.D.

Remark. i) When T' consists of 3 disjoint copies of S part i) simply says that
up to projective equivalence there is a unique way of choosing 3 _u.o:;m on
the projective line. Intuitively our result confirms that this remains ﬁ&&
even when the points may be infinitely close. In a case when all 3 points
coincide up to first order this was proven by P. Deligne [De:,5.2}.

ii) As Op(T) = 7" det £7(3), T gives rise to (and is determined by) an
everywhere non-zero section of S2£ ® det £~1. Conversely such a mmn?o.:
gives a T. When 6 is invertible this is encompassed by a result of R. ?TH.
randa [Mi] who shows, more generally, that a section of S° @) det &
gives rise to a degree 3-cover, the zero locus of the section being the locus

of “non-Gorenstein-ness” of the cover.

iii) Note that in general the choice of “square root” of Op (R’ ) depends
on R and not just on the embedding of R’ in P. For instance, when § is
the spectrum of a field k and 7" consists of 3 distinct points then the choice
of this square root amounts to a choice, up to the square of a scalar, of a
quadratic form having T'\ R as its zero set. 'This form can then seen to be
determined by the condition that its value on T (this value is well-defined
up to a square) is 1 (again up to a square). In other words, the double
cover associated to the square root is split over T

In order to be able to compare levels properly we now want to formu-
late the well-known description of the kernel of multiplication by 2 on the
Jacobian of a hyper-elliptic curve in terms of its Weierstrass in a way so
that no choices choices are made. This leads to the following definition.

If P is a finite set of even cardinality we define an Fj-vector space

~ A(P) associated to P as follows. We look at the set of subsets of P of

even cardinality with the symmetric difference as group operation and then

= .. ‘divide out by the subgroup consisting of the empty set and all of P. The

group of permutations of P clearly acts as a group of group automorphisms
S(P) of A(P). Note also that the two representative subsets of an element
of A(P) are a set and its complement. Recall that a bilinear form on an

abelian group is alternating if the scalar product of every element with
itself is zero.

Remark. As we will see, if P is the set of Welerstrass points of a 589.,:
elliptic curve then A(P) is indeed the kernel of multiplication by 2 on the

‘Jacobian of the curve. The pairing to be defined will also be seen to be the

Weil pairing.

Lemma 0.6. The form (U, V)p := U\ V| (mod 2) is the unique non-

--zero alternating Fas-valued form on k_pﬁuv invariant under the action of

S(P).

Proof. One first verifies that the given form is well-defined and bi-

linear which is left to the reader. That it is alternating is clear and so

it suffices to show that it is unique. As A(P) is generated by 2-element
subsets it is enough to show that it is unique on such. The only invariant

~under the action of S(P) on pairs of 2-element subsets is the cardinality

of the intersection so there are only 3 cases. The case of cardinality of
Intersection equal to 2 is determined by the condition that the form be al-




ternating. For a given 2-element subset we can write any 2-element subset
as the sum of 2 other 2-element subsets meeting the given one in 1 point.
fence if the intersection is empty the scalar product is zero. In order for
it to be non-trivial the scalar product of two 2-element subsets meeting in
one point must be 1. Q.E.D.

Remark. For uniqueness we never used the fact that the form was alter-
nating or even symmetric.

For each s € P we can define a quadratic form v, on A(P) whose
associated bilinear form is {—, ~}p. Indeed, for an element o of A(P) we
let U be its unique representative which does not contain 5. We then put
7s(a) := |U]/2 (mod 2) and leave as an exercise to show that this is a
quadratic form with (—,—)p as its associated bilinear form. This gives
a map from P into the set of quadratic forms on A{P) whose associated
bilinear form is {(—,—)p and it is easily verified that if |P| is not divisible
by 4 the this map is injective.

Remark. If P is the set of Weilerstrass points of a hyperelliptic curve then
v, is the quadratic form associated by Mumford (cf. [Mu:IIIa,Prop. 6.3 b])
to the theta characteristic (g— 1)s, where g is the genus of the curve. Recall
now that up to equivalence there are only 2 non-degenerate quadratic forms
on an even-dimensional Z/2-vector space (of dimension 2r) and that the
2 possibilities are distinguished by the existence (the split case) or non-
existence (the non-split case) of an isotropic subspace of dimension n. The
split form can also be distinguished by there being 227~2 — 1 4 (—1)"27~1
isotropic elements in the vector space.

Lemma 0.7. i) The quadratic form «, is split if |P|/2 is congruent to 1 or
2 modulo 4 and non-split if not,

i) If |P| = 6 then the association s — ¥, gives a bijection between P
and the set of non-split quadratic forms on A(P) whose assoclated bilinear
form is {(—, =) p.

Proof. For i) one needs to compute the number of subsets of P\ {s}
of cardinality divisible by 4. Using the binomial theorem this is equal to

A+ + Q-1+ L+ )"+ (1—i)"7)

el R

where n := |P|. Expanding this, using (1+ i)? = 2i, gives the needed com-
putation. As for ii}, as the association is an injection it suffices to show that

_the set of such quadratic forms contains at most 6 elements. However the

linear group of A(P) acts transitively on all quadratic forms of given type
and so the symplectic group of (—,—) p acts transitively on quadratic forms

of given type and associated bilinear form {—, —}p. However, Sp(4,F;) has
© 720 elements and the stabiliser, in the symplectic group, of v, contains the

symmetric group on P \ {s} which contains 120 elements. Hence there are
at most 720/120 = 6 such forms. Q.E.D.

Remark. There are several ways to prove ii) (or equivalently that the
map from the symmetric group on P to the symplectic group of A(P) is
surjective).

i} A transposition maps to a transvection and one gets all transvections
this way. Transvections generate the symplectic group.

ii) Modeled on even theta characteristics one associates quadratic
forms of Arf invariant 1 to 3-element subsets. By counting (16 = AU +
(8)/2) one sees that one gets all quadratic forms this way and hence all of
Arf invariant —1 are of the form ~,.

iii) The full monodromy action on the kernel of multiplication by 2
on the Jacobian of a curve is always the full symplectic group. In the
case of genus 2 all curves are hyperelliptic so the monodromy group is the

‘gymmetric group.

As A(P) is natural in P, for a finite étale cover of even degree T — §
we can define another étale cover A(T) — S which is an étale group scheme
with a canonical alternating form. i T — S is the branch locus of a double

- - cover of a P1-bundle then we will want to identify A(T) — S with the kernel
.. by multiplication by 2 on the Jacobian of the cover. This is straightforward
- if T'— S is a split cover (and even if it has a section) but some care has to
- be taken in the general case.

. Proposition 0.8, Suppose C — S is a hyperelliptic curve and R — S its

scheme of Weierstrass poinis. Then there is a canonical isomorphism of
étale S-group schemes between A(R) and 3 Pic®(C/S) taking the canonical
alternating form to the Weil pairing.

Proof. The line bundle of degree 2 giving the hyperelliptic linear sys-
tem may not exist as such, it does, however, give a well-defined element

© fin Pic(C/S). Let now B{R) be the étale cover of subsets of R of even




cardinality. If M is a section of B{R) (over some S-scheme W) then we
get an element (M) — (deg M/2)£ of Pic®(C/S)W). In this way we get
a morphism of group schemes a: B(R) — 2Pic°(C/S). The line bundle
associated to R is a multiple of £ in Pic(C/S) and so o factors to give a
map A{R) — 3Pic®(C/S). To verify that it is an isomorphism it suffices to
check on geometric fibers where it 1s well known. To see the correspondence
on pairings one immediately reduces to the universal situation where S is
the scheme of unordered deg R-tuples of points on the projective line. As
the space of ordered such tuples is irreducible, the monodromy action on
the universal deg R-divisor on the projective line over S is the full symmet-
ric group and as the Weil pairing is non-trivial (non-degenerate even) we
conclude by (0.6). QE.D.

1. An equivalence of stacks.

Definition 1.1, i) F is the stack for which the objects of F(S) consist of an
elliptic curve £ (with zero section T') over S together with a 2-section U
of P = £/{%1} disjoint from the branch locus of £ — P. The morphisms
are isomorphisms between curves preserving U.

i) M3 is the stack for which the objects of M3(S) consist of a smooth
genus 2 curve C and a division of the branch locus of ¢ — C/1 =: P, where ¢
is the hyperelliptic involution, into three disjoint subschemes T, V, U which
are multisections of degree 1, 3 and 2 respectively. The morphisms are
isomorphisms between curves preserving the decompositions of the branch
loci.

Remark. Tt is immediate from Artin’s criterion [Ar:5.3] that F and M3 are
algebraic stacks.

Theorem 1.2. The two stacks F and MY are equivalent. Under this
equivalence the T'’s and U ’s correspond and V' corresponds to the the com-
plement of T' in the Weierstrass points of £.

Proof. Using the discussion above on double covers we see that an
object of M%(S) is specified by a P!-bundle P over S, three disjoint mul-
tisections T, V and U of degree 1, 3 and 2 respectively, a line bundle A/

on P and an isomorphism A®? 2 Op(T + V 4 U). Using lemma 0.5 one

-, .sees that this Is equivalent to giving a double étale cover :V -= S of 5, a

multisection U of P\ T'|JV, where P’ is the P!-bundle associated to the
disjoint union of V' and a copy T of S, a line bundle £ on 5 and an isomor-
phism £(3) = Op:(V). On the other hand, an object of F(S) is specified by
Pl.bundle P over S, three disjoint multisections T, V := branch locus \T
and UV of degree 1, 3 and 2 respectively, a line bundle A" on P and an iso-

- morphism A®? Op(T + V) which by a similar reasoning is equivalent

to the same data. This correspondence clearly is natural for isomorphisms
giving an equivalence of stacks. Q.ED.

From the proof of the thecrem it follows that if we have an object of
F(S) (or equivalently of M3(S)) there is a canonical choice of square root
of U on P (using the notations of the proof) and hence a canonical double
cover of P ramified at U/, Using the construction of section 0 and (0.2)

. - we get a double étale cover D — C. We will call D the associated genus
- 3 curve and the map D — C the associated double cover. By construction

there are canonical sections of C — P over T, U and V and we will use
the same letters to denote the images under these sections. Similarly for
V and £ - P.

Proposition 1.3. Let (C,T,U, V') be an element of M%(S). The associated

_ double cover is nontrivial and in particular the associated genus 3 curve Is

a curve of genus 3 {over S).

Proof. To see this it suffices to check that it is non-trivial over one
geometric point of § which is obvious. Q.E.D.

2. Comparing levels.

We will now see what happens with the equivalence of the previous section

+~ when we introduce various level structures on the two sides.

Definition 2.1, The superscript sp on F or M3 or any of the modifications
to be defined presently means the stack obtained by adding the choice of an
S-isomorphism between U/ and §x2 (2 = {0, 1}). Similarly, the superscript
se on F (and its modifications) will denote the choice of a section of £ — P
over U and on M3 the choice of a section of the associated double cover
D— CoverU.

i) F(n) is the stack, on schemes on which n is invertible, whose objects



are those of F plus a level n-structure on the elliptic curve,

Fo(n) is the stack, on schemes on which n is invertible, whose objects
are those of F plus a choice of a cyclic subgroup of order o in the elliptic
curve.

F(2,4) is the stack whose objects are those of F plus a level 2-structure
and a choice of one of the cyclic groups of order 4 of the elliptic curve
containing the first of the elements of order 2.

ii) M%(2) is the stack whose objects are those of M3 plus an identifi-
cation of V' with S x 3.

%(0,4) is the stack whose objects are those of A4} plus the following
data:

b) A section over the image R in € of S x 0, of the double cover of C
associated to the decomposition of the branch locus of C — P into T,
Sx0JU and § x {1,2} (which gives an element of M3(S) different
from the one associated to the decomposition T, V and U).

M3(2,4) is the stack whose objects are those of M3 plus the following
data:

a) An identification of V' with § x 3.

b) A section over the image R in C of S x 0, of the double cover of C
associated to the decomposition of the branch locus of C — P into T,
Sx0JU and S x {1,2} (which gives an element of AM3(S) different
from the one associated to the decomposition T, V and U).

Remark. The stack F*#°? is equivalent to an open substack of the fibre
product of the moduli stack X classifying elliptic curves with a distin-
guished point with itself over the moduli stack M classifying elliptic curves.
The equivalence is obtained by mapping (£, U, V,U «— S x 2,U — &) to
((£,im(S x 0 = U — £)},(£,im(S x 1 — U = £))).

Theorem 2.2. The equivaleitce of Theorem 1.2 extends to an equivalence
between

F(2) and 5(2),
Fo(d) and : M50, 4),
F(2,4) and Mi3(2,4),
Fe and M3,
Fep and M*P,

Proof. For the level 2-structure it is immediate by the construction of
the equivalence. As for a cyclic subgroup of order 4 of £, as every element

of order 2 is orthogonal to itself under the Weil pairing it is clear that a
subgroup of order 4 is equivalent to giving an element o of order 2 (the

" unique element of order 2 in the subgroup) and a wQ-mﬂEo&E@. Giving

¢ is the same thing as giving a section the scheme of elements of order 2
in £ hence giving a section of V. By (0.4) a La-structure is equivalent to
finding a section over & of the double cover associated to a. By (0.2) this
covering £ is the fiber product, over P, of the double cover P’ ramified
over the complement V' of & in V and the double cover ramified over the
union of T and « (the first has a canonical meaning by (0.5) and the second
as E is given and the first cover has canonical meaning). Equivalently, it
is obtained as the double cover ramified over the inverse image of T'| & in
P’. Hence choosing a section of £’ over a is equivalent to choosing a section
over « of the covering P’ — P. On the other hand, we get a decomposition
of the branch locus of C = P as T, S x 0| JU and S x {1,2} and by (0.2)
the covering P’ —+ P restricted to « is isomorphic to the covering D — C
testricted to a. The case of a (2, 4)-structure is the combination of the two
previous cases, the case of an sp-structure is immediate, and the case of an
se-structure follows again from (0.2). Q.ED.

On the side of the genus 2 curve C it turns out that the different
supplementary structures we have put on the curve may be interpreted
in terms of more familiar structures on the Jacobian. Let us then first
note that if 4 — S is a principally polarised abelian scheme then as a
defining line bundle is determined up to translation there is a well-defined

" A-torsor P such that the polarisation gives a line bundle on P. The theta

divisor — the common support of the sections of this line bundle ~ is then
a divisor in P. Let us also say that a quadratic form on 2.4 is compatible
if its associated bilinear form is the Weil pairing and its Arf invariant is
that of (0.7) for |P] = 2dim.4 4 2. If the dimension of A is 2 and « is a
compatible form then for each non-isotropic {1.e. v(@) = 1) element o of

- 3A there is a unique (unordered) pair of isotropic elements {a;, ey} such

that o = ary + 3. We will call this pair the isotropic pair associated to «,

Lemma 2.3, If P is a set of 6 elements then for every choice of a compatible
quadratic fom v on A(F) and every non-isotropic {(i.e. 4{&) = 1) element
o of A(P) there is a unique (unordered) pair of isotropic elements {ay, oz}
such that o = a1 + as.

By (0.7 ii) 7 corresponds to an element s of P and from the definition
it follows that an element of A(P) considered as a 2-element subset of P is
non-isotropic for « iff it is disjoint from s. Hence what the lemma says is




that .&Q 2-element subset of P disjoint from s is the symmetric difference
of a unique pair of 2-element subsets containing s which is obvious.Q.E.D.

Definition 2.4. Using the notations of (2.3) the pair {a:, a2} will be called
the Isotropic pair associated to «.

Definition 2.5. With the notations of the preceding paragraph, a (v, WQV-
structure is the choice of a section of .4, — A aover {1, as}.

mmﬁnww.ﬂvmmmmimomuom&m W.Q-mﬁcn#:_.m Earmmoozﬁeﬂ:mgw:wm?ms
it makes the problem of finding a section above «; equivalent to finding
one above «g; one simply requires that the sum in A, be equal to the given

lifting of «.

We can now formulate the abelian surface analogs of the level struc-
tures we have defined for genus 2 curves.

Definition 2.6. A} is the stack whose objects are principally polarised
abelian surfaces A with smooth theta divisor and a choice of a section o of
arder 2 of A and a compatible quadratic form + on 2.4 for which « is not
isotropic.

The superscript sp on A% or any of the modifications to be defined
presently means the stack obtained by adding an ordering of the two
isotropic elemenis whose sum is «. Similarly, the m:vowmn:wﬁ se on A}
(and its Eo%momﬁoumv will denote the choice of a (v, Fo)-structure on A.

A3(2) is the stack whose objects are those of A} U_Sm three vy-isotropic
elements (B, fz, B3} all of which are orthogonal io a.

A%(0,4) is the stack whose objects are those of A3 plus a choice of a
section 3 of A different from but orthogonal, under the Weil pairing, to a
and not isotropic for v and a (7, WE-?EQE& on A.

A%(2,4) is the stack whose objects are those of .43 plus the choices of
both (2) and (0,4).

The following result then comes as no surprise.

Theorem 2.7. There is an equivalence of stacks between M3 and A, which
extends to equivalences between

3(2) and 5(2)

5(0,4) and 3(0,4)
A3(2, 4) and M3(2,4)
A3*e and M®
AP and M3*P.

Proof. To begin with one passes back and forth between principally

" polarised abelian surfaces and curves of genus 2 using the Jacobian and

the theta divisor respectively. From (0.8) it follows that 2-sections of the

--scheme of Weierstrass points R of the curve correspond to elements of

order 2 of the abelian surface. The section T of R allows us to embed the

" ¢urve in its Jacobian (and not just a torsor over it) so that 7 maps to the
“origin. Sections of R disjoint from 7" then map to elements of order 2 in the
" Jacobian which correspond to the 2-section which is the union of 7' and the

section. On the other hand, the element o of order 2 corresponding to a

- 2-section of R disjoint from T equals the sum of the images oy and s of the
- -two sections of the 2-section (this sum is well-defined as it is independent of
- the order of the 2 sections). From the proof of (2.3) it follows that the pair

{ay, 9} is the isotropic pair associated to the isotropic element . The
equivalence between M3 and .43 follows because the choice of T and U
corresponds, by (0.7 ii) and (0.8), to an element of order 2 of the Jacobian

‘and a compatible quadratic form on the kernel of multiplication by 2.

To prove the (2}-equivalence one simply notices that sections of V map
to elements of order 2, isotropic for 7y and orthogonal to e and that they give

. ‘all such elements (which is immediately seen from the hﬁwu-aomoumvﬂo:v

Furthermore, from (0.2) it follows that the covering D - C is the
vcngw to C of the double cover of the Jacobian of € associated to the
2-gection U and under the embedding. Hence a section of D — C over U

corresponds precisely to a (vyr, wav-mﬁ:nﬁﬂum. This gives the se-part. The

sp-part is obvious, and the (0,4)-part is similar to the se-part. Q.ED.

. We now summarise some of our results in the following corollary. Let
us recall that a level n-structure on a principally polarised abelian variety A

. isa symplectic isomorphism between the kernel of n on A and (Z/nZ)? dim 4

(which has the standard symplectic structure).

Corollary 2.8. i) Let .\_w be the algebraic stack whose objects are prin-

" cipally polarised abelian surfaces A together with; a quadratic form v on
g whose associated bilinear form is the Weil pairing and whose Arf in-
" 'variant is -1, two sections «; and as of 2. A for which Hoy) = y(aa) =0
~and a (7, |Qv -structure, where o := oy + o2, and whose morphisms are iso-




morphisms preserving all structures. Let M be the algebraic stack whose
objects are elliptic curves and whose morphisms are isomorphisms. Let
X be the stack whose objects are elliptic curves with a section and whose
morphisms are isomorphisms preserving the section and let X — £ be the
forgetful functor. Then .Lw is equivalent to the open substack U of X x g4 X
obtained by removing {(z,y) : 2z = 0V 2y = O} H(=z, z)} U{(z, —=)}.
ii) Let .\—w be the algebraic stack whose objects are principally polarised
abelian surfaces A together with:
a) A level 2-structure.
b) Sections over the first and second basis element of the double cover
associated to their sum (which is an element of order 2).
¢} Sections over the third and fourth basis element of the double cover
associated to their sum.
Then Al is equivalent to the pullback over M(2,4) — M of U, where
M(2,4) is the algebraic stack whose objects are elliptic curves with a level
2-structure and a choice of one of the subgroups of order 4 containing the
first element of order 2.

Proof. i) is simply a reformulation of the theorem using the remark
after (2.1). As for ii} it will be proved as soon as we have identified AL with
ALeP)(2.4). To do this let us for a moment go back to ME*P)(2, 4),
As part of the data we have a total ordering of the Weierstrass points
of C. Let us first show that such an ordering is equivalent to a level 2-
structure. Indeed, one direction is clear and by (0.7 ii) one goes the other
way by associating to a symplectic non-degenerate 4-dimensional space the
set of compatible quadratic forms. Now the identification is obtained by
interpreting the supplementary data on both sides. Q.E.D.

Remark. The topological fundamental group of the base extension of Al to
C, the complex numbers, is a subgroup of finite index of the mapping class
group, in fact the inverse image of the appropriate congruence subgroup
of Sp(4,Z). As X x ¢ X is normal and .Lw is open in it, this group maps
surjectively onto the fundamental group of X’ x ¢ X and, more precisely,
of X xp X\ {(z,7): 22 =0V 2y = 0} which is an extension of SLy(Z)
by Z? (resp. by a frec group on 5 generators). In particular, as there are
subgroups of finite index of SL4(Z) which are free of rank greater than 1
we see that there are subgroups of finite index of the mapping class group
which map onto free groups of any finite rank and so onto free abelian
groups of any finite rank. As all subgroups of Sp4(Z) of finite index have
finite abelianisations we see that this map to SLy(Z) is very different from

the natural map of the mapping class group onto Spa(Z). In section 5 we

will see a further vindication of this fact.

Lemma 2.9. Let My(8) be the algebraic stack whose objects are elliptic
curves with a chosen cyclic subgroup of order 8. Then My(8) is equivalent
to Mo(2, 4).

' Proof. Indeed, if (E,C4, ) is an object of AMp(2,4) one associates
to it (Bg 1= Ef{B),ker: By —2 F — E[C4), where *mg is the transpose
of the projection map 75: £ — Ej. The inverse is given by associating to
(E,Cg) the triple (£/4Cs, Cs/4Cs, 8), where 3 is the generator of 2 B /AC3.
Q.E.D.

Combining we get

mun.oﬁ..ummnmoup 2.19, Let A3(8) be the algebraic stack of elliptic curves with
a section, a cyclic subgroup Cy of order 8 and a lifting of the section to the

~covering of the elliptic curve associated to 4Cs. Then \_w is equivalent to
~an open substack of X;(8) X yq,8) X3(8).

Proof. Q.E.D.

.~ 3. Compactifications.

We will now extend the arguments presented to stable curves. It is easy to
see that the picture must differ somewhat when the stable curve consists
of 2 genus 1 curves. In fact when a smooth situation degenerates (in a
l.parameter family, say) to the union of 2 smooth genus 1 curves then 3

_..-of the 6 Weierstrass points come together. The resulting 4 points {one
.- of which is triple) have only 1 moduli whereas 2 smooth genus 1 curves
- have 2. Hence we can at most hope for a map from the space of stable

genus 2 curves to the space of stable genus 1 curves with 2 distinguished

" -points. This is in fact what we will obtain. To see this we will first need
. the following result on the bicanonical system of a stable curve.

Lemma 3.1. Let C be a stable curve of genus 2 (over S). Then the

- {(relative) bicanonical system gives a map of degree 2 onto a (fiber by fiber)

reduced conic in a P?-bundle over §S.




Proof. As the bicanonical system commutes with base change [De-
Mu:Thm. 1.2}, this is something which can be checked fiber by fiber and
then [Ca:Theorem A] shows that the bicanonical system is basepoint free.
A simple case by case study then shows that the map is of degree 2 and
maps onto a conic. Q.E.D.

This lemma already gives a clue to what is happening in the case
mentioned above; the union of two elliptic curves is not the double cover
of a projective line but rather of 2 projective lines meeting in a point and
the triple point is blown up into 3 distinct points. Except for this things
will work in a way close to the smooth situation. Our first vindication of
this claim is the following definition-lemma.

Lemma-Definition 3.2. Let 7:C — S be a family of stable genus 2 curves.

i) P(C) — S is the conic fibration which is the image of C under the
relative bicanonical map.

ii) If #:C — S is a family of stable genus 2 curves then the discon-
necting locus of P(C) is the closed subset of P{C} of points lying .in the
intersection of two components of any fiber of P(C) — S. The discon-
necting locus of C is the inverse image under the map C — P(C) of the
disconnecting locus of P(C).

iii} The Weierstrass scheme of C Is the the ramification locus of the
map from the complement in C of its disconnecting locus to its image under
the bicanonical map of C. It is a 6-section of C as well as of P(C) — S.
When a fiber of 7 is reducible it meets each component three times.

Proof. Except for the last statement what needs to be shown is that
the Weierstrass scheme is finite and flat of degree 6. It is flat and quasi-finite
being the ramification locus of a double cover of a smooth S-scheme by a
fiberwise reduced relatively Cohen-Macaulay scheme. We may therefore
check that it is finite of degree 6 fiber by fiber. The only non-trivial case is
when the stable curve canonical system of the curve has a base point (as
in the other case the curve is a double cover of P) and then it is clear
as the bicanonical system reduces to the complete linear system given by
twice the intersection point with the other fiber. This fact also gives the
last statement. Q.E.D.

Definition 3.3. i) F is the stack for which the objects of F(S) consist of a
stable genus 1 curve =: € — S with a section 7', not meeting the singular
locus of 7, together with a 2-section U of P(7,0¢(27)) — S, which isa P!-

bundle. The morphisms of F(S) are the isomorphisms of curves preserving
T and U.

it) A, is the stack for which the objects of F(S) consist of a stable
genus 2 curve C and an expression of the Weierstrass scheme of ¢, thought
of as a Cartier divisor of C, as the sum of three multisections 7', V and U
of degree 1, 3, and 2 respectively.

Remark. i) F and M3 corresponds to the cases when £ resp. C are smooth
and T and U resp. T, V and U are disjoint and étale.

ii) By the semi-stable reduction theorem F and ﬁm are proper alge-
braic stacks.

With the notations of 1} we will use the V' to denote the ramification
locus of the map defined by the relative linear system of 2T minus T itself.

Theorem 3.4. The map M3 — F of theorem 1.2 extends to a map wmm ~
F.

Proof. Ideally we would like to continue in the previous manner by
associating to each element of A,(S) an element of F(S) extending the
earlier construction. For technical reasons we have not been able to do
that, However, as F and Hm.m are algebraic stacks it is enough to give such
an association when we restrict ourselves to versal (or in fact miniversal)
families in Mj. Let therefore 7:C — S be a stable genus 2 curve which
is versal at all its points. Our first step is to contract one of the P1’s of
each reducible fiber of P(C) — S so as to obtain a P'-bundle. Note that
any line bundle £ on a conic bundle which has degree 1 on each fiber gives
a contraction map onto a P!-bundle where the contracted components are
those to which the restriction of £ has degree 0. Furthermore, the P!-
bundle and the contraction map only depend on the contracted component
and not on £ (as two line bundies contracting the same component in each
fiber differ by a line bundle from the base). The rule for which component.
to contract will depend on how T, V and U meet the 2 components. In
fact we want to contract the component not meeting T except when that
component meets V' 3 times. (The reason for the Jast exception is that
we want the divisorial images of V and T under the contraction to be the
Welerstrass scheme of a stable genus 1 fibration and hence the divisorial
image of V' may not have triple points.) In the first case we may contract
using the relative linear system of Op(¢)(27°)} and in the second the relative
linear system of wp(cy/ s(T)~. Hence whenever only one of the two cases




occur we can do the contraction. On the other hand, as the contraction —
if it exists — is unique it is sufficient to show the existence locally. As the
conditions distinguishing the two cases only involve intersection numbers,
the locus of points of § over which the fibers of 7 are geometrically reducible
can be divided up into two open and disjoint subsets such that on each such
component one of the cases occur. Therefore the contraction is always
possible locally and hence globally.

We therefore get a Pl-bundle P — S and an S-map p:P(C) — P.
We let T, V and U denote the divisorial images of the subschemes T, V
resp. U in P(C). Tt seems reasonable that contraction the component of C
lying over the contracted component of P(C) should be a double cover of
P. Indeed, away from the image K of the contracted components this is
clear. Note now that as 7 is versal K has codimension at least 2 at all its
points. On the other hand this coniraction is the normalisation over P of
the double cover over the complement of K. Hence its affine algebra over
P is a rank 2 reflexive sheaf. The trace map splits this sheaf as a sum of ©
and a rank 1 sheaf which is also reflexive. However, as C — 5 is versal, S
and hence P is regular and so a reflexive rank 1 sheaf is a line bundle and
we have a double cover A: ¢! — P.

Lemma 3.5. The ramification locus of A equals the sum of T, V and U.

Proof. Indeed, outside of K this is true by definition. However, K
has codimension 2 and P is regular. Q.E.D.

We may now proceed exactly as we did before. The cover A gives a
line bundle £ and an isomorphism £®? = Op(T' 4+ V 4+ U) and by (0.5
ii) there is a canonical “square root” of Op(U) so by subiracting it off
we get a line bundle £’ and an isomorphism £/'®2 = Op(T + V). This
gives a stable curve with a section T of the smooth locus except over the
points where T and V meet., We will see that by a sequence of elementary
transformations of P we may separate T and V keeping the data for a
double cover. Let us first note that the schematic intersection of T+ V
meets a fiber at most in double points. Indeed, as C is stable it is clear
that this is true for the Weierstrass scheme in P(C). We have now chosen
which component to contract so that we will not create a triple of T4+ V
during contraction (note that in general T+ U +V in P will, however, have
triple points). This means that locally, in the étale topology, around the
intersection of 7' and V there will be a branch V' of V' meeting T and the
rest of V will not meet T'. Because of versality V and 7" meet transversally
and their intersection maps isomorphically onto its image 5’ in S which 1s

smooth, We can now blow up this intersection and then blow down the
strict transform of the inverse image in P of S’ to obtain the P*-bundle P’.
(Locally the picture is exactly that of an ordinary elementary transform
with a 1-dimensional base crossed with a regular scheme.) Looking again
at things locally we see that 7" and V' have been separated and neither
of them meets the image of the strict transform of the inverse image in
P of §'. Hence now § is disjoint from V and V itself meets fibers in at
most double points. Furthermore, the isomorphism £'®? = Op(T + V)
transforms into an isomorphism £/®2 2 Op, (T4 V +2P%,) so that we may
choose L'(—P%,) as our new square root. Q.E.D.

4. Levels and compactifications.

There seem to be some technical problems in defining our various level
structures for the non-smooth curves (more precisely those which are the
union of two genus 1 curves). We will therefore confine ourselves to the
problem which interests us; namely of extending our results on principally
polarised abelian surfaces with irreducible theta divisor to all principally
polarised abelian surfaces. We will do this by bypassing the moduli stack
of genus 2 curves and work directly with the abelian surfaces.

Definition {.1. A is the stack whose objects are principally polarised
abelian surfaces A a choice of a section o of order 2 of A and a compatible

- quadratic form 7 on 2.4 for which « is not isotropic.

The superscript sp on A2 or any of the modifications to be defined
presently means the stack obtained by adding an ordering of the two
isotropic elements whose sum is o. Similarly, the superscript se on A,
(and its modifications) will denote the choice of a (7, 2a)-structure on .A.

Aa(2) is the stack whose objects are those of .4, plus three v-isotropic
elements (3, fa, f3) all of which are orthogonal to «.

Az(0,4) is the stack whose objects are those of Ay plus a choice of a
section £ of A different from but orthogonal, under the Weil pairing, to a
and not isotropic for v and a (v, wmu-mﬁcnoﬁm on A.

As3(2,4) is the stack whose objects are those of .4, plus the choices of

both (2) and (0,4).

The following result, of course comes as no surprise.

Theorem 4.2. The equivalences of (2.7) and (2.2) extend to a map from
A2(2) to ﬁmmvu



Azo(4) to F(0,4),
As(2,4) to F(2.4),
Aqe to F,
AP to Nﬁ.ﬂ.

Proof. Indeed, it is enough to notice that all the variants of F map
by a finite map to F itself and that all the variants of A are normal (in
fact smooth over Z). Q.E.D.

Remark. i) What stops us from defining extensions of the level structures
in the the case of stable genus 2 curves is that one needs to copy the previ-
ous arguments and in particular one needs the definition of the associated
double cover and needs to express it as a fibered product. In the case of a
versal deformation this causes no problem which would be enough to prove
things about the extension but not to define it. In the general case one
needs only to define the associated double cover away from the disconnect-
ing locus (as T, U and V never meet it). We assume that this would not
cause any essential problems but have not felt motivated to carry such an
argument through.

if) The image of the map from A, to F does not lie in F. Indeed,
following the constructions through one sees that the genus 1 curve asso-
ciated to a principally polarised abelian surface A is smooth exactly when
both points of I/ meet the same component of P(C), where C is the theta
divisor of A. (This is true as it is equivalent to V' on P having no double
points.)

5. Genus 1 levels vs. genus 2 levels.

We will here take the opportunity to note that in general putting a level
structure on an elliptic curve is a condition completely independent from
a level structure on the associated genus 2 curve. To simplify, let us show
this for an odd prime order level p for the elliptic curve and an odd prime
order level ¢ (not necessarily distinct from p) for the genus 2 curve. We
will use the following lemma (which the first named author learned from
J.-P. Serre).

Lemma 5.1. Let G and H be groups. Then there is a bijection betweeit the
set of subgroups M of G x H which map surjectively by the two projections
onto G and H and isomorphisms between quotient groups of G and H.

Proof. Given a subgroup M of G x H with the desired properties
consider G := MG x {e} and H' := M[){e} x H. These subgroups
are normal in G and H respectively. Indeed, for any ¢ € G there is, by
assumption, an h € H such that (g,h) € M and hence G is stable under
conjugation by g. By assumption the composite M — G x H — G is
surjective and so G/G' is the quotient of M by MNG' x H = G' x H'.
As the same thing is true of H/H’ we get an isomorphism between G/G’
and H/H’. On the other hand, _starting with an isomorphism ¢:G — H
between quotient groups G and H of G resp. H we associate to it the sub-
group {(g,h) : (7} = h} of G x H. Tt is clear that these two constructions

©. " are inverses of each other. Q.E.D.

We assume that we are placed over an algebraically closed field of
characteristic different from 2, p and g. Let ' be the algebraic funda-
mental group of F = M3 with respect to a fixed base point. We have
2 surjective maps I' — SLo(Z/p) and T — Sps(Z/q) given by the action
on the kernel of multiplication by p on the Jacobian of the base point as
an elliptic curve resp. by multiplication by p on the Jacobian of the base
point as a genus 2 curve. That the 2 level conditions are independent is
equivalent to saying that the induced map T' — SLa(Z/p) x Sps(Z/q) is
surjective. As the projection on both factors is surjective the image A is,by
the lemma, described by giving a common quotient group of the 2 factors.
However, except for SLs(Z/3) which is solvable, SL2(Z/p) and Sps(Z/q)
modulo their center are simple and PSLy(Z/p) and PSps(Z/q) are non-
isomorphic groups (their Sylow 2-groups are different). Hence the only pos-
sible common quotient is the trivial group and I' — SL2(Z/p) x Sps(Z/q)
is surjective.

In particular, the pullback of the equivalence F 2 M3}, considered as a
correspondence, to the spaces with odd level structures added is irreducible
and hence induces the zero map on “new” modular forms. This shows that
the fact that our equivalence induces a non-trivial correspondence in the
case mentioned in the introduction is indeed coincidental.
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Chern Functors

J. Franke*

‘This is the second of four papers in which we try to come to terms with
7 “Deligne’s problem of constructing a functorial Riemann-Roch isomoerphism

for the determinani line bundle of the cohomology of a proper smooth

- morphism p: X — S

det Rp.£ — (Ixsch(E)T0(Tx; ) Y. (1)

: " "The first step in such a construction is to give life to the right hand side

of (1). This was done by Deligne and Elkik ([D],[E]), who treated (1) as a
global expression. It is our approach to give life to each ingredient of the

.~ right hand side of (1), i.e., we can not only integrate the Chern functors
‘" along the fibres, we can also say what the Chern functors themselves are.

. This allows us to approach (1) by copying Grothendieck’s proof of Riemann-
" Roch via embeddings into projective spaces, as we shall see in a forthcoming

. -paper.

© As the first step in this program, Chow categories as target categories for

" -the Chern functors have been introduced in [F1]. Here we study the Chern

- functors themselves. Because of difficulties with the intersection product

* for non-smooth schemes over Spec(Z), we introduce ¢x(£) not as a mere
" " object of the Chow category €H%(X), but as a whole intersection product

functor

(E)N-E€H7(X) — ﬂu@uﬁ@mv. (2)

Hu the first five paragraphs of §1, we introduce ¢;(£) N A4 for a line bundle
“+ £, using a functorial version of the product

HY(X, K1) ® By (X) — B5*17H(X),

.....Srmum Ey is the FEj-term of Quillen’s spectral sequence. Starting from
“ this point, in the remaining paragraphs of §1 we construct (2), copying
. 'Grothendieck’s definition of the Chern classes. We also prove a Whitney

isomorphism for the Chern functors. The second paragraph considers fur-

. ther properties of the Chern functors (like relation to the Gysin functor f _
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